Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου"

Transcript

1 Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

2 Στάδια προ-επεξεργασίας μετρήσεων δικτύου Εφαρμογή απαραίτητων αναγωγών και διορθώσεων στις μετρήσεις. Ανίχνευση και απαλοιφή ύποπτων μετρήσεων με χονδροειδή σφάλματα. Υπολογισμός συνθετικών παρατηρήσεων. (αν χρειάζεται, π.χ. συνόρθωση σταθμού, επίλυση βάσεων GPS) Προσδιορισμός ακριβειών παρατηρήσεων και σχηματισμός πίνακα βάρους Ρ.

3 Αναγωγές και διορθώσεις παρατηρήσεων δικτύου Οι παρατηρήσεις εκτελούνται στην επιφάνεια της Γης κάτω από εξωτερικές επιδράσεις και με αναφορά σε ένα βασικό σύστημα οργάνου. Τα μοντέλα συνόρθωσης δικτύων απαιτούν τη χρήση παρατηρήσεων οι οποίες: o είναι παραμετροποιημένες ως προς κάποιο συμβατικό ΣΑ ή κάποια ιδεατή επιφάνεια αναφοράς. o δεν περιέχουν εξωτερικές συστηματικές επιδράσεις που δεν προβλέπονται από το μαθηματικό μοντέλο του προβλήματος (π.χ. ατμοσφαιρικές επιδράσεις, παλιρροιακές επιδράσεις).

4 Αναγωγές και διορθώσεις παρατηρήσεων δικτύου Τρεις βασικές κατηγορίες αναγωγών και διορθώσεων: o o o Γεωμετρικές (π.χ. αναγωγή μετρήσεων στο ΕΕΠ αναφοράς ή στο προβολικό επίπεδο). Ατμοσφαιρικές (π.χ. διόρθωση μετρήσεων λόγω διάθλασης). Βαρυτικού πεδίου (π.χ. αναγωγή μετρήσεων εξαιτίας της επίδρασης της απόκλισης της κατακορύφου, παλιρροιακές διορθώσεις, κ.λπ.).

5 Αναγωγές και διορθώσεις παρατηρήσεων δικτύου Γεωμετρικές Δεν είναι αντικείμενο του μαθήματος και αναλύονται διεξοδικά σε άλλα μαθήματα (βλέπε, π.χ., Γεωμετρική Γεωδαισία)

6 Αναγωγές και διορθώσεις παρατηρήσεων δικτύου Βαρυτικού πεδίου Δεν είναι αντικείμενο του μαθήματος και αναλύονται διεξοδικά σε άλλα μαθήματα (βλέπε, π.χ., Γεωμετρική Γεωδαισία)

7 Αναγωγές και διορθώσεις παρατηρήσεων δικτύου Ατμοσφαιρικές o Για τα κλασικά δίκτυα αφορούν κυρίως τη διόρθωση αποστάσεων και ζενίθειων γωνιών εξαιτίας της επίδρασης της διάθλασης (βλέπε βιβλίο Δ. Ρωσσικόπουλου, κεφ. 6 και κεφ. 8). o Στα δίκτυα GPS έχουμε κυρίως την τροποσφαιρική και ιονοσφαιρική επίδραση στις μετρήσεις, οι οποίες είτε απαλείφονται μέσω κατάλληλων συνθετικών παρατηρήσεων είτε συμμετέχουν ως πρόσθετες παράμετροι στη συνόρθωση του δικτύου (βλέπε μάθημα GPS).

8 Αναγωγές και διορθώσεις παρατηρήσεων δικτύου Ιδιαίτερη προσοχή και επιμέλεια χρειάζεται επίσης σε απλές, αλλά πολύ βασικές, αναγωγές όπως: o Ύψος οργάνου o Ύψος στόχου o GPS antenna phase center o Έκκεντρες στάσεις

9 Σφάλματα παρατηρήσεων true y y e y y true e τιμή μέτρησης αληθινή τιμή παρατηρούμενου μεγέθους συνολικό σφάλμα μέτρησης e b s v b s v χονδροειδές σφάλμα (outlier, blunder) συστηματικό σφάλμα (systematic error) τυχαίο σφάλμα (noise)

10 Σφάλματα παρατηρήσεων y y true e Μοντελοποιείται με στοχαστικό τρόπο και τιμή μέτρησης ελαχιστοποιείται η αληθινή τιμή παρατηρούμενου επίδραση του μεγέθους κατά τη συνόρθωση δικτύου συνολικό σφάλμα παρατήρησης true y y e e b s v b s v χονδροειδές σφάλμα (outlier, blunder) συστηματικό σφάλμα (systematic error) τυχαίο σφάλμα (noise)

11 Σφάλματα παρατηρήσεων y y true e Είτε μοντελοποιούνται και συμμετέχουν ως επιπλέον άγνωστοι στη συνόρθωση, τιμή μέτρησης είτε απαλείφονται μέσω αληθινή τιμή παρατηρούμενου αναγωγών ή άλλων μεγέθους τεχνικών (π.χ. απλές/διπλές διαφορές συνολικό σφάλμα παρατήρησης μετρήσεων GPS) true y y e e b s v b s v χονδροειδές σφάλμα (outlier, blunder) συστηματικό σφάλμα (systematic error) τυχαίο σφάλμα (noise)

12 Σφάλματα παρατηρήσεων y y true e Ανιχνεύονται με κατάλληλες μεθόδους ώστε να τιμή μέτρησης απομακρυνθούν οι κακές αληθινή τιμή παρατηρούμενου παρατηρήσεις μεγέθους από τη συνόρθωση του δικτύου συνολικό σφάλμα παρατήρησης true y y e e b s v b s v χονδροειδές σφάλμα (outlier, blunder) συστηματικό σφάλμα (systematic error) τυχαίο σφάλμα (noise)

13 Σχετικά με τα χονδροειδή σφάλματα Οφείλονται συνήθως σε ανθρώπινα λάθη. Η επίδρασή τους στα αποτελέσματα της συνόρθωσης μπορεί να είναι σημαντική. Κατανομή σφαλμάτων παρατηρήσεων χωρίς χονδροειδή σφάλματα Κατανομή σφαλμάτων παρατηρήσεων με χονδροειδή σφάλματα Η ανίχνευσή τους γίνεται συνήθως σε δύο στάδια: o κατά την προ-επεξεργασία: για μεγάλα χονδροειδή σφάλματα. o μετά την εκτέλεση της συνόρθωσης δικτύου: για μικρότερα (ή οριακά εντοπίσιμα ) χονδροειδή σφάλματα.

14 Εντοπισμός χονδροειδών σφαλμάτων κατά την προ-επεξεργασία (data screening) Απαραίτητη διαδικασία αφού η συνόρθωση απαιτεί την ύπαρξη μόνο τυχαίων σφαλμάτων στις παρατηρήσεις ώστε τα αποτελέσματα να έχουν βέλτιστη ακρίβεια. Δύο χρήσιμα εργαλεία: o Έλεγχος σφαλμάτων κλεισίματος σε θεωρητικές δεσμεύσεις μεταξύ των παρατηρήσεων. o Έλεγχος δείγματος επαναλαμβανόμενων μετρήσεων του ίδιου μεγέθους.

15 Έλεγχος σφαλμάτων κλεισίματος (loop closure testing) Θεωρητική δέσμευση μεταξύ k παρατηρήσεων στο δίκτυο: f ( y, y,..., y ) k Π.χ H H... H 0 1,2 2,3 k,1 Λόγω σφαλμάτων στις μετρήσεις, θα έχουμε ότι: w f ( y, y,..., y ) k Το ερώτημα είναι αν μπορούμε να ανιχνεύσουμε την ύπαρξη πιθανού χονδροειδούς σφάλματος με βάση την τιμή του w.

16 Έλεγχος σφαλμάτων κλεισίματος w f ( y, y,..., y ) k Αν οι παρατηρήσεις περιέχουν μόνο τυχαία σφάλματα: (0, ) w w σ w : υπολογίζεται μέσω ΝΜΣ με βάση τη στατιστική ακρίβεια των μετρήσεων Στατιστικός έλεγχος με βάση το ομαλοποιημένο σφάλμα κλεισίματος: w w z a/2 Αν δεν ισχύει η παραπάνω ανισότητα τότε έχουμε ένδειξη, με συντελεστή εμπιστοσύνης (1-α)%, πιθανού χονδροειδούς σφάλματος στις μετρήσεις.

17 Σε ένα δίκτυο μετρήθηκαν οι τρεις γωνίες ενός τριγώνου με ακρίβεια 10 cc η κάθε μία. To σφάλμα κλεισίματος του τριγώνου είναι grad. Να ελεγχθεί εάν οι τρεις γωνιομετρήσεις (ασυσχέτιστες μεταξύ τους) είναι ύποπτες για ύπαρξη χονδροειδούς σφάλματος. w Παράδειγμα w cc cc w Επίπεδο σημαντικότητας στατιστικού ελέγχου α=0.01 z a/2 Με πιθανότητα 99% υπάρχει κάποιο w μη-τυχαίο σφάλμα στις παρατηρήσεις

18 Έλεγχος σφαλμάτων κλεισίματος w f ( y, y,..., y ) k w w z a/2 Μειονεκτήματα: o Δυσκολία στην εύρεση όλων των ανεξάρτητων θεωρητικών δεσμεύσεων σε μεγάλα δίκτυα. o Δυσκολία στον εντοπισμό της συγκεκριμένης παρατήρησης που μπορεί να είναι επηρεασμένη από χονδροειδές σφάλμα.

19 Έλεγχος σφαλμάτων κλεισίματος Ένας χρήσιμος έλεγχος μπορεί να γίνει μέσω οριακών ανεκτών τιμών που απορρέουν από συγκεκριμένες προδιαγραφές ποιότητας. Π.χ. έλεγχος κλεισίματος βρόχου σε δίκτυο GPS x y z c c c S π.χ. 5 ppm Α Ε Β Γ c X X X X x y c Y Y Y Y z c Z Z Z Z σφάλματα κλεισίματος συνιστωσών βάσης Δ

20 Έλεγχος σφαλμάτων κλεισίματος Ένας χρήσιμος έλεγχος μπορεί να γίνει μέσω οριακών ανεκτών τιμών που απορρέουν από συγκεκριμένες προδιαγραφές ποιότητας. Π.χ. έλεγχος κλεισίματος βρόχου σε χωροσταθμικό δίκτυο H H H H L L L L π.χ. 3 mm km L, L, L, L μήκη χωροσταθμικών οδεύσεων 4

21 Έλεγχος επαναλαμβανόμενων μετρήσεων Αν υπάρχει διαθέσιμο δείγμα επαναλαμβανόμενων μετρήσεων για το ίδιο μέγεθος σε ένα δίκτυο: παρατηρούμενο μέγεθος (π.χ. απόσταση d ij ) y 1 2 δείγμα k μετρήσεων { y, y,..., y } k τότε μπορούμε να διαγνώσουμε πιθανή ύπαρξη μη-τυχαίων σφαλμάτων στις μετρήσεις με βάση τη στατιστική συμπεριφορά του δείγματος.

22 Έλεγχος επαναλαμβανόμενων μετρήσεων Περίπτωση Ι (η ακρίβεια των μετρήσεων θεωρείται γνωστή) k1 k1 k i k y z y y z Περίπτωση ΙΙ a/2 a/2 (η ακρίβεια των μετρήσεων θεωρείται άγνωστη) k1 k1 ˆ k i k y t y y t a/2 a/2 k1 k1 ˆ βλέπε ισοδύναμες εκφράσεις στην επόμενη διαφάνεια

23 Έλεγχος επαναλαμβανόμενων μετρήσεων Περίπτωση Ι (η ακρίβεια των μετρήσεων θεωρείται γνωστή) y y i y y i ˆ z Περίπτωση ΙΙ t a/2 k1 a/2 k1 k k1 k y y z a/2 k1 (η ακρίβεια των μετρήσεων θεωρείται άγνωστη) t a/2 k1 k k 1 ˆ k

24 Απλοποιημένος έλεγχος δείγματος (έλεγχος 3σ) Περίπτωση Ι (η ακρίβεια των μετρήσεων θεωρείται γνωστή) y y i 3 Περίπτωση ΙΙ (η ακρίβεια των μετρήσεων θεωρείται άγνωστη) 3 y 3 y i ~ 99% yi y ˆ 3 3ˆ y 3ˆ y i ~ 99%

25 Ανίχνευση χονδροειδών σφαλμάτων Οι προηγούμενοι έλεγχοι δεν εξασφαλίζουν τον εντοπισμό όλων των χονδροειδών σφαλμάτων στις διαθέσιμες μετρήσεις. Πιο ισχυροί στατιστικοί έλεγχοι για την ανίχνευση χονδροειδών σφαλμάτων εφαρμόζονται απευθείας στα ίδια τα αποτελέσματα της συνόρθωσης δικτύου. (βλέπε επόμενα μαθήματα)

26 Πως διαχέονται τα χονδροειδή σφάλματα στα αποτελέσματα της συνόρθωσης ; Παρατηρήσεις b με άγνωστα σφάλματα v Συνόρθωση Εκτιμήσεις παραμέτρων ˆ ( ) T 1 T δx A PA A Pb ˆ ( ) T 1 T δx δx A PA A Pv Συνορθωμένα σφάλματα παρατηρήσεων vˆ b Aδxˆ T 1 T vˆ ( I A( A PA) A P) v

27 Πως διαχέονται τα χονδροειδή σφάλματα στα αποτελέσματα της συνόρθωσης ; vˆ Q v Παρατηρήσεις (με χονδροειδή σφάλματα) ο πίνακας Q δεν είναι διαγώνιος! Πραγματικά σφάλματα παρατηρήσεων (τυχαία + τυχόν χονδροειδή σφάλματα) Συνόρθωση Εκτιμήσεις σφαλμάτων που υπολογίζει ο χρήστης Συνορθωμένα σφάλματα παρατηρήσεων vˆ b Aδxˆ T 1 T vˆ ( I A( A PA) A P) v

28 Χρήση συνθετικών παρατηρήσεων Συχνά στη συνόρθωση δικτύων δεν χρησιμοποιούνται οι πρωτογενείς μετρήσεις πεδίου. Αντίθετα, χρησιμοποιούνται συνθετικές παρατηρήσεις οι οποίες υπολογίζονται από τις πρωτογενείς μετρήσεις μέσα από μια κατάλληλη διαδικασία προ-επεξεργασίας. Για ποιο λόγο γίνεται αυτό ; (βλέπε επόμενη διαφάνεια)

29 Γιατί συνθετικές παρατηρήσεις ; o για να περιορίσουμε την επίδραση των εσωτερικών σφαλμάτων οργάνου o για την περιορίσουμε διάφορες εξωτερικές συστηματικές επιδράσεις (π.χ. ατμοσφαιρικές) o για να αυξήσουμε την εσωτερική ακρίβεια των παρατηρήσεων και να προσδιορίσουμε μέτρα ακρίβειας τους (βάρη) για τη συνόρθωση δικτύου o για να συνδυάσουμε εξωτερική πληροφορία με μετρήσεις πεδίου (π.χ. ΔΗ=Δh-ΔΝ)

30 Παραδείγματα συνθετικών παρατηρήσεων o Υπολογισμός μέσου όρου (Μ.Ο) δείγματος επαναλαμβανόμενων μετρήσεων. o Συνόρθωση σταθμού. (για οριζόντιες διευθύνσεις & ζενίθειες γωνίες) o Απλές, διπλές, τριπλές διαφορές μετρήσεων φάσης GPS. o Επίλυση βάσεων GPS. (single-baseline mode ή multi-baseline mode) o Δημιουργία υψομετρικών διαφορών μέσω μετρήσεων GPS και μοντέλου γεωειδούς.

31 Χρήσιμες σχέσεις y1, y2,..., y k y 1 k i y i Επαναλαμβανόμενες μετρήσεις του ίδιου μεγέθους του δικτύου (ασυσχέτιστες & της ίδιας ακρίβειας) Συνθετική παρατήρηση (αριθμητικός Μ.Ο.) 1 ˆ ( ) 2 2 yi y k 1 i Εκτίμηση της κοινής ακρίβειας των επαναλαμβανόμενων μετρήσεων (δειγματική μεταβλητότητα) ˆ 2 2 ˆ y k Εκτίμηση της ακρίβειας του Μ.Ο των επαναλαμβανόμενων μετρήσεων

32 y1, y2,..., y k y 1 k i Χρήσιμες σχέσεις y i Προσδιορισμός της (εσωτερικής) ακρίβειας ασυσχέτιστων επαναλαμβανόμενων μετρήσεων σε ένα δίκτυο (*) χρήσιμο όταν δεν γνωρίζουμε εξαρχής τη μετρητική ακρίβεια του οργάνου 1 ˆ ( ) 2 2 yi y k 1 i Εκτίμηση της κοινής ακρίβειας των επαναλαμβανόμενων μετρήσεων (δειγματική μεταβλητότητα) ˆ 2 2 ˆ y k Εκτίμηση της ακρίβειας του Μ.Ο των επαναλαμβανόμενων μετρήσεων

33 Χρήσιμες σχέσεις y1, y2,..., y k y 1 k y Βελτίωση i της (εσωτερικής) ακρίβειας i για τη συνθετική παρατήρηση 2 1 σε περίπτωση 2 yi y k 1 i ˆ ( ) Επαναλαμβανόμενες μετρήσεις του ίδιου μεγέθους του δικτύου (ασυσχέτιστες & της ίδιας ακρίβειας) Αντιπροσωπευτική συνθετική παρατήρηση (αριθμητικός Μ.Ο.) επαναλαμβανόμενων μετρήσεων ˆ 2 2 ˆ y k Εκτίμηση της ακρίβειας του Μ.Ο των επαναλαμβανόμενων μετρήσεων

34 Τι είναι ; Συνόρθωση σταθμού Στάδιο προ-επεξεργασίας για τις μετρήσεις οριζόντιων διευθύνσεων που εκτελούνται από κάποιο σημείο στάσης του δικτύου με τη μέθοδο των περιόδων. Ι θέση τηλεσκ. 4, , , , , , , , , , , , , , , , : : ΙΙ θέση τηλεσκ. 1η περίοδος 2η περίοδος

35 Συνόρθωση σταθμού Από κάθε σημείο στάσης του δικτύου μετράμε ένα πλήθος οριζόντιων διευθύνσεων προς άλλα σημεία, σε διαφορετικές περιόδους. μηδενική διεύθυνση της k περιόδου μηδενική διεύθυνση της 2ης περιόδου P μηδενική διεύθυνση της 1ης περιόδου (*) η μηδενική διεύθυνση αναφοράς των αποτελεσμάτων της συνόρθωσης σταθμού (ως προς την οποία αναφέρονται οι τελικές συνορθωμένες τιμές των οριζοντίων διευθύνσεων) ΕΠΙΛΕΓΕΤΑΙ ΑΠΟ ΤΟΝ ΧΡΗΣΤΗ ή ΤΟ ΠΡΟΓΡΑΜΜΑ i

36 Συνόρθωση σταθμού Γιατί την κάνουμε ; o Υπολογισμός αντιπροσωπευτικής τιμής για κάθε σκοπευόμενη διεύθυνση στο δίκτυο. μέσω συνόρθωσης των πρωτογενών μετρήσεων σε διαφορετικές περιόδους και σε Ι/ΙΙ θέση τηλεσκοπίου o Υπολογισμός της (εσωτερικής) ακρίβειας για την αντιπροσωπευτική τιμή κάθε σκοπευόμενης διεύθυνσης στο δίκτυο. o Εκτίμηση της ακρίβειας του οργάνου που χρησιμοποιήθηκε στις παρατηρήσεις διευθύνσεων.

37 Μοντέλο συνόρθωσης σταθμού (για κάθε σημείο στάσης του δικτύου) Ι θέση τηλεσκοπίου ( I) ( I) i, (1) i (1) i, (1) ( I) ( I) j, (1) j (1) j, (1) v v ΙΙ θέση τηλεσκοπίου 200 ( II ) g ( II ) i, (1) i (1) i, (1) 200 ( II ) g ( II ) j, (1) j (1) j, (1) v v 1η περίοδος ( I) ( I) i, (2) i (2) i, (2) ( I) ( I) j, (2) j (2) j, (2) v v 200 ( II ) g ( II ) i, (2) i (2) i, (2) 200 ( II ) g ( II ) j, (2) j (2) j, (2) v v 2η περίοδος (*) κοινή συνόρθωση των παραπάνω μετρήσεων με μοναδιαίο πίνακα βάρους (αδυναμία βαθμού = 1) κ.ο.κ.

38 a-posteriori μεταβλητότητα = a-posteriori τυπική απόκλιση = 2.94 βαθμοί ελευθερίας = 20 κριτήριο βελτιστοποίησης = ΑΡΧΕΙΟ ΛΥΣΗΣ ΣΥΝΟΡΘΩΣΗΣ ΣΤΑΘΜΟΥ 2. OI ΣΥΝΟΡΘΩΜΕΝΕΣ ΔΙΕΥΘΥΝΣΕΙΣ σκοπευόμενο συνορθωμένη τυπική σημείο διεύθυνση απόκλιση (grad) (cc) Εισάγονται στην τελική συνόρθωση του δικτύου 3. ΠΙΝΑΚΑΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ σημείο θέση τηλεσκοπίου παρατήρηση σφάλμα τυπική εξωτερικά I II (I+II)/2 παρατήρησης απόκλιση ομαλοποιημένο σφάλματος σφάλμα (grad) (grad) (grad) (cc) (cc)

39 Συνόρθωση σταθμού Για περισσότερες λεπτομέρειες βλέπε βιβλίο Δ. Ρωσσικόπουλου (κεφ. 5)

40 Τι είναι ; Συνόρθωση σταθμού (για ζενίθειες γωνίες) Στάδιο προ-επεξεργασίας για τις επαναλαμβανόμενες μετρήσεις ζενίθειων γωνιών που εκτελούνται από κάποιο σημείο στάσης του δικτύου σε Ι και ΙΙ θέση τηλεσκοπίου. (οι ζενίθειες γωνίες δεν μετρούνται σε περιόδους) Ι θέση τηλεσκ. 4, , , , , , , , , , , , : : ΙΙ θέση τηλεσκ.

41 Γιατί την κάνουμε ; Συνόρθωση σταθμού (για ζενίθειες γωνίες) o Υπολογισμός αντιπροσωπευτικής τιμής για κάθε μετρούμενη ζενίθεια γωνία στο δίκτυο. μέσω συνόρθωσης των πρωτογενών μετρήσεων σε Ι/ΙΙ θέση τηλεσκοπίου o Για την απαλοιφή του σφάλματος δείκτου. o Υπολογισμός της (εσωτερικής) ακρίβειας για τις αντιπροσωπευτικές τιμές των ζενίθειων γωνιών. o Εκτίμηση της ακρίβειας του οργάνου που χρησιμοποιήθηκε στις παρατηρήσεις.

42 Μοντέλο συνόρθωσης σταθμού ζενιθείων γωνιών (για κάθε σημείο στάσης του δικτύου) Ι θέση τηλεσκοπίου ΙΙ θέση τηλεσκοπίου z v ( I) ( I) i i i ( I) ( I) z v i i i 400 z g ( II) ( II) i i i g ( II) ( II) 400 z v v i i i επαναλαμβ. μετρήσεις προς το σημείο i z v ( I) ( I) k k k ( I) ( I) z v k k k 400 z g ( II) ( II) k k k g ( II) ( II) 400 z v (*) κοινή συνόρθωση των παραπάνω μετρήσεων με μοναδιαίο πίνακα βάρους κ.ο.κ. v k k k επαναλαμβ. μετρήσεις προς το σημείο k

43 Συνόρθωση σταθμού Για περισσότερες λεπτομέρειες βλέπε βιβλίο Δ. Ρωσσικόπουλου (κεφ. 8)

44 Επίλυση βάσεων GPS Βλέπε στο υποχρεωτικό μάθημα GPS του 5 ου εξαμήνου καθώς και σε άλλα σχετικά επιλεγόμενα μαθήματα του Τομέα ΓΤΟ

45 Ακρίβεια παρατηρήσεων και δημιουργία πίνακα βάρους δx b A A v δ q 2 o 1 v ~ ( 0, P ) C v o Κάθε συνόρθωση δικτύου απαιτεί έναν πίνακα βάρους για τις παρατηρήσεις. o Η επιλογή του καθορίζεται συνήθως από το στοχαστικό μοντέλο για τα τυχαία σφάλματα των μετρήσεων. o Εμπειρικού-τύπου επιλογές για τον πίνακα βάρους είναι επίσης συχνές σε πρακτικές εφαρμογές.

46 Ακρίβεια παρατηρήσεων και δημιουργία πίνακα βάρους δx b A A v δ q 2 o 1 v ~ ( 0, P ) C v o Συχνά, αλλά όχι πάντα, ο πίνακας βάρους είναι διαγώνιος και βασίζεται στις τυπικές ακρίβειες των μετρήσεων. (είτε την κατασκευαστική ακρίβεια του οργάνου είτε την υπολογισμένη ακρίβεια από το στάδιο της προ-επεξεργασίας) o Στα δίκτυα GPS ο πίνακας βάρους είναι μη-διαγώνιος και προκύπτει από τις επιμέρους επιλύσεις βάσεων που θα χρησιμοποιηθούν στη συνόρθωση.

47 Πίνακας βάρους υψομετρικών δικτύων (γεωμετρικής χωροστάθμησης) Oι παρατηρήσεις υψομετρικών διαφορών συνήθως θεωρούνται ασυσχέτιστες μεταξύ τους. Η ακρίβεια των παρατηρήσεων υψομετρικών διαφορών σε ένα χωροσταθμικό δίκτυο λαμβάνεται ως εξής: 2 2 H o Lik ik 2 o L ik ακρίβεια χωροβάτη σε διπλή χωροσταθμική όδευση (μετάβαση & επιστροφή) μήκους 1 km. μήκος χωροσταθμικής όδευσης σε km.

48 Πίνακας βάρους υψομετρικών δικτύων (γεωμετρικής χωροστάθμησης) Αν η ακρίβεια του χωροβάτη είναι άγνωστη P / L 0 ik 0 0 Αν η ακρίβεια του χωροβάτη είναι γνωστή P / L 0 ik 0 0 ή P 1 2 o / L 0 ik 0 0

49 Πίνακας βάρους υψομετρικών δικτύων (τριγωνομετρικής υψομετρίας) Η υψομετρική διαφορά προκύπτει ως συνθετική παρατήρηση σύμφωνα με την σχέση: H S cos ( ) ik ik ik Εφαρμόζοντας τον νόμο μετάδοσης συμ-μεταβλητοτήτων θα έχουμε: cos + S sin H ik S ik ik ik ik ik Δημιουργία πίνακα βάρους

50 Ακρίβεια πλευρομετρήσεων Γενικό μοντέλο μετρητικής ακρίβειας οριζόντιας απόστασης με total station σ H a b S 2 Ακρίβεια μέτρησης κεκλιμένης απόστασης S S 2 H Επίδραση γεωμετρικών αναγωγών Οι σταθερές a (σε mm ή cm) και b (σε ppm) χαρακτηρίζουν την ακρίβεια του οργάνου και παρέχονται από τον κατασκευαστή.

51 Ακρίβεια γωνιομετρήσεων o Για μεμονωμένες μετρήσεις: μπορεί να χρησιμοποιηθεί είτε η ακρίβεια οργάνου είτε κάποια άλλη τιμή που θεωρούμε ότι προσεγγίζει την ακρίβεια της μέτρησης. (με το δεδομένο όργανο στις δεδομένες συνθήκες από τον συγκεκριμένο παρατηρητή) o Για συνθετικές παρατηρήσεις: πρέπει να χρησιμοποιηθεί η ακρίβεια των συνθετικών παρατηρήσεων όπως προέκυψε από το στάδιο της προ-επεξεργασίας. (π.χ. συνόρθωση σταθμού, υπολογισμός γωνιών από οριζόντιες διευθύνσεις)

52 Πίνακας βάρους σε δίκτυα GPS Προκύπτει από τους πίνακες συμ-μεταβλητοτήτων των συνιστωσών βάσεων GPS που επιλύονται στο στάδιο της προ-επεξεργασίας των αρχικών μετρήσεων. C v C ik 0 0 C ik 2 x ik Symmetric x, y x, z ik ik ik ik 2 y ik y, z ik ik 2 z ik x x x ik k i y y y ik k i z z z ik k i (*) οι βάσεις θεωρούνται ασυσχέτιστες μεταξύ τους (απλουστευτική παραδοχή που δεν ισχύει πάντα)

53 Πίνακας βάρους σε δίκτυα GPS (η πιο απλή περίπτωση) # # # Από επίλυση 1 ης βάσης # # # # # # Από επίλυση i ης βάσης # # # Από # επίλυση # n ης βάσης # # # #

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Σύντομος οδηγός του προγράμματος DEROS

Σύντομος οδηγός του προγράμματος DEROS Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες

Διαβάστε περισσότερα

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο

Διαβάστε περισσότερα

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο Μεταλλικού Τ1-Τ10

Διαβάστε περισσότερα

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 10 Σε ένα κατακόρυφο δίκτυο έχουν μετρηθεί, μέσω διπλής γεωμετρικής χωροστάθμησης, οι υψομετρικές διαφορές μεταξύ όλων των σημείων

Διαβάστε περισσότερα

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών Εισαγωγικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και

Διαβάστε περισσότερα

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η έννοια

Διαβάστε περισσότερα

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων

Διαβάστε περισσότερα

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 016-017 Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,

Διαβάστε περισσότερα

Μερικά διδακτικά παραδείγματα

Μερικά διδακτικά παραδείγματα Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 207-208 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Σημείωση Τα παρακάτω

Διαβάστε περισσότερα

Μερικά διδακτικά παραδείγματα

Μερικά διδακτικά παραδείγματα Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 206-207 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα Παράδειγμα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1) Ποιός είναι ο βασικός ρόλος και η χρησιμότητα των δικτύων στη Γεωδαισία και την Τοπογραφία; 2) Αναφέρετε ορισμένες

Διαβάστε περισσότερα

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).

Διαβάστε περισσότερα

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου

Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 06-07 Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Παράδειγμα συνόρθωσης οριζόντιου δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO

Διαβάστε περισσότερα

Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς

Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης

Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 2: Ανασκόπηση θεωρίας εκτίμησης παραμέτρων και συνόρθωσης παρατηρήσεων Χριστόφορος Κωτσάκης Άδειες

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων

Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;

Διαβάστε περισσότερα

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 017-018 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή

Διαβάστε περισσότερα

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016

ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016 Θεσσαλονίκη, 13 Ιουνίου 2016 ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 8 Ο ΕΞΑΜΗΝΟ ΤΑΤΜ/ΑΠΘ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016 Αντικείμενο του μαθήματος Το αντικείμενο των

Διαβάστε περισσότερα

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος

Διαβάστε περισσότερα

Σύντομη σύγκριση μεθόδων ένταξης δικτύου

Σύντομη σύγκριση μεθόδων ένταξης δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Σύντομη σύγκριση μεθόδων ένταξης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Bασικές

Διαβάστε περισσότερα

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή 6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic

Διαβάστε περισσότερα

Αλγόριθμοι συνόρθωσης δικτύων

Αλγόριθμοι συνόρθωσης δικτύων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου τη

Διαβάστε περισσότερα

Γενική λύση συνόρθωσης δικτύου

Γενική λύση συνόρθωσης δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Πως ξεπερνάμε το

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 8: Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS 5 Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS H τεχνική των "µεµονωµένων βάσεων" εφαρµόζεται όταν διατίθενται δύο µόνο δέκτες και χρησιµοποιείται για τα συνήθη δίκτυα πύκνωσης µε µικρό α- ριθµό σηµείων.

Διαβάστε περισσότερα

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 3: Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πρόλογος 5. Πρόλογος

Πρόλογος 5. Πρόλογος Πρόλογος 5 Πρόλογος Η Τοπογραφία είναι ο επιστημονικός χώρος μέσω του οποίου κατόρθωσε να επιτύχει ο άνθρωπος την απεικόνιση τμημάτων της γήινης επιφάνειας στο επίπεδο. Ενδιάμεσο και απαραίτητο στάδιο

Διαβάστε περισσότερα

TEI Athens Department of Surveying Engineering. Ονοματεπώνυμο. Τίτλος εργασίας. 3rd EXERCISE

TEI Athens Department of Surveying Engineering. Ονοματεπώνυμο. Τίτλος εργασίας. 3rd EXERCISE 2013 TEI Athens Department of Surveying Engineering Ονοματεπώνυμο Τίτλος εργασίας 3rd EXERCISE Περιετόμενα Πρόλογος Abstract....σελ. 2 I. Εισαγφγή......σελ. 3 ΙΙ. Υυομετρία....σελ. 4 II.1 Γεφμετρική Φφροστάθμηση...σελ.

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2017 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2016 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0 Ι.Μ. Δόκας Επικ. Καθηγητής Υψομετρία Γνωστική περιοχή της Γεωδαισίας που έχει ως αντικείμενο τον προσδιορισμό υψομέτρων σε μεμονωμένα σημεία καθώς και υψομετρικών διαφορών μεταξύ

Διαβάστε περισσότερα

υψών διαφορετικού τύπου. Προσδιορίζονται είτε γεωµετρικά, είτε δυναµικά

υψών διαφορετικού τύπου. Προσδιορίζονται είτε γεωµετρικά, είτε δυναµικά Συστήµατα υψών ΣΥΣΤΗΜΑΤΑ ΥΨΩΝ Η βαρύτητα εξαρτάται από το ύψος, εποµένως τα συστήµατα υψών είναι ιδιαίτερα σηµαντικά για το πεδίο βαρύτητας. ιάφορες τεχνικές µετρήσεων οδηγούν στον προσδιορισµό υψών διαφορετικού

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας

Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας 3 ο Πανελλήνιο Συνέδριο ΑΤΜ Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας Χ. Κωτσάκης, Μ. Ζουλίδα, Δ. Τερζόπουλος, Κ. Κατσάμπαλος Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

Οδηγός λύσης θέματος 2

Οδηγός λύσης θέματος 2 Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 2 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε να κάνουμε

Διαβάστε περισσότερα

Οδηγός λύσης θέματος 1

Οδηγός λύσης θέματος 1 Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Οδηγός λύσης θέματος 1 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Αρχείο δεδομένων (DataSet1.txt)

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 3: Συστήματα Υψών Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Εισαγωγή στο

Διαβάστε περισσότερα

Χωροστάθμησημε GPS Βασικές αρχές, προβλήματα και προκαταρκτικά αποτελέσματα

Χωροστάθμησημε GPS Βασικές αρχές, προβλήματα και προκαταρκτικά αποτελέσματα HEPOS Workshop Χωροστάθμησημε GPS Βασικές αρχές, προβλήματα και προκαταρκτικά αποτελέσματα Χ. Κωτσάκης, Κ. Κατσάμπαλος, Δ. Αμπατζίδης Τομέας Γεωδαισίας και Τοπογραφίας Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Η έννοια και χρήση των εσωτερικών δεσμεύσεων

Η έννοια και χρήση των εσωτερικών δεσμεύσεων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ SMANET1 Πρόγραµµα Συνόρθωσης και Ελέγχου Γεωµετρικών Συνθηκών σε 3 Τοπογραφικά ίκτυα ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Χριστόφορος Κωτσάκης Επίκουρος Καθηγητής ΤΑΤΜ/ΑΠΘ Τοµέας Γεωδαισίας και Τοπογραφίας Τµήµα

Διαβάστε περισσότερα

Δυναμική θεωρία της υψομετρίας (Βαρύτητα & Υψόμετρα)

Δυναμική θεωρία της υψομετρίας (Βαρύτητα & Υψόμετρα) Δυναμική θεωρία της υψομετρίας (Βαρύτητα & Υψόμετρα) Συστήματα Υψομέτρων Ένα σύστημα υψομέτρων είναι ένα μονοδιάστατο σύστημα αναφοράς που χρησιμοποιείται για να εκφράσει τη μετρική απόσταση (ύψος) ενός

Διαβάστε περισσότερα

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Επιµορφωτικά Σεµινάρια ΑΤΜ Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Συστήματα & πλαίσια αναφοράς Μετασχηματισμοί συντεταγμένων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΜΕΤΡΗΣΗ ΚΑΙ ΕΠΙΛΥΣΗ ΤΡΙΔΙΑΣΤΑΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ ΔΙΚΤΥΟΥ ΑΚΡΙΒΕΙΑΣ ΣΤΟΝ Η/Σ ΒΑΣΙΛΙΚΟ ΤΗΣ ΑΗΚ, ΜΕ ΧΡΗΣΗ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΓΕΩΔΑΙΤΙΚΩΝ

Διαβάστε περισσότερα

Αξιολόγηση των δικτύων μόνιμων σταθμών GNSS στον προσδιορισμό υψομέτρων μέσω τεχνικών NRTK

Αξιολόγηση των δικτύων μόνιμων σταθμών GNSS στον προσδιορισμό υψομέτρων μέσω τεχνικών NRTK 5 ο Πανελλήνιο Συνέδριο Αγρονόμων & Τοπογράφων Μηχανικών ΑΤΜ: Πραγματικότητα & Προοπτικές 14 & 15 Οκτωβρίου 2017, Αθήνα Αξιολόγηση των δικτύων μόνιμων σταθμών GNSS στον προσδιορισμό υψομέτρων μέσω τεχνικών

Διαβάστε περισσότερα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα (Ridge regression) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ύο λόγια από τους συγγραφείς.

ύο λόγια από τους συγγραφείς. ύο λόγια από τους συγγραφείς. Το βιβλίο αυτό γράφτηκε από τους συγγραφείς με σκοπό να συμβάλουν στην εκπαιδευτική διαδικασία του μαθήματος της Τοπογραφίας Ι. Το βιβλίο είναι γραμμένο με τον απλούστερο

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ

ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ Ιωάννη Χαλκίδη 63 - ΤΚ 56123 Αµπελόκηποι - Θεσσαλονίκη- - 2310-725900 2310-725900 email: spido_gr@hol.gr ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ των Πολεοδομικων Ενοτητων ΠΕ 06 & ΠΕ 07 της Δημοτικης Κοινοτητας Αμπελοκηπων

Διαβάστε περισσότερα

Οδηγός λύσης θέματος 3

Οδηγός λύσης θέματος 3 Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 3 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ ανά 5 λεπτά ανά 1 λεπτό

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης

Διαστήματα Εμπιστοσύνης Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z

Διαβάστε περισσότερα

Μικτά δίκτυα. GPS και γωνίες, αποστάσεις, υψοµετρικές διαφορές και βαρύτητα. 7.1 H αρχή της τρισδιάστατης ολοκληρωµένης γεωδαισίας

Μικτά δίκτυα. GPS και γωνίες, αποστάσεις, υψοµετρικές διαφορές και βαρύτητα. 7.1 H αρχή της τρισδιάστατης ολοκληρωµένης γεωδαισίας 7 Μικτά δίκτυα. GPS και γωνίες, αποστάσεις, υψοµετρικές διαφορές και βαρύτητα. 7.1 H αρχή της τρισδιάστατης ολοκληρωµένης γεωδαισίας Στην κλασική οπογραφία και Γεωδαισία, ο υπολογισµός ενός δικτύου οριζόντιου

Διαβάστε περισσότερα

Ανάπτυξη σύγχρονου λογισμικού για τη συνόρθωση και στατιστική επεξεργασία 2Δ και 3Δ γεωδαιτικών δικτύων

Ανάπτυξη σύγχρονου λογισμικού για τη συνόρθωση και στατιστική επεξεργασία 2Δ και 3Δ γεωδαιτικών δικτύων Τομέας Γεωδαισίας και Τοπογραφίας Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, Πολυτεχνική Σχολή Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γεώργιος Ουζουνούδης Μεταπτυχιακός φοιτητής ΤΑΤΜ, ΑΠΘ Ανάπτυξη σύγχρονου

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1 Περιεχόµενα Περιεχόµενα... 7 Ευρετήριο Γραφηµάτων... 11 Ευρετήριο Εικόνων... 18 Κεφάλαιο 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ... 19 Θεωρία... 19 1.1 Έννοιες και ορισµοί... 20 1.2 Μονάδες µέτρησης γωνιών και µηκών...

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0 Ι.Μ. Δόκας Επικ. Καθηγητής Επίγειες Γεωδαιτικές Μετρήσεις Μήκη Γωνίες Υψομετρικές διαφορές Παράμετροι οργάνων μέτρησης Ανάγνωση/Μέτρηση Σφάλμα/Αβεβαιότητα Μήκη Μέτρηση Μήκους Άμεση

Διαβάστε περισσότερα

Εκτίμηση Διαστήματος. Χ. Εμμανουηλίδης, 1. Στατιστική ΙI. Εκτίμηση Διαστήματος Εμπιστοσύνης για τον Μέσο

Εκτίμηση Διαστήματος. Χ. Εμμανουηλίδης, 1. Στατιστική ΙI. Εκτίμηση Διαστήματος Εμπιστοσύνης για τον Μέσο Στατιστική ΙI Ενότητα : Εκτίμηση Διαστήματος Δρ. Χρήστος Εμμανουηλίδης Aν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική ΙΙ, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης, cemma@eco.auth.gr 1 Εκτίμηση

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ Διδακτικές σημειώσεις Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ MSc Γεωπληροφορική

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Δορυφορική Γεωδαισία (GPS)

Δορυφορική Γεωδαισία (GPS) Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ Δορυφορική Γεωδαισία (GPS)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας 1.1. ΧΩΡΟΒΑΤΗΣ Ο χωροβάτης είναι το Τοπογραφικό όργανο, που χρησιμοποιείται στη μέτρηση των υψομέτρων σημείων.

Διαβάστε περισσότερα

Ευχαριστίες 1/11/2014. Μουστάκας Δ. Παναγιώτης

Ευχαριστίες 1/11/2014. Μουστάκας Δ. Παναγιώτης Περίληψη Στην παρούσα εργασία επιχειρείται η επισκόπηση, αλλά και εφαρμογή, των μεθόδων που χρησιμοποιούνται για την εκτίμηση των ορθομετρικών υψομέτρων στην τοπογραφική πρακτική. Βασικός στόχος είναι

Διαβάστε περισσότερα

Μετασχηματισμός δικτύου GPS στα ελληνικά γεωδαιτικά συστήματα αναφοράς

Μετασχηματισμός δικτύου GPS στα ελληνικά γεωδαιτικά συστήματα αναφοράς Μετασχηματισμός δικτύου GPS στα ελληνικά γεωδαιτικά συστήματα αναφοράς Α. Φωτίου και Χ. Πικριδάς Τομέας Γεωδαισίας και Τοπογραφίας, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ Περίληψη: Παρουσιάζεται

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις

Διαβάστε περισσότερα

Δασική Δειγματοληψία

Δασική Δειγματοληψία Δασική Δειγματοληψία Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 5 ο εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ Εισαγωγή Δειγματοληψία Επιλογή ενός μέρους από ένα σύνολο

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...

Διαβάστε περισσότερα