e i e j = δ ij. (1.1)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "e i e j = δ ij. (1.1)"

Transcript

1 Peieqìmena 1 DIANUSMATIKOS KAI TANUSTIKOS LOGISMOS Sust mata suntetagmènwn DiafoikoÐ telestèc H ulik pa gwgoc Tanustikìc logismìc 'Algeba tanust n Tanustèc sth eustodunamik Apìklish tanustikoô pedðou PwteÔsousec dieujônseic kai analloðwtec tanust Sumbolismìc deikt n kai h sômbash joishc Oloklhwtik jew mata To je hma tou Stokes To je hma thc apìklishc To je hma metafo c tou Renolds Pobl mata BibliogafÐa i

2 ii PERIEQ OMENA

3 Kef laio 1 DIANUSMATIKOS KAI TANUSTIKOS LOGISMOS 1.1 Sust mata suntetagmènwn Me thn epilog ti n gammik ane thtwn dianusm twn, e 1, e 2 kai e 3,ston tisdi stato q o oðzetai èna sôsthma suntetagmènwn coodinate sstem. Ta dianôsmata e 1, e 2 kai e 3 antiposwpeôoun teic diafoetikèc metaô touc dieujônseic ston q o. To sônolo B={e 1, e 2, e 3 } eðnai mia b sh basis tou tisdi statou q ou. Sun jwc ta dianôsmata e 1, e 2 kai e 3 epilègontai na eðnai monadiaða. Sta tða sust mata suntetagmènwn pou mac endiafèoun, dhl. stic katesianèc Catesian, tic kulindikèc clindical kai tic sfaiikèc spheical suntetagmènec, ta tða dianôsmata thc b shc eðnai epðshc ojog nia metaô touc. 'Aa sta tða aut sust mata h b sh B={e 1, e 2, e 3 } eðnai ojokanonik : e i e j = δ ij. 1.1 K je di nusma u tou q ou autoô g fetai monos manta san gammikìc sunduasmìc twn e 1, e 2 kai e 3 : u = u 1 e 1 + u 2 e 2 + u 3 e Oi bajmwtèc posìthtec u 1, u 2 kai u 3 eðnai oi sunist sec tou u kai antiposwpeôoun ta megèjh twn pobol n tou u se k je mia apì tic basikèc dieujônseic. To di nusma u g fetai suqn san uu 1,u 2,u 3 apl sanu 1,u 2,u 3. To katesianì sôsthma suntetagmènwn,, z, me <<, << kai <z<, mac eðnai dh gnwstì. H b sh tou sumbolðzetai suqn me {i, j, k} {e, e, e z }. H an lush enìc dianôsmatoc v stic teic tou sunist sec faðnetai gafik sto Sq ma 1.1. Shmei noume ìti se ìla ta kef laia twn shmei sewn qhsimopoioôme deiìstofa ight-handed sust mata suntetagmènwn. Oi kulindikèc kai oi sfaiikèc polikèc suntetagmènec eðnai ta pio shmantik ojog nia kampulìgamma sust mata suntetagmènwn cuvilinea coodinate sstems. Oi kulindikèc polikèc suntetagmènec, θ, z, me 0, 0 θ<2π kai <z<, faðnontai sto Sq ma1.2mazðmetic katesianèc suntetagmènec. Hb shtou kulindikoô sust matoc suntetagmènwn apoteleðtai apì tða ojokanonik dianôsmata: to aktinikì di nusma e, to azimoujiakì gwniakì di nusma e θ, kai to aonikì di nusma e z. PaathoÔme ìti h azimoujiak gwnða θ peistèfetai gôw apì ton ona twn z. K je di nusma v analôetai kai oðzetai monos manta apì tic teic tou sunist sec vv,v θ,v z. Me th q sh apl n tigwnometik n tautot twn k je di nusma mpoeð na metasqhmatisteð apì to èna sôsthma sto llo. Ston PÐnaka 1.1 eðnai sugkentwmènoi oi 1

4 2 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc z z v z k,, z v k i j z v i v j Sq ma 1.1: Katesianèc suntetagmènec,, z me <<, << kai < z<. z z e z, θ, z z e e θ θ θ Sq ma 1.2: Kulindikèc polikèc suntetagmènec, θ, z me 0, 0 θ<2π kai <z<, kai to di nusma jèshc.

5 1.1. Sust mata suntetagmènwn 3, θ, z,, z,, z, θ, z Suntetagmènec = cos θ = actan, > 0, 0 = sin θ θ = π +actan, < 0 2π +actan, > 0, < 0 z = z z = z DianÔsmata b shc i =cosθe sin θ e θ e =cosθi +sinθ j j =sinθe +cosθ e θ e θ = sin θ i +cosθ j k = e z e z = k PÐnakac 1.1: Sqèseic metaô katesian n kai kulindik n polik n suntetagmènwn. e θ e j i θ. Sq ma 1.3: Polikèc suntetagmènec, θ sto epðpedo.

6 4 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc z z e θ, θ, φ z θ e θ e φ φ φ Sq ma 1.4: Sfaiikèc polikèc suntetagmènec, θ, φ me 0, 0 θ π kai 0 φ 2π, kai to di nusma jèshc. basikoð tôpoi gia thn met bash apì tic katesianèc stic kulindikèc suntetagmènec kai antðstofa. An agno soume th suntetagmènh z kai peioistoôme sto epðpedo, oi kulindikèc polikèc suntetagmènec an gontai stic gnwstèc mac polikèc suntetagmènec, θ sto epðpedo pou faðnontai sto Sq ma 1.3. Oi sfaiikèc polikèc suntetagmènec, θ, φ, me 0, 0 θ π kai 0 φ<2π, faðnontai sto Sq ma 1.4 mazð me tic katesianèc suntetagmènec. EpishmaÐnoume ìti ta kai θ stic kulindikèc kai tic sfaiikèc suntetagmènec den eðnai ta Ðdia. H b sh tou sust matoc sfaiik n suntetagmènwn apoteleðtai apì tða ojokanonik dianôsmata: to aktinikì di nusma e,to meshmbinì di nusma e θ, kai to azimoujiakì di nusma e φ. K je di nusma v analôetai monos manta se teic sunist sec, vv,v θ,v φ, oi opoðec eðnai ta mèta twn pobol n tou v sta tða dianôsmata b shc. O metasqhmatismìc enìc dianôsmatoc apì tic sfaiikèc stic katesianèc suntetagmènec kai antðstofa gðnetai me th q sh twn sqèsewn tou PÐnaka 1.2. Pa deigma B sh tou kulindikoô sust matoc suntetagmènwn Ja deðoume ìti h b sh B={e, e θ, e z } tou kulindikoô sust matoc suntetagmènwn eðnai ojokanonik. Epeid i i = j j = k k=1 kai i j = j k = k i=0, èqoume: e e = cosθ i +sinθ j cos θ i +sinθ j = cos 2 θ +sin 2 θ =1 e θ e θ = sin θ i +cosθ j sin θ i +cosθ j = sin 2 θ +cos 2 θ =1 e z e z = k k =1 e e θ = cosθ i +sinθ j sin θ i +cosθ j = 0 e e z = cosθ i +sinθ j k =0 e θ e z = sin θ i +cosθ j k =0

7 1.1. Sust mata suntetagmènwn 5, θ, φ,, z,, z, θ, φ Suntetagmènec = sin θ cos φ = z 2 actan z, z > 0 π = sin θ sin φ θ = 2, z =0 π +actan z, z < 0 actan, > 0, 0 z = cos θ φ = π +actan, < 0 2π +actan, > 0, < 0 DianÔsmata b shc i =sinθcos φ e +cosθcos φ e θ sin φ e φ e =sinθcos φ i +sinθsin φ j +cosθ k j =sinθsin φ e +cosθsin φ e θ +cosφe φ e θ =cosθcos φ i +cosθsin φ j sin θ k k =cosθe sin θ e θ e φ = sin φ i +cosφ j PÐnakac 1.2: Sqèseic metaô katesian n kai sfaiik n polik n suntetagmènwn. Pa deigma To di nusma jèshc To di nusma jèshc position vecto oðzei th jèsh enìc shmeðou ston q o se sqèsh me èna sôsthma suntetagmènwn. Stic katesianèc suntetagmènec, = i + j + z k, 1.3 kai ètsi = 1 2 = z H an lush tou stic teic tou sunist sec faðnetai sto Sq ma 1.5. Stic kulindikèc suntetagmènec, to di nusma jèshc dðnetai apì thn = e + z e z me = 2 + z AÐzei na shmei soume ìti to mèto tou dianôsmatoc jèshc den eðnai Ðso me thn aktinik kulindik suntetagmènh. Tèloc, stic sfaiikèc suntetagmènec, = e me =, 1.6 dhl. to mèto eðnai h aktinik sfaiik suntetagmènh. An kai oi ekf seic 1.5 kai 1.6 gia to di nusma jèshc eðnai pofaneðc bl. Sq mata 1.2 kai 1.4 ja tic apodeðoume me th q sh metasqhmatism n suntetagmènwn ekin ntac apì thn 1.3. Stic kulindikèc suntetagmènec, = i + j + z k = cos θ cos θ e sin θ e θ +sin θ sin θ e +cosθ e θ +ze z = cos 2 θ +sin 2 θ e + sin θ cos θ +sinθcos θ e θ + z e z = e + z e z.

8 6 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc z = i + j + z k k i j z Sq ma 1.5: To di nusma jèshc,, se katesianèc suntetagmènec. Stic sfaiikèc suntetagmènec, = i + j + z k = sin θ cos φ sin θ cos φ e +cosθcos φ e θ sin φ e φ + sin θ sin φ sin θ sin φ e +cosθsin φ e θ +cosφe φ + cos θ cos θ e sin θ e θ = [sin 2 θ cos 2 φ +sin 2 φcos 2 θ] e + sin θ cos θ [cos 2 φ +sin 2 φ 1] e θ + sin θ sin φ cos φ +sinφcos φ e φ = e. Pa deigma Pa gwgoi twndianusm twnb shc Ta dianôsmata b shc i, j kai k twn katesian n suntetagmènwn eðnai staje afoô den eat ntai apì th jèsh enìc shmeðou. Autì den alhjeôei gia ta dianôsmata b shc sta kampulìgamma sust mata suntetagmènwn. Ston PÐnaka 1.1 paathoôme ìti stic kulindikèc suntetagmènec e =cosθ i +sinθ j kai e θ = sin θ i +cosθ j. EÐnai faneì ìti ta e kai e θ eat ntai apì to θ. PaagwgÐzontac bðskoume: e θ = sin θ i +cosθ j = e θ kai e θ θ = cos θ i sin θ j = e.

9 1.1. Sust mata suntetagmènwn 7 Oi upìloipec qwikèc pa gwgoi twn e, e θ kai e z eðnai mhdenikèc. 'Etsi èqoume: e = 0 e θ = 0 e z = 0 e θ = e θ e θ θ = e e z θ = e = 0 e θ = 0 e z = 0 Apì ton PÐnaka 1.2 blèpoume ìti e =e θ, φ, e θ =e θ θ, φ kai e φ =e φ φ. Gia tic qwikèc paag gouc twn dianusm twn b shc twn sfaiik n suntetagmènwn èqoume: e = 0 e θ = 0 e φ = 0 e θ = e θ e θ θ = e e φ θ = e φ = sinθ e φ e θ φ =cosθ e φ e φ φ = sin θ e cos θ e θ Oi eis seic 1.7 kai 1.8 eðnai idiaðtea q simec sth metatop diafoik n telest n apì tic katesianèc se ojog niec kampulìgammec suntetagmènec. UpenjumÐzoume ìti to di nusma thc taqôthtac oðzetai wc e c: Se katesianèc suntetagmènec bðskoume u d. 1.9 u d = d d i + j + zk = i + d j + dz k EÐnai faneì ìti gia tic teic sunist sec thc taqôthtac isqôei u d, u d, u z dz Pa deigma Sunist sec tou dianôsmatoc thc taqôthtac Ja boôme ti antipospwpeôoun oi sunist sec thc taqôthtac sta sust mata kulindik n kai katesian n suntetagmènwn. Se kulindikèc suntetagmènec, θ, z paagwgðzontac thn 1.5 bðskoume: u d = d e + z e z = d e + de + dz e z = d e + de dθ dθ + dz e z = u = d e + dθ e θ + dz e z 1.12

10 8 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc 'Aa gia tic sunist sec thc taqôthtac èqoume: u d, u θ dθ, u z dz Se sfaiikèc suntetagmènec, θ, φ, pa'noume apì thn 1.6: u d = d e = d e + de = d e e + θ dθ + e φ dφ = 'Aa oi sunist sec thc taqôthtac dðnontai apì tic u = d e + dθ e θ + sin θ dφ e φ 1.14 u d, u θ dθ, u φ sin θ dφ. 1.15

11 1.4. DIAFORIKO I TELEST EC DiafoikoÐ telestèc Sthn pa gafo aut oðzoume ton telest klðshc, thn klðsh gadient bajmwtoô pedðou kaj c kai thn apìklish divegence kai ton stobilismì voticit dianusmatikoô pedðou. Pa deigma Apìklish kai stobilismìc tou dianôsmatoc jèshc JewoÔme to di nusma jèshc se katesianèc suntetagmènec, Gia thn apìklish kai ton stobilismì tou èqoume = i + j + z k = + + = =3, 1.17 kai = i j k z = = Oi eis seic 1.17 kai 1.18 isqôoun se k je sôsthma suntetagmènwn H ulik pa gwgoc O anagn sthc eðnai dh eoikeiwmènoc me tic ènnoiec thc meik c paag gou patial deivative kai thc olik c paag gou total deivative. Sthn pa gafo aut ja eis gagoume mia llh pa gwgo, polô shmantik sth eustodunamik pou eðnai gnwst san ulik pa gwgoc mateial deivative. Gia to skopì autì ja qhsimopoi soume èna pa deigma apì to fusikì kìsmo gia na katadeðoume th fusik shmasða kai tic diafoèc twn ti n poanafejeis n paag gwn. Ja upojèsoume ìti jèloume na met soume th jemokasða f tou neoô sflèna pot mi. Aut eðnai pofan c sun thsh tou dianôsmatoc jèshc kai tou qìnou, dhlad thc mof c f,t f,, z, t. Sto pa deigm mac upojètoume ìti to bajmwtì pedðo f eðnai paagwgðsimo. Meik qonik pa gwgoc Wc gnwstì gia na boôme th meik qonik pa gwgo thc f,, z, t paagwgðzoume wc poc to qìno t jew ntac ta, kai z staje. SumbolÐzoume th meik qonik pa gwgo me f. t,,z Sto pa deigm mac stekìmaste se mia gèfua sthn ìqjh kai metoôme th metabol thc jemokasðac sto Ðdio shmeðo akib c apì k tw mac, dhlad sflèna stajeì shmeðo tou q ou. Olik qonik pa gwgoc 'Otan to shmeðo mèthshc thc qonik c metabol c thc f den eðnai stajeì, tìte t = t i + t j + zt k. SÔmfwna me ton kanìna thc alusðdac, h olik qonik pa gwgoc thc ft,t,zt,t dðnetai apì thn df = f t + f d + f d + f dz

12 10 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc = i + j + k 2 = u = u + u + u z D Dt = t + u + u + u z p = p i + p j + p k u = u u = + u + u z uz u i + u u z j + u u k u = u ii + u ij + u z ik + u ji u u = τ = + u jj + u z jk + u ki + u kj + u z kk + u u + u u + u u z i + u u z + u u z + u u z z k τ + τ + τ z i + u u + u u + u u z j τ + τ + τ z j + τz + τ z + τ zz k PÐnakac 1.3: BasikoÐ diafoikoð telestèc se katesianèc suntetagmènec,, z; ta p, u kai τ eðnai bajmwtì, dianusmatikì kai tanustikì pedðo, antðstoiqa.

13 1.4. DiafoikoÐ telestèc 11 u v = u v +v u + u v +v u fu = f u + u f u v = v u u v u = 0 fu =f u + f u u v = u v v u +v u u v u = u 2 u f =0 u u = 2u u +2u u 2 fg = f 2 g + g 2 f +2 f g f g = 0 f g g f =f 2 g g 2 f PÐnakac 1.4: Q simec tautìthtec me ton telest. Ta f kai g eðnai bajmwt en ta u kai v eðnai dianusmatik pedða. NoeÐtai ìti oi meikèc pa gwgoi eðnai suneqeðc.

14 12 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc = e + e θ 1 θ + e z 2 = θ u = u + u θ θ + u z D Dt = t + u + u θ θ + u z p = p e + 1 p θ e θ + p e z u = 1 u + 1 u θ θ u = 1 u z θ u θ e + + u z u u z e θ + u = u e e + u θ e e θ + u z e e z + 1 u θ u θ e θ e u u = τ = [ 1 u θ 1 u ] e θ z + 1 u θ θ + u e θ e θ + 1 u z θ e θe z + u e ze + u θ e ze θ + u z e ze z [ u u + u 1 u θ θ u θ [ u u θ + u 1 u θ θ θ + u [ u u z + u 1 θ u z θ + u u ] z z e z [ 1 τ + 1 τ θ θ + τ z ] + u u z e ] + u u θ z e θ τ ] θθ e [ τ θ + 1 τ θθ θ + τ zθ τ ] θ τ θ e θ [ 1 τ z + 1 τ θz θ + τ ] zz e z PÐnakac 1.5: BasikoÐ diafoikoð telestèc se kulindikèc polikèc suntetagmènec, θ, z; ta p, u kai τ eðnai bajmwtì, dianusmatikì kai tanustikì pedðo, antðstoiqa.

15 1.4. DiafoikoÐ telestèc 13 = e + e θ 1 θ + e φ 1 sin θ φ 2 = u = u + u θ θ + D Dt = t + u + u θ θ sin θ sin θ θ θ u φ sin θ φ u φ sin θ φ sin 2 θ φ 2 p = p e + 1 p θ e θ + 1 p sin θ φ e φ u = u + 1 sin θ θ u θ sin θ + 1 u φ sin θ φ u =[ 1 sin θ θ u φ sin θ sin 1 θ u θ φ ]e +[ 1 sin θ u φ 1 u φ]e θ +[ 1 u θ 1 u θ ]e φ u = u e e + u θ e e θ + u φ e e φ + 1 u θ u θ e θ e + 1 u θ θ + u e θ e θ + 1 u φ θ e θe φ + 1 sin θ u φ u φ e φ e + 1 sin θ u θ φ u φ cot θ e φ e θ + 1 sin θ u φ φ + u + u θ cot θ u u =[u u + u 1 u θ θ u θ + u 1 φ sin θ u φ u φ ] e +[u u θ + u 1 u θ θ θ + u + u 1 φ sin θ u θ φ u φ cot θ ] e θ u +[u φ + u 1 θ u φ θ + u 1 u φ φ sin θ φ + u + u θ cot θ ] e φ τ =[ τ + 1 sin θ θ τ θ sin θ+ 1 +[ τ θ + 1 sin θ θ τ θθ sin θ+ 1 sin θ +[ τ φ + 1 sin θ θ τ θφ sin θ+ 1 sin θ τ φ e φ e φ sin θ φ τ θθ + τ φφ ]e τ φθ φ + τ θ τ θ τ φφ cot θ ]e θ τ φφ φ + τ φ τ φ τ φθ cot θ ]e φ PÐnakac 1.6: BasikoÐ diafoikoð telestèc se sfaiikèc polikèc suntetagmènec, θ, φ; ta p, u kai τ eðnai bajmwtì, dianusmatikì kai tanustikì pedðo, antðstoiqa.

16 14 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc,, z D Dt = t + u + u + u z, θ, z D Dt = t + u + u θ θ + u z, θ, φ D Dt = t + u + u θ θ + u φ sin θ φ PÐnakac 1.7: O telest c thc ulik c paag gou se di foa sust mata suntetagmènwn. ìpou u df = f t + u f, 1.19 = d = d i + d j + dz k h taqôthta me thn opoða kineðtai to shmeðo mèthshc. Sto paadeigm mac, antð na stekìmaste sth gèfua, mpaðnoume se mia mhqanokðnhth b ka kai k noume bìltec poc di foec kateujônseic, llote antðjeta poc to eôma kai llote mazð me to eôma, kai metoôme th jemokasða pleuik thc b kac. H qonik metabol thc jemokasðac pou paathoôme antanakl thn kðnhsh thc b kac. H taqôthta u sthn 1.19 eðnaihtaqôthta thc b kac. Ulik pa gwgoc Upojètoume t a ìti sb noume th mhqan kai af noume to eôma na mac paasôei, en suneqðzoume na metoôme th metabol thc jemokasðac. H qonik metabol thc jemokasðac pou metoôme eat tai apì thn taqôthta u tou eômatoc. Jètontac u =u sthn 1.19 èqoume thn pa gwgo Df Dt = f t + u f, 1.20 h opoða kaleðtai ulik pa gwgoc mateial deivative ousiastik ousi dhc pa gwgoc substantial deivative. O p toc ìoc thc ulik c paag gou apoteleð to metabatikì topikì mèoc kai o deôteoc to metafeìmeno sunagìmeno mèoc thc paag gou. Oi mofèc tou telest thc ulik c paag gou, D Dt = t + u 1.21 sta di foa sust mata suntetagmènwn faðnontai ston PÐnaka??. Gia thn ulik pa gwgo tou dianusmatikoô pedðou thc taqôthtac isqôei Du Dt = u t + u u. 1.22

17 1.4. DiafoikoÐ telestèc 15 Pa deigma H eðswsh sunèqeiac H eðswsh sunèqeiac dhl. h eðswsh diat hshc thc m zac eðnai h ρ t + ρ u = Qhsimopoi ntac th deôteh tautìthta tou PÐnaka 1.4 h eðswsh paðnei th mof : ρ t + u ρ + ρ u = Qhsimopoi ntac ton oismì thc ulik c paag gou èqoume epðshc thn enallaktik mof : Dρ Dt + ρ u = Pa deigma Eis seic Eule HeÐswsh diat hshc thc om c gia ani dh o eðnai gnwst san eðswsh Eule: ρ Du Dt = p, 1.26 ìpou ρ h puknìthta kai p h pðesh. Se katesianèc suntetagmènec Du Dt kai = u t + u u u u = + u t + u uz u z + + u t u + u + u u z i + + u u z z k u z u t p = p i + p j + p k. + u u + u u + u z u j Apì tic pio p nw eis seic bðskoume eôkola tic teic sunist sec thc eðswshc Eule se katesianèc suntetagmènec: ρ ρ u t u t + u u + u u + u u + u u + u u z + u z u = p = p 1.27 ρ uz t + u u z + u u z + u u z z = p

18 16 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc 1.5 Tanustikìc logismìc 'Estw {e 1, e 2, e 3 } mia ojokanonik b sh tou R 3. Stic pohgoômenec paag fouc oðsame to eswteikì ginìmeno, e i e j = δ ij kaj c kai to ewteikì ginìmeno e i e j. To anoiktì ginìmeno e i e j ja to kaloôme monadiaðo ginìmeno du dac 1 apl c monadiaða du da unit dad. AÐzei na paath soume ìti en èna monadiaðo di nusma antiposwpeôei mia mìno dieôjunsh suntetagmènwn, mia monadiaða du da antiposwpeôei èna diatetagmèno zeôgoc dieujônsewn. 'Etsi ij ji. Oi monadiaðec du dec tou katesianoô sust matoc suntetagmènwn ston R 3 eðnai oi e c: ii, ij, ik ji, jj, jk ki, kj, kk 'Estw t a ta dianôsmata a, b R n. To anoiktì ginìmeno ab kaleðtai ginìmeno du dac dad poduct apl c duadikì dadic du da. An tìte a = a 1 i + a 2 j + a 3 k kai b = b 1 i + b 2 j + b 3 k ab = a 1 b 1 ii + a 1 b 2 ij + a 1 b 3 ik + a 2 b 1 ji + a 2 b 2 jj + a 2 b 3 jk + a 3 b 1 ki + a 3 b 2 kj + a 3 b 3 kk PaathoÔme ìti to ginìmeno du dac eðnai ènac gammikìc sunduasmìc twn monadiaðwn du dwn: ab = i=1 j=1 Ja oðsoume t a k poiec shmantikèc p eic metaô monadiaðwn du dwn: iginìmeno monadiaðwn du dwn ginìmeno teleðac: a i b j e i e j ij kl =i j k l = δ jk il 1.30 To apotèlesma thc p hc eðnai duadikì. PaathoÔme epðshc ìti den isqôei h antimetajetik idiìthta. ii Ginìmeno dipl c teleðac bajmwtì ginìmeno: ij :kl =i lj k =δ il δ jk 1.31 To apotèlesma thc p hc aut c eðnai bajmwtì. O anagn sthc mpoeð eôkola na deð ìti kl :ij =ij :kl iii Ginìmeno monadiaðac du dac me monadiaðo di nusma: ij k = i j k =δ jk i 1.32 To ginìmeno du dac me di nusma mac dðnei di nusma. Pofan c den isqôei h antimetajetik idiìthta: k ij =k i j = δ ki j 1.33 iv Ewteikì ginìmeno monadiaðac du dac me monadiaðo di nusma: ij k = i j k 1.34 k ij =k i j Se aket biblða gia th monadiaða du da qhsimopoieðtai epðshc o sumbolismìc ei e j.

19 1.5. Tanustikìc logismìc 17 To apotèlesma thc p hc aut c eðnai duadikì. Den isqôei h antimetajetik idiìthta. Stic qhsimopoioôme th legìmenh sunj kh enjèshc twn Chapman kai Milne h opoða jespðzei zeug wma apì mèsa poc ta èw. Oi pio p nw p eic genikeôontai eôkola gia ginìmena du dac. An ta a, b, c kai d eðnai dianôsmata tou R 3,tìte ab cd =a b c d =b c ad 1.36 ab :cd =a db c 1.37 ab c = a b c =b c a 1.38 c ab =c a b 1.39 ab c = a b c 1.40 UpenjumÐzoume ed ìti sth genik peðptwsh den isqôei h antimetajetik idiìthta: ab ba. 'Opwc ja doôme pio k tw, h isìthta isqôei mìno ìtan o duadikìc ab eðnai summetikìc. OÐzoume t a wc duadikì tanust deôtehc t hc second-ode tenso k je gammikì sunduasmì twn monadiaðwn du dwn: τ = τ ij e i e j 1.41 i=1 j=1 EÐnai faneì ìti ta ginìmena du dac eðnai tanustèc deôtehc t hc. K je tanust c τ mpoeð na gafeð sth mof τ =e 1, e 2, e 3 τ 11 τ 12 τ 13 τ 21 τ 22 τ 23 e 1 e 2 τ 31 τ 32 τ 33 e 3 akìma,ìtan oi dieujônseic e i e j ennooôntai, se mof pðnaka τ = τ 11 τ 12 τ 13 τ 21 τ 22 τ τ 31 τ 32 τ 33 GenikeÔontac, odhgoômaste stouc poluadikoôc tanustèc an tehc t hc. 'Etsi ènac tiadikìc tanust c tðthc t hc eðnai gammikìc sunduasmìc monadiaðwn ti dwn, p.q. B = i=1 β ijk e i e j e k 1.43 j=1 k=1 'Ena bajmwtì pedðo eðnai tanust c mhdenik c t hc en èna dianusmatikì pedðo eðnai tanust c p thc t hc. Oi monadiaðec du dec eðnai fusik tanustèc deôtehc t hc. Autèc g fontai upì mof pðnaka wc e c: ii = , ij = , ik = , Oi oismoð pou akoloujoôn eðnai oikeðoi apì th jewða pin kwn. 'Estw ab = a i b j e i e j i j

20 18 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc èna ginìmeno du dac. To ginìmeno du dac pou pokôptei an enall oume touc deðktec twn a kai b sto pio p nw joisma kaleðtai an stofo ginìmeno du dac kai sumbolðzetai me ab T : ab T = a j b i e i e j 1.44 i j EÐnai faneì ìti ab T = ba. OmoÐwc o an stofoc tou tanust deôtehc t hc τ = τ ij e i e j i j eðnai o τ T = i τ ji e i e j An τ = τ T,tìte o τ kaleðtai summetikìc, en ìtan τ = τ T o τ kaleðtai antisummetikìc. EÐnai faneì ìti ènac tanust c thc mof c aa eðnai summetikìc skhsh. j O monadiaðoc tanust c unit tenso deôtehc t hc sumbolðzetai me I kai oðzetai wc e c: I = δ ij e i e j 1.46 i=1 j=1 se mof pðnaka, I = 'Algeba tanust n 'Opwc kai stouc pðnakec, to joisma dôo tanust n τ = i τ ij e i e j kai σ = j i σ ij e i e j j oðzetai wc e c: τ + σ = τ ij + σ ij e i e j i j EpÐshc, o bajmwtìc pollaplasiasmìc λτ, ìpou λ R, oðzetai wc e c: λ τ = i λτ ij e i e j 1.48 j Ac doôme ek nèou tic basikèc p eic metaô tanust n. itanustikì ginìmeno ginìmeno teleðac To tanustikì ginìmeno ginìmeno teleðac tenso o dot poduct dôo tanust n τ kai σ mac dðnei kat ta gnwst τ σ = τ ij e i e j σ kl e k e l = τ ij σ kl e i e j e k e l i j k l i j k l = τ ij σ kl δ jk e i e l = τ ij σ jl e i e l = i j i j k l l

21 1.5. Tanustikìc logismìc 19 τ σ = i j l τ ij σ jl e i e l PaÐnoume loipìn epðshc èna tanust tou opoðou h i, l sunist sa eðnai h τ ij σ jl j 'Opwc kai stouc tetagwnikoôc pðnakec, g foume σ σ = σ 2, σ σ 2 = σ 3 k.o.k. H antimetajetik idiìthta den isqôei sto tanustikì ginìmeno. An I eðnai o monadiaðoc tanust c tou mpooôme polô eôkola na deðoume ìti σ I = I σ = σ ii Ginìmeno dipl c teleðac bajmwtì ginìmeno Gia to legìmeno ginìmeno dipl c teleðac bajmwtì ginìmeno double dot o scala poduct dôo tanust n èqoume: τ : σ = τ ij e i e j : σ kl e k e l = τ ij σ kl e i e j : e k e l i j k l i j k l = τ ij σ kl δ il δ jk = τ ij σ ji δ ii δ jj = i j i j k l τ : σ = i τ ij σ ji j To apotèlesma thc p hc eðnai bajmwtì. Me paìmoio tìpo mpooôme na deðoume ìti τ : ab = τ ij a j b i 1.52 i j kai ab : cd = i a i b j c j d i 1.53 j iii Ginìmeno tanust - dianôsmatoc 'Estw τ tanust c kai a di nusma. Gia to ginìmeno τ a èqoume: τ a = τ ij e i e j a k e k = τ ij a k e i e j e k i j k i j k = τ ij a k δ jk e i = τ ij a j δ jj e i = i j i j k τ a = i j τ ij a j e i. 1.54

22 20 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc To apotèlesma thc p hc eðnai èna di nusma me i sunist sa thn τ ij a j. OmoÐwc, gia to ginìmeno a τ bðskoume ìti j a τ = i j a j τ ji e i PaathoÔme ìti genik τ a a τ. Hisìthta isqôei p nta ìtan o τ eðnai summetikìc Tanustèc sth eustodunamik O tanust c t sewn Sth eustodunamik, o tanust c iwd n t sewn viscousstesstenso pou ja ton sumbolðzoume me τ, τ = τ ij e i e j, 1.56 i j antiposwpeôei tic i deic t seic sflèna eustì. Stic katesianèc suntetagmènec èqoume thn pinakomof τ = τ 11 τ 12 τ 13 τ 21 τ 22 τ 23 τ = τ τ τ z τ τ τ z 1.57 τ 31 τ 32 τ 33 τ z τ z τ zz Otanust c t sewn eðnai summetikìc, dhlad τ = τ, τ z = τ z kai τ z = τ z. Oi diag niec sunist sec, τ,τ kai τ zz, kaloôntai k jetec t seic nomal stesses, en oi ewdiag niec sunist sec tou tanust t sewn kaloôntai diatmhtikèc t seic shea stesses. O olikìc tanust c t sewn σ total stess tenso oðzetai wc e c: σ = p I + τ 1.58 ìpou p h pðesh kai I omonadiaðoc tanust c. EÐnai faneì ìti o σ eðnai epðshc summetikìc. Otanust c p I kaleðtai tanust c t sewn pðeshc pessue stess tenso. EÐnai isìtopoc isotopic giatð ìtan d p nw se mia epif neia mac dðnei èlh taction epif neiac. P gmati, an n eðnai to monadiaðo k jeto se mia epif neia di nusma tìte n pi = pn I = pn = p Autì den sumbaðnei me ton tanust t sewn τ pou eðnai anisìtopoc. Oolikìc tanust c t sewn mpoeð na gafteð epðshc sth mof : σ = p p 0 + τ τ τ τ z τ 0 τ z p 0 0 τ zz τ z τ z 0 ìpou o p toc pðnakac dðnei tic t seic pðeshc, o deôteoc tic i deic k jetec t seic kai o tðtoc tic i deic diatmhtikèc t seic.

23 1.5. Tanustikìc logismìc 21 O tanust c klðsewn thc taqôthtac O tanust c klðsewn thc taqôthtac velocit-gadient tenso sumbolðzetai me u kai eðnai èna ginìmeno du dac. Stic katesianèc suntetagmènec bðskoume apl : u = i + j + k u i + u j + u z k = u = u ii + u ij + u z ik + u ji + u jj + u z jk + u ki + u kj + u z kk Pio sôntoma mpooôme na g oume u = i=1 j=1 u j i e i e j 1.61 se mof pðnaka u u u z u = u u u z u u u z Egazìmenoi an loga mpooôme na boôme ton tanust klðsewn thc taqôthtac se kulindikèc kai sfaiikèc suntetagmènec. Posoq : o tôpoc 1.61 den isqôei sflaut ta sust mata. Oi tanustèc ujm n paamìfwshc kai stobilismoô 'Opwc kai k je lloc tanust c deôtehc t hc, o tanust c klðsewn thc taqôthtac u mpoeð na gafteð wc joisma enìc summetikoô kai enìc antisummetikoô tanust wc e c: u = 1 2 [ u+ ut ]+ 1 2 [ u ut ] 1.63 ìpou to p to hmi joisma eðnai summetikìc tanust c kai to deôteo antisummetikìc tanust c. O summetikìc tanust c D = 1 2 [ u + ut ] 1.64 kaleðtai tanust c ujm n paamìfwshc ate of stain o ate of defomation tenso en o antisummetikìc tanust c Ω = 1 2 [ u ut ] 1.65 kaleðtai tanust c stobilismoô voticit tenso. SÔmfwna me touc pio p nw oismoôc mpooôme na g oume u = D + Ω O tanust c ujm n paamìfwshc D antiposwpeôei tic paamof seic tou eustoô kai eðnai mhdenikìc ìtan èqoume met jesh peistof steeoô s matoc solid bod tanslation o otation, afoô tìte den èqoume paamof seic. O tanust c stobilismoô Ω antiposwpeôei to stobil dec thc o c kai ètsi eðnai mhdenikìc se astìbilec oèc. Gia ton tanust ujm n paamìfwshc se katesianèc suntetagmènec èqoume D = 1 u j e i e j + u i e i e j = 2 i j i i j j

24 22 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc se mof pðnaka: D = u D = i u + u u + u z j 1 uj + u i e i e j i j 1 u 2 + u u 1 u 2 + u z 1 uz 2 + u 1 u 2 + u z u z EÐnai faneì ìti oi sunist sec tou D eðnai: D = u D = u D zz = u z D = D = 1 u 2 + u D z = D z = 1 uz 2 + u D z = D z = 1 uz 2 + u 1.69 OmoÐwc gia ton tanust stobilismoô bðskoume ìti se mof pðnaka Ω = 1 u Ω = i j 1 2 uj i u i j 0 1 u 2 u 1 uz 2 u u 0 1 uz 2 u u u z 1 u 2 u z 0 e i e j Pa deigma Gia na boôme touc u kai D se kulindikèc suntetagmènec, jewoôme to u wc du da sflautì to sôsthma: u = e + e θ 1 θ + e z u e + u θ e θ + u z e z. Lamb nontac upìh ìti ta monadiaða dianôsmata den eðnai staje sflautì to sôsthma suntetagmènwn bðskoume ìti u = e e u + e θ e 1 + e z e u + e u θ e θ + e u z e z u θ + e 1 θ u e θ + e 1 θe θ + e ze θ u θ + e ze z u z e θ θ = + e 1 θ u e θ θ θ + e 1 θe z u z θ

25 1.5. Tanustikìc logismìc 23 u = u e e + u θ e e θ + u z e e z + 1 u θ u θ e θ e + 1 u + u θ e θ e θ + 1 θ Gia ton an stofo u T èqoume: u z θ e θe z + u e ze + u θ e ze θ + u z e ze z u T = u e e u θ e θe u z e ze + 1 u θ u θ e e θ + u e e z u + u θ e θ e θ + u θ θ e θe z u z θ e ze θ + u z e ze z MpooÔme t a me b sh ton oismì na boôme tic sunist sec tou tanust ujm n paamìfwshc se kulindikèc suntetagmènec: D = u D θθ = 1 u + u θ θ D zz = u z D z = D z = 1 uz 2 + u D θ = D θ = 1 [ uθ + 1 ] u 2 θ D θz = D zθ = 1 uθ u z θ 1.74 Pa deigma H katastatik eðswsh Neut neiou eustoô H ulik katastatik eðswsh constitutive equation enìc eustoô eðnai h sun thsh pou apeikonðzei ton tanust ujm n paamìfwshc D ston tanust iwd n t sewn τ : τ = fd Sta Neut neia eust Newtonian fluids, h ulik sqèsh eðnai thc mof c τ =2ηD + k 23 η ui 1.76 ìpou η kai k stajeèc kai u to di nusma thc taqôthtac. Hstaje η kaleðtai diatmhtikì i dec shea viscosit apl c i dec en h k pou èqei pofan c tic Ðdiec mon dec me to i dec kaleðtai mazikì i dec bulk viscosit. To mìno pou gnwðzoume gia to mazikì i dec k eðnai ìti h tim tou eðnai akib c mhdèn gia monoatomik aèia qamhl c puknìthtac. Se ìlec tic llec efamogèc, lìgw èlleihc epilog n, to mazikì i dec tðjetai aujaðeta! Ðso me mhdèn R.B. Bid, R.C. Amstong and O. Hassage, Dnamics of Polmeic Liquids, John Wile & Sons, New Yok, 'Etsi h 1.76 gðnetai: τ =2ηD 2 η ui

26 24 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc H pio p nw eðswsh aplopoieðtai akìma peissìteo ìtan h o eðnai asumpðesth, dhlad ìtan h puknìthta ρ tou eustoô eðnai staje. Sthn peðptwsh aut, h eðswsh sunèqeiac paðnei th mof u=0, opìte: τ =2η D H 1.78 apoteleð thn ulik sqèsh Neut neiou eustoô se asumpðesth o. Me b sh ta apotelèsmata aut c thc paag fou, mpooôme polô eôkola na boôme tic sunist sec thc 1.78 se katesianèc kai kulindikèc suntetagmènec: Katesianèc suntetagmènec: τ = 2η u τ = 2η u τ zz = 2η u z u τ = τ = η + u uz τ z = τ z = η + u uz τ z = τ z = η + u 1.79 Kulindikèc suntetagmènec: τ = 2η u τ θθ = 2η u + u θ θ τ zz = 2η u z uz τ z = τ z = η + u [ τ θ = τ θ = η uθ + 1 ] u θ uθ τ θz = τ zθ = η + 1 u z θ 1.80 O tanust c metafeìmenhc om c O tanust c metafeìmenhc om c ρ uu = ρ u i u j e i e j 1.81 i=1 j=1

27 1.5. Tanustikìc logismìc 25 eðnai èna ginìmeno du dac. O summetikìc autìc tanust c g fetai se mof pðnaka wc e c ρ uu = ρ u 2 u u u u z 2 u u u u u z u z u u z u u z Apìklish tanustikoô pedðou Ja bìume p ta thn apìklish tou duadikoô ab = j a j b k e j e k 1.83 k ìpou a kai b dianôsmata tou R 3, bðskontac to ginìmeno ab ìpou = i e i i 1.84 o telest c klðshc se katesianèc suntetagmènec: ab = = = i i j e i i j k k j a j b k e j e k = k a j b k i e i e j e k == a j b k j e k = k j i i a j b k j j j e k e i a j b k e j e k i k k a j b k i δ ij e k ab = i j a j b i j e i Me paìmoio tìpo mpooôme na boôme thn apìklish enìc tanust τ se katesianèc suntetagmènec: τ = i j τ ji j e i H i sunist sa tou τ eðnai j τ ji j. Pa deigma H eðswsh diat hshc thc om c H eðs sh diat hshc thc om c gia k je eustì g fetai se dianusmatik mof wc e c: ρ Du Dt = p + τ + ρ g 1.87 ìpou g to di nusma thc epit qunshc thc baôthtac, g = g i + g j + g z k 1.88

28 26 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc EÐdame pohgoumènwc ìti stic katesianèc suntetagmènec Du Dt = u t + u u + u u + u u u z i+ t + u Apì thn E bðskoume ìti τ τ = + τ + τ z i + + u + u u + u z uz t + u u z + u u z + u z u j u z k 1.89 τ + τ + τ z τz j + + τ z + τ zz k MpooÔme loipìn na boôme tic teic sunist sec thc E antikajist ntac tic 1.88, 1.89 kai 1.90: -sunist sa: u ρ t + u u + u u + u u z = p + τ + τ + τ z + ρg -sunist sa: u ρ t + u u + u u + u u z = p + τ + τ + τ z + ρg z-sunist sa: uz ρ t + u u z + u u z + u u z z = p + τ z + τ z + τ zz + ρg z 1.91 GnwÐzoume ìti sthn peðptwsh Neut neiou eustoô se asumpðesth o u =0 o tanust c t sewn dðnetai apì thn τ =2η D = η [ u + u T ] 1.92 O anagn sthc mpoeð na deðei ìti isqôei tìte skhsh τ = η 2 u Antikajist ntac sthn 1.87 paðnoume thn eðswsh twn Navie-Stokes: Oi sunist sec thc 1.94 se katesianèc suntetagmènec eðnai: ρ Du Dt = p + η 2 u + ρ g sunist sa: u ρ t + u u + u u + u u z = p 2 + η u u u 2 + ρg -sunist sa: u ρ t + u u + u u + u u z = p 2 + η u u u 2 + ρg z-sunist sa: uz ρ t + u u z + u u z + u u z z = p 2 + η u z u z u z 2 + ρg z 1.95

29 1.5. Tanustikìc logismìc 27 Oi pio p nw eis seic sumplh nontai me thn eðswsh sunèqeiac gia asumpðesth o : u + u + u z = 'Etsi èqoume èna sôsthma tess wn meik n diafoik n eis sewn pou antistoiqoôn sta tèssea bajmwt pedða: u, u, u z kai p. Pa deigma H apoklish tou telest metafeìmenhc om c Ja boôme thn apìklish tou tanust metafeìmenhc om c ρuu gia asumpðesth o. ρuu = ρ uu = ρ u i u j e i i j j = ρ u j u i u i + u j e i i j j j = ρ u j u i e i + ρ i j j i j = = ρ u i u j e i + ρ i j j i = ρ i u i ue i + ρ u u = u j u i j e i j u j u i j e i ρ uu = ρ u u+ρ u u Gia asumpðesth o, u=0 kai ètsi o p toc ìoc sto deiì mèloc thc 1.97 mhdenðzetai. 'Aa isqôei ρ uu = ρ u u 'Etsi, gia asumpðesth o oi eis seic diat hshc thc om c paðnoun epðshc th mof ρ u t en gia asumpðesth Neut neia o isqôei + ρuu = p + τ + ρ g 1.99 ρ u t + ρuu = p + η 2 u + ρ g PwteÔsousec dieujônseic kai analloðwtec tanust Let {e 1, e 2, e 3 } be an othonomal basis of the thee dimensional space and τ be a second-ode tenso, τ = i=1 τ ij e i e j, j=1 o, in mati notation, τ = τ 11 τ 12 τ 13 τ 21 τ 22 τ τ 31 τ 32 τ 33

30 28 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc If cetain conditions ae satisfied, it is possible to identif an othonomal basis {n 1, n 2, n 3 } such that τ = λ 1 n 1 n 1 + λ 2 n 2 n 2 + λ 3 n 3 n 3, which means that the mati fom of τ in the coodinate sstem defined b the new basis is diagonal: τ = λ λ λ 3 The othogonal vectos n 1, n 2 and n 3 that diagonalize τ ae called the pincipal diections, andλ 1, λ 2 and λ 3 ae called the pincipal values of τ. Fom Eq , one obseves that the vecto flues though the suface of unit nomal n i, i=1,2,3, satisf the elation f i = n i τ = τ n i = λ i n i, i =1, 2, What the above equation sas is that the vecto flu though the suface with unit nomal n i is collinea with n i, i.e., n i τ is nomal to that suface and its tangential component is zeo. Fom Eq one gets: τ λ i I n i = 0, whee I is the unit tenso. In mathematical teminolog, Eq defines an eigenvalue poblem. The pincipal diections and values of τ ae thus also called the eigenvectos and eigenvalues of τ, espectivel. The eigenvalues ae detemined b solving the chaacteistic equation, o detτ λi = τ 11 λ τ 12 τ 13 τ 21 τ 22 λ τ 23 τ 31 τ 32 τ 33 λ =0, which guaantees nonzeo solutions to the homogeneous sstem The chaacteistic equation is a cubic equation and, theefoe, it has thee oots, λ i, i=1,2,3. Afte detemining an eigenvalue λ i, one can detemine the eigenvectos, n i, associated with λ i b solving the chaacteistic sstem When the tenso o mati τ is smmetic, all eigenvalues and the associated eigenvectos ae eal. This is the case with most tensos aising in fluid mechanics. Eample Pincipal values and diections a Find the pincipal values of the tenso τ = 0 z z 0 b Detemine the pincipal diections n 1, n 2, n 3 at the point 0,1,1. c Veif that the vecto flu though a suface nomal to a pincipal diection n i is collinea with n i. d What is the mati fom of the tenso τ in the coodinate sstem defined b {n 1, n 2, n 3 }? Solution: a The chaacteistic equation of τ is λ 0 z 0=detτ λi = 0 2 λ 0 z 0 λ =2 λ λ z z λ =

31 1.5. Tanustikìc logismìc 29 2 λ λ z λ + z =0. The eigenvalues of τ ae λ 1 =2, λ 2 = z and λ 3 = + z. batthepoint0, 1, 1, τ = = ik +2jj + ki, and λ 1 =2, λ 2 = 1andλ 3 =1. The associated eigenvectos ae detemined b solving the coesponding chaacteistic sstem: τ λ i I n i = 0, i =1, 2, 3. Fo λ 1 =2, one gets n 1 n 1 = n z = 2n 1 + n z1 =0 0=0 n 1 2n z1 =0 = n 1 = n z1 =0. Theefoe, the eigenvectos associated with λ 1 ae of the fom 0,a,0, whee a is an abita nonzeo constant. Fo a=1, the eigenvecto is nomalized, i.e. it is of unit magnitude. We set n 1 =0, 1, 0 = j. Similal, solving the chaacteistic sstems n 2 n 2 = n z of λ 2 = 1, and of λ 3 =1, we find the nomalized eigenvectos n 3 n 3 = n z3 0 n 2 = 1 2 1, 0, 1 = 1 2 i k and n 3 = 1 2 1, 0, 1 = 1 2 i + k. We obseve that the thee eigenvectos, n 1 n 2 and n 3 ae othogonal: 2 n 1 n 2 = n 2 n 3 = n 3 n 1 =0. c The vecto flues though the thee sufaces nomal to n 1 n 2 and n 3 ae: n 1 τ = j ik +2jj + ki =2j =2n 1, n 2 τ = 1 i k ik +2jj + ki = 2 1 k i = n 2, 2 n 3 τ = 1 i + k ik +2jj + ki = 2 1 k + i =n A well known esult of linea algeba is that the eigenvectos associated with distinct eigenvalues of a smmetic mati ae othogonal. If two eigenvalues ae the same, then the two lineal independent eigenvectos detemined b solving the coesponding chaacteistic sstem ma not be othogonal. Fom these two eigenvectos, howeve, a pai of othogonal eigenvectos can be obtained using the Gam-Schmi othogonalization pocess; see, fo eample, [3].

32 30 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc d The mati fom of τ in the coodinate sstem defined b {n 1, n 2, n 3 } is τ =2n 1 n 1 n 2 n 2 + n 3 n 3 = The tace, tτ,ofatensoτ is defined b tτ τ ii = τ 11 + τ 22 + τ i=1 An inteesting obsevation fo the tenso τ of Eample is that its tace is the same equal to 2 in both coodinate sstems defined b {i, j, k} and {n 1, n 2, n 3 }. Actuall, it can be shown that the tace of a tenso is independent of the coodinate sstem to which its components ae efeed. Such quantities ae called invaiants of a tenso. 3 Thee ae thee independent invaiants of a second-ode tenso τ : I tτ = II tτ 2 = III tτ 3 = τ ii, i=1 i=1 j=1 τ ij τ ji, i=1 j=1 k=1 τ ij τ jk τ ki, whee τ 2 =τ τ and τ 3 =τ τ 2. Othe invaiants can be fomed b simpl taking combinations of I, II and III. Anothe common set of independent invaiants is the following: I 1 = I = tτ, I 2 = 1 2 I2 II = 1 2 [tτ 2 tτ 2 ], I 3 = 1 6 I3 3I II +2III = detτ I 1, I 2 and I 3 ae called basic invaiants of τ. The chaacteistic equation of τ canbewittenas 4 λ 3 I 1 λ 2 + I 2 λ I 3 = If λ 1, λ 2 and λ 3 ae the eigenvalues of τ, the following identities hold: I 1 = λ 1 + λ 2 + λ 3 = tτ, I 2 = λ 1 λ 2 + λ 2 λ 3 + λ 3 λ 1 = 1 2 [tτ 2 tτ 2 ], I 3 = λ 1 λ 2 λ 3 = detτ The theoem of Cale-Hamilton states that a squae mati o a tenso is a oot of its chaacteistic equation, i.e., τ 3 I 1 τ 2 + I 2 τ I 3 I = O v. 3 Fom a vecto v, onl one independent invaiant can be constucted. This is the magnitude v= v v of 4 The component matices of a tenso in two diffeent coodinate sstems ae simila. An impotant popet of simila matices is that the have the same chaacteistic polnomial; hence, the coefficients I 1, I 2 and I 3 and the eigenvalues λ 1, λ 2 and λ 3 ae invaiant unde a change of coodinate sstem.

33 1.5. Tanustikìc logismìc 31 Note that in the last equation, the boldface quantities I and O ae the unit and zeo tensos, espectivel. As implied b its name, the zeo tenso is the tenso whose all components ae zeo. Eample The fist invaiant Conside the tenso τ = = ik +2jj + ki, encounteed in Eample Its fist invaiant is I tτ = = 2. Veif that the value of I is the same in clindical coodinates. Solution: Using the elations of Table 1.1, we have τ = ik +2jj + ki = cosθ e sin θ e θ e z +2sinθe +cosθ e θ sinθ e +cosθ e θ + e z cos θ e sin θ e θ = 2 sin 2 θ e e +2sinθcos θ e e θ +cosθe e z + 2sinθ cos θ e θ e +2cos 2 θ e θ e θ sin θ e θ e z + cos θ e z e sin θ e z e θ +0e z e z. Theefoe, the component mati of τ in clindical coodinates {e, e θ, e z } is 2sin 2 θ 2sinθ cos θ cos θ τ = 2sinθ cos θ 2cos 2 θ sin θ. cos θ sin θ 0 Notice that τ emains smmetic. Its fist invaiant is I = tτ =2 sin 2 θ +cos 2 θ +0=2, as it should be Sumbolismìc deikt n kai h sômbash joishc So fa, we have used thee diffeent was fo epesenting tensos and vectos: a the compact smbolic notation, e.g., u fo a vecto and τ fo a tenso; b the so-called Gibbs notation, e.g., u i e i i=1 and τ ij e i e j i=1 j=1 fo u and τ, espectivel; and c the mati notation, e.g., fo τ. τ = τ 11 τ 12 τ 13 τ 21 τ 22 τ 23 τ 31 τ 32 τ 33

34 32 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc Ve fequentl, in the liteatue, use is made of the inde notation and the so-called Einstein s summation convention, in ode to simplif epessions involving vecto and tenso opeations b omitting the summation smbols. In inde notation, a vecto v is epesented as v i v i e i = v i=1 Atensoτ is epesented as τ ij τ ij e i e j = τ i=1 j=1 The nabla opeato, fo eample, is epesented as i i=1 i e i = i + j + k =, whee i is the geneal Catesian coodinate taking on the values of, and z. The unit tenso I is epesented b Konecke s delta: δ ij δ ij e i e j = I i=1 j=1 It is evident that an eplicit statement must be made when the tenso τ ij is to be distinguished fom its i, j element. With Einstein s summation convention, if an inde appeas twice in an epession, then summation is implied with espect to the epeated inde, ove the ange of that inde. The numbe of the fee indices, i.e., the indices that appea onl once, is the numbe of diections associated with an epession; it thus detemines whethe an epession is a scala, a vecto o a tenso. In the following epessions, thee ae no fee indices, and thus these ae scalas: u i v i τ ii u i i 2 f i i u i v i = u v, i=1 τ ii = tτ, i=1 i=1 o u i i 2 f 2 i = u i=1 + u 2 f 2 i + u z = 2 f 2 = u, f f 2 = 2 f, whee 2 is the Laplacian opeato tobediscussedinmoedetailinsection1.4. Inthefollowing epession, thee ae two sets of double indices, and summation must be pefomed ove both sets: σ ij τ ji σ ij τ ji = σ : τ i=1 j=1

35 1.5. Tanustikìc logismìc 33 The following epessions, with one fee inde, ae vectos: ɛ ijk u i v j ɛ ijk u i v j e k = u v, f i τ ij v j u i t τ ji j u j u i j k=1 f e i i i=1 i=1 j=1 i=1 j=1 = f i + f j + f k = f, τ ij v j e i = τ v = u i e i = u t t i = τ ji e i = τ i j j = u i u j e i = u u i j j Finall, the following quantities, having two fee indices, ae tensos: u i v j σ ik τ kj u j i i=1 j=1 u i v j e i e j = uv, i=1 j=1 i=1 j=1 σ ik τ kj e i e j = σ τ, k=1 Note that u in the last equation is a dadic tenso. 5 It is eas to show that the continuit and momentum equations, u j i e i e j = u and in inde notation become and ρ ρ t u t + u u ui ρ t + ρ u = = p + τ + ρ g, ρ t + ρu i i = u i + u j j = p i + τ ji j + ρg i Some authos use even simple epessions fo the nabla opeato. Fo eample, u is also epesented as iu i o u i,i, with a comma to indicate the deivative, and the dadic u is epesented as iu j o u i,j.

36 34 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc 1.6 Oloklhwtik jew mata Sthn pa gafo aut, ja suzht soume dôo jemeli dh jew mata thc dianusmatik c an lushc: to je hma tou Stokes kai to je hma thc apìklishc divegence theoem je hma tou Gauss To je hma tou Stokes JewoÔme ìti o anagn sthc eðnai eoikeiwmènoc me thn ènnoia tou posanatolismoô miac fagmènhc epif neiac S kaj c kai tou kleistoô sunìou thc S. Mia tètoia epif neia faðnetaisto Sq ma 1.6. 'Estw F èna dianusmatikì pedðo. UpenjumÐzoume ìti to epifaneiakì olokl wma F ds S kaleðtai o tou F diamèsou thc epif - neiac S, en to epikampôlio olokl wma F d S n S S Sq ma 1.6: Posanatolismènh fagmènh e- pif neia me posanatolismèno sônoo. F d S kaleðtai kuklofoða tou F gôw apì thn kleist kampôlh S. To je hma tou Stokes mac lèei ìti ho stobilismoô enìc dianusmatikoô pedðou F di mèsou miac epif neiac S isoôtai me thn kuklofoða tou F gôw apì to sônoo S thc S. Je hma Je hma Stokes Stokes theoem 'Estw S mia posanatolismènh epif neia kai S to epðshc posanatolismèno thc sônoo. An to F eðnai èna leðo dianusmatikì pedðo, tìte F ds = F d S S Paat hsh Epeid ds=nds, ìpou n to monadiaðo k jeto di nusma sthn epif neia S bl. Sq ma 1.6 kai d=tds, ìpou t to monadiaðo efaptomenikì di nusma sthn kampôlh S kai ds to stoiqei dec m koc tìou, h g fetai epðshc wc e c: S F n ds = S F t ds H sqèsh mac lèei ìti to olokl wma thc k jethc sunist sac tou stobilismoô enìc dianusmatikoô pedðou F p nw se mia epif neia S isoôtai me to olokl wma thc efaptomenik c sunist sac tou F p nw sto posanatolismènosônoo S thc S. Pa deigma Ja deðoume me dôo tìpouc ìti to dianusmatikì pedðo F = e z i + e z j + e z k eðnai sunthhtikì consevative. 1oc tìpoc

37 1.6. Oloklhwtik jew mata 35 AkeÐ na deðoume ìti h kuklofoða tou F gôw apì opoiad pote kleist kampôlh C eðnai mhdèn: F d =0. C 'Estw loipìn mia tuqoôsa kleist kampôlh C kai S mia epif neia pou èqei san sônoo th C, dhl. S=C. SÔmfwna me to je hma tou Stokes me thn poôpìjesh ìti oi C kai S eðnai posanatolismènec èqoume: F d = F ds C S 'Omwc F = i j k e z e z e z =e z e z i e z e z j +e z e z k = 0. Sunep c: 'Aa to pedðo F eðnai sunthhtikì. S F d =0. 2oc tìpoc Ja deðoume ìti to F eðnai pedðo klðsewn, dhl. ìti up qei bajmwtì pedðo φ,, z tètoio stef= φ. PaathoÔme ìti èna tètoio pedðoeðnai to φ = e z. 'Aa to F eðnai sunthhtikì To je hma thc apìklishc 'Estw Ω èna tisdi stato fagmèno qwðo kai Ω h kleist epif neia pou to f ssei. W- c gnwstì, epif neiec aut c thc mof c posanatolðzontai ètsi ste to monadiaðo k jeto di nusma na deðqnei poc ta èw, ìpwc faðnetai sto diplanì sq ma. n Ω Posanatolismènh kleist epif neia. To je hma thc apìklishc mac lèei ìti to qwikì olokl wma thc apìklishc enìc dianusmatikoô pedðou F sflèna tisdi stato fagmèno qwðo Ω eðnai Ðso metho tou F di mèsou thc epif neiac Ω tou Ω. Je hma Je hma thc apìklishc je hma tou Gauss 'Estw Ω èna tisdi stato fagmèno qwðo kai Ω h posanatolismènh kleist epif neia pou f ssei to Ω. An F eðnai èna leðo dianusmatikì pedðo oismèno sto Ω, tìte FdV = F ds Ω Ω Epeid ds = nds, h paðnei epðshc th mof FdV = F n ds Ω Ω

38 36 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc To je hma thc apìklishc epekteðnetai kai se tanustik pedða. Je hma Je hma thc apìklishc gia tanustèc 'Estw Ω èna tisdi stato fagmèno qwðo kai Ω h posanatolismènh kleist epif neia pou f ssei to Ω. An τ eðnai èna leðo tanustikì pedðo oismèno sto Ω, tìte τ dv = τ n ds Ω Ω Pa deigma Ja upologðsoume to olokl wma S F nds ìpou F =2i + 2 j + z 2 k kai S h epif neia thc monadiaðac sfaðac pou oðzetai apì thn z 2 =1. Apì to je hma tou Gauss èqoume FdV = F n ds Ω ìpou Ω hmonadiaða sfaða. O apeujeðac upologismìc tou epifaneiakoô oloklh matoc eðnai boloc. PotimoÔme loipìn naupologðsoume to qwikì olokl wma. F n ds = FdV = z dv =2 dv +2 dv +2 zdv. S Ω Ω Ω Ω Ω Lìgw summetðac, ta dôo teleutaða oloklh mata mhdenðzontai. Sunep c F n ds =2 dv =2V = 8π 3, S Ω S afoô h monadiaða sfaða èqei ìgko 4π/3. Pa deigma 'Estw F kai G dianusmatik pedða kl shc C 1 sto tisdi stato qwðo Ω pou f ssetai apì thn apl kleist epif neia Ω. JewoÔme ìti se k je shmeðo thc Ω to dianusmatikì pedðo F G eðnai efaptìmeno thc Ω. Ja deðoume ìti F GdV = G FdV Apìdeih Apì th dianusmatik tautìthta èqoume: Apì to je hma tou Gauss paðnoume: F G dv = Ω Ω Ω Ω F G =G F F G F G dv = [G F F G] dv Ω Ω F G ds = To pedðo F G ef ptetai thc Ω, a autì eðnai k jeto sto n: F G n =0. Ω F G n ds

39 1.6. Oloklhwtik jew mata 37 PaathoÔme ìti to epifaneiakì olokl wma mhdenðzetai kai ètsi 0= F G dv = [G F F G] dv = Ω Ω F GdV = Ω Ω G F dv. Pa deigma H eðswsh sunèqeiac JewoÔme èna tisdi stato stajeì kai fagmèno ìgko eustoô Ω sflèna pedðo o c. O ujmìc o c m zac eustoô diamèsou thc Ω eðnai dm = ρ u n ds Ω ìpou m h m za, ρ h puknìthta kai u to di nusma thc taqôthtac. Apì to je hma thc apìklishc èqoume: dm = ρ u n ds = ρu dv Ω Ω To apotèlesma autì eðnai idiaðtea q simo sthn apìdeih thc eðswshc sunèqeiac. MpooÔme p ntwc na paath soume ìti an to eustì eðnai asumpðesto kai to qwðo Ω stajeì dhlad mh kinoômeno, h m za pou peikleðetai sto Ω eðnai staje. 'Aa dm =0 = Ω ρu dv =0 = Ω u dv =0 afoô h ρ eðnai staje. Epeid to qwðo Ω eðnai aujaðeto, sumpeaðnoume ìti u = ApodeÐame ètsi thn eðswsh sunèqeiac gia asumpðesth o. OtÔpoctou Ostogadsk O tôpoc tou Ostogadsk eðnai sthn ousða to je hma thc apìklishc diatupwmèno se katesianèc suntetagmènec. Ton mnhmoneôoume ed diìti eðnai q simoc se aketèc efamogèc. Gia thn apìdeih tou tôpou ja qhsimopoi soume tic e c sqèseic gia th stoiqei dh epif neia ds kai ton stoiqei dh ìgko dv : n i ds = ddz, n j ds = ddz, n k ds = dd kai An F=F 1 i + F 2 j + F 3 k,tìte dv = dddz. F = F 1 + F 2 + F 3. Apomènei na metasqhmatðsoume ton ìo F nds pou emfanðzetai sto epifaneiakì olokl wma tou jew matoc thc apìklishc: F n ds = F 1 i n ds + F 2 j n ds + F 3 k n ds = F n ds = F 1 ddz + F 2 ddz + F 3 dd. Antikajist ntac tic pio p nw sqèseic sthn 1.146, paðnoume ton tôpo tou Ostogadsk: Ω F1 + F 2 + F 3 dddz = F 1 ddz + F 2 ddz + F 3 dd Ω

40 38 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc Pa deigma Ja upologðsoume to olokl wma I = ddz+ ddz+2zdd S ìpou S h kleist epif neia pou oðzetai apì to paaboloeidèc z α= 1 z z= z =1, 0 <z<1 kai to epðpedo z=0 bl. diplanì sq ma. Me ton tôpotou Ostogadsk, èqoume gia to olokl wma I: I = V 1+1+2dddz =4 dddz. V 1 1 H epif neia S. PaathoÔme ìti I =4 1 0 dz dd =4 1 0 πα 2 dz =4π z dz =4π ] 1 [z z2 =2π 2 0 Pa deigma Ja upologðsoume to epifaneiakì olokl wma I = S 2 ddz + 2 ddz + z 2 dd p nw sthn ewteik ìh thc sfaðac z 2 = α 2. Apì ton tôpo tou Ostogadsk, èqoume: I = V z dddz ìpou V = {,, z R z 2 α 2 }. An kai mpooôme na doôme amèswc ìti to I eðnai mhdèn lìgw summetðac, ja to upologðsoume san skhsh sthn allag suntetagmènwn. Ja egastoôme loipìn se sfaiikèc suntetagmènec, θ, φ. GnwÐzoume ìti = sin θ cos φ, = sin θ sin φ, kai z = cos θ ìpou 0 α, 0 φ 2π kai 0 θ π Gia to stoiqei dh ìgko dv èqoume dv = dddz =,, z, θ, φ ddθdφ = 2 sin θddθdφ.

41 1.6. Oloklhwtik jew mata 39 Sunep c to tiplì olokl wma g fetai: I = = 2 = α4 2 = α4 2 α π 2π 0 0 2π 0 2π 0 2π 0 0 π 2sin θ cos φ +sinθ sin φ +cosθ 2 sin θddθdφ dφ sin 2 θ cos φ +sin 2 θ sin φ +sinθcos θ dθ 0 [ 1 dφ 2 θ 1 sin 2θ sin φ +cosφ+ sin2 θ 4 2 [ π ] 2 sin φ +cosφ+0 α 0 ] π 0 3 d dφ = πα4 [ cos φ +sinφ]2π 0 = πα =0 Oi tautìthtec tou Geen 'Eqoume dh dei ìti to je hma thc apìklishc eðnai polô q simo sth metatop tipl n oloklhwm twn se epifaneiak ìtan ta deôtea apodeiknôontai eukolìtea kai antðstofa. 'Omwc h qhsimìthta tou den peioðzetai mìno sflautì to gegonìc, afoô me autì mpooôme na melet soume th fusik shmasða thc laplasian c kai aketèc meikèc diafoikèc eis seic. Sthn pa gafo aut ja apodeðoume tic tautìthtec tou Geen. UpenjumÐzoume ìti èna C 2 bajmwtì pedðo φ,, z kaleðtai amonikì hamonic an ikanopoieð thn eðswsh Laplace, dhl. an 2 φ=0. JewoÔme t a th sun thsh: ìpou φ kai ψ bajmwt pedða. Apì th dianusmatik tautìthta F = φ ψ ff =f F + F f jètontac f = φ kai F = ψ bðskoume gia thn apìklish tou F: F = φ ψ = φ ψ + φ 2 ψ Oloklh nontac thn p nw sto fagmèno tisdi stato qwðo V èqoume: Apì to je hma thc apìklishc isqôei: V φ ψ dv = V V φ ψ dv = [ φ ψ + φ 2 ψ] dv S φ ψ n ds ìpou S h epif neia pou f ssei to V. tautìthta tou Geen: Sundu zontac tic kai paðnoume thn p th φ ψ + φ 2 ψ dv = φ ψ n ds V S Enall ssontac ta φ kai ψ sthn pio p nw sqèsh, paðnoume: ψ φ + ψ 2 φ dv = ψ φ n ds V S

42 40 Kef laio 1:Dianusmatikìc kai tanustikìc logismìc Afai ntac thn apì thn 1.157, paðnoume th deôteh tautìthta tou Geen h opoða eðnai epðshc gnwst wc summetikì je hma smmetical theoem: V φ 2 ψ ψ 2 φ dv = φ ψ ψ φ n ds S Sthn pio p nw apìdeih upojèsame ìti ta φ kai ψ èqoun suneqeðc deôteec paag gouc. Ta V kai S ikanopoioôn tic sunj kec tou jew matoc thc apìklishc. Shmei noume epðshc ìti h mpoeð nflapodeiqjeð an jèsoume F = φ ψ ψ φ kai egastoôme ìpwc sto p to mèoc skhsh. Pa deigma An h sun thsh ψ eðnai lôsh thc eðswshc Laplace se k poio qwðo V pou f ssetai apì thn epif neia S, tìte: ψ ds = n S Apìdeih Jètontac φ =1sthn p th tautìthta Geen paðnoume 0 ψ +1 2 ψ dv = 'Omwc 2 ψ =0kai ψ n = ψ/n, opìte V V 2 ψdv = S S S ψ ds =0. n ψ n ds 1 ψ n ds Pa deigma An oi φ kai ψ eðnai amonikèc, to qwikì olokl wma thc deôtehc tautìthtac tou Geen eðnai mhdèn, opìte φ ψ ψ φ n ds =0 Epeid ψ n = ψ/n kai φ n = φ/n, èqoume telik : φ ψ n ψ φ ds =0. n Paat hsh To je hma thc apìklishc, S S V FdV = S F n ds metasqhmatðzei èna qwikì olokl wma miac diafoismènhc posìthtac sflèna epifaneiakì olokl wma sto opoðo o diafoikìc telest c tou èqei apaleifjeð. To je hma tou Stokes, F n ds = F t ds S C

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN 5h Seirˆ Ask sewn Allag metablht n sto diplì olokl rwma Jèma. Qrhsimopoi ntac

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS. PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS h Seirˆ Ask sewn Diaforikèc eis seic > diaforikèc

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ο δυϊκός χώρος Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Θέματα Εξετάσεων Όνομα Καθηγητή : Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS. PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS 6h Seirˆ Ask sewn OmogeneÐc grammikèc diaforikèc exis seic me stajeroôc suntelestèc Jèma

Διαβάστε περισσότερα

Ανάλυση ις. συστήματα

Ανάλυση ις. συστήματα Σήματα Συστήματα Ανάλυση ourier για σήματα και συνεχούς χρόνου Λυμένες ασκήσει ις Κνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής συστήματα Θεσσαλονίκη, Ιούνιος 3 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS 1. Grammikèc diaforikèc exis seic deôterhc kai an terhc tˆxhc

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Δειγματοληψία Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 5 DeigmatolhyÐa 'Estw èna sônolo periodikˆ

Διαβάστε περισσότερα

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou) Diakritˆ Majhmatikˆ I Leutèrhc KuroÔshc (EÔh Papaðwˆnnou) PlhroforÐec... Tetˆrth, 09.00-11.00, Paraskeu, 18.00-20.00 SÔggramma 1: Λ. Κυρούσης, Χ. Μπούρας, Π. Σπυράκης. Διακριτά Μαθηματικά: Τα Μαθηματικά

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

GENIKEUMENA OLOKLHRWMATA

GENIKEUMENA OLOKLHRWMATA PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I GENIKEUMENA OLOKLHRWMATA Anplhrwt c Kjhght c: Dr. Pppˆc G. Alèndroc GENIKEUMENA OLOKLHRWMATA H ènnoi tou orismènou

Διαβάστε περισσότερα

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc Mˆjhma 9 0 25 OktwbrÐou 2012 (5 h ebdomˆda) Diaforikèc Exis seic TÔpoi Diaforik n exis sewn H pio apl diaforik exðswsh y = f (x) Diaforikèc Exis seic TÔpoi Diaforik n exis sewn H pio apl diaforik exðswsh

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METLHTWN EPIKAMPULIA OLOKLHRWMATA 1. EpikampÔlio Olokl rwma 1ou eðdouc Efarmogèc 2. Dianusmatikˆ

Διαβάστε περισσότερα

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2 UpenjumÐseic gia thn Jetik kai Teqnologik KateÔjunsh Kajhght c: N.S. Maurogi nnhc 1 Tautìthtec - Anisìthtec 1. (α ± ) = α ± α +. (α ± ) 3 = α 3 ± 3α +3α ± 3 3. α 3 ± 3 =(α ± ) ( α α + ) 4. (α + + γ) =

Διαβάστε περισσότερα

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac Kbantik Perigraf tou Kìsmou mac KwnstantÐnoc Sfètsoc Kajhght c Fusik c Genikì Tm ma, Panepist mio Patr n Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac Ti ennooôme

Διαβάστε περισσότερα

Chapter 7a. Elements of Elasticity, Thermal Stresses

Chapter 7a. Elements of Elasticity, Thermal Stresses Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

11 OktwbrÐou 2012. S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

11 OktwbrÐou 2012. S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc Mˆjhma 7 0 11 OktwbrÐou 2012 Orismìc sunart sewn mèsw orismènwn oloklhrwmˆtwn To orismèno olokl rwma prosfèrei ènan nèo trìpo orismoô sunˆrthshc afoô to orismèno olokl rwma mia suneqoôc sunˆrthshc f (t),

Διαβάστε περισσότερα

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Διγραμμικές και Τετραγωνικές μορφές Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METLHTWN 6h Seirˆ Ask sewn EpikampÔlia oloklhr mata 1 Jèma 1. Na upologisjeð to epikampôlio

Διαβάστε περισσότερα

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA ΛΟΓΙΣΜΟΣ CALCULUS Διαφορικός Λογισμός, Απειροστικός Λογισμός 1670 1740 Ουράνια Μηχανική Isaac Newton 1648-1727 Gottfried Wilhelm Leibniz 1646-1716 απειροστάπολύ μικρά μεγέθη, άπειροπάρα πολύ μεγάλο, όριο

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Eisagwg sthn KosmologÐa

Eisagwg sthn KosmologÐa Eisagwg sthn KosmologÐa BasileÐou S. Gerogiˆnnh Kajhght Tm matoc Fusik c PanepisthmÐou Patr n Patra 2009 Kefˆlaio 1 Eisagwgikˆ 1.1 Gwniakì mègejoc, parsèk, ètoc fwtìc O parathrht c tou Sq matoc 1.1 parathreð

Διαβάστε περισσότερα

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 20 Maòou 200 t.m. X me mèsh tim µ t.m. X 2 me mèsh tim µ 2 Diaforˆ µ µ 2? [X kai X 2 anexˆrthtec] DeÐgma {x, x 2,..., x n } x DeÐgma {x 2, x 22,...,

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 8 DekembrÐou 202 t.m. X me mèsh tim µ t.m. X 2 me mèsh tim µ 2 Diaforˆ µ µ 2? [X kai X 2 anexˆrthtec] DeÐgma {x, x 2,..., x n } x DeÐgma {x 2,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Μετασχηματισμός Z Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 7 Metasqhmatismìc Z 7. Orismìc tou metasqhmatismoô

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN. PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN h Seirˆ Ask sewn Akrìtata pragmatik n sunart sewn 1. Na brejoôn ta topikˆ akrìtata

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

στο Αριστοτέλειο υλικού.

στο Αριστοτέλειο υλικού. Σήματα Συστήματα Μετασχηματισμός aplace Λυμένες ασκήσεις Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής Θεσσαλονίκη, Ιούνιος 03 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I. Aìristo Olokl rwma 2. Orismèno Olokl rwma 3. Diaforetik èkfrash tou aìristou oloklhr matoc H Sunˆrthsh F ()

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Μετασχηματισμός Laplace Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 8 Metasqhmatismìc Laplace 8. Orismìc

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Ανάλυση ασκήσεις. συστήματα

Ανάλυση ασκήσεις. συστήματα Σήματα Συστήματα Ανάλυση Fourier για σήματα και διακριτού χρόνου Λυμένες ασκήσεις Κωνσταντίνος Κοτρόουλος Τμήμα Πληροφορικής συστήματα Θεσσαλονίκη, Ιούνιος 3 Άδειες Χρήσης Το αρόν εκαιδευτικό υλικό υόκειται

Διαβάστε περισσότερα

Κλασσική Ηλεκτροδυναμική II

Κλασσική Ηλεκτροδυναμική II ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασσική Ηλεκτροδυναμική II Πεδία Σημειακών Φορτίων Διδάσκων : Καθ. Κ. Ταμβάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJESEWN 18 DekembrÐou 2012 'Elegqoc Upojèsewn 1 Statistik upìjesh 2 Statistik elègqou kai perioq apìrriyhc 3 Apìfash elègqou Statistik upìjesh mhdenik upìjesh

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic Pragmatik Anˆlush (2010 11) TopologÐa metrik n q rwn Ask seic Omˆda A' 1. 'Estw (X, ρ) metrikìc q roc kai F, G uposônola tou X. An to F eðnai kleistì kai to G eðnai anoiktì, deðxte ìti to F \ G eðnai kleistì

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 6 Maòou 2010 EktÐmhsh Diast matoc empistosônhc Melet same thn ektim tria ˆθ paramètrou θ: An gnwrðzoume thn katanom thc X kai eðnai F X (x;

Διαβάστε περισσότερα

Στατιστική για Χημικούς Μηχανικούς

Στατιστική για Χημικούς Μηχανικούς ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Χημικούς Μηχανικούς Ενότητα 3: Έλεγχος Υποθέσεων Κουγιουμτζής Δημήτρης Τμήμα Χημικών Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ Εξετάσεις Ιουνίου (α) Αναπτύξτε την µέθοδο του τραπεζίου για τον αριθµητικό υπολογισµό του ολοκληρώµατος: b I( f ) = f ( x) a όπου f (x) συνεχής και ολοκληρώσιµη

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

General Relativity (225A) Fall 2013 Assignment 5 Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto

Διαβάστε περισσότερα

Eisagwg sth Grammik 'Algebra Tìmoc B DeÔterh 'Ekdosh Dhm trhc B rsoc Dhm trhc Derizi thc Miq lhc Mali kac OlumpÐa Talèllh Prìlogoc Sto pr to mèroc autoô tou tìmou meletoôme idiìthtec enìc tetragwnikoô

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

Ask seic me ton Metasqhmatismì Laplace

Ask seic me ton Metasqhmatismì Laplace Ask seic me ton Metasqhmatismì Laplace Epimèleia: Gi rgoc Kafentz c Upoy. Didˆktwr Tm m. H/U Panepist mio Kr thc 8 IounÐou 4. 'Estw to s ma { A, t T x(t), alloô () (aþ) Na upologðsete to metasq. Fourier

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Ενότητα 10: Θεωρία Βελτιστοποίησης Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών To genikì prìblhma, na broôme to mègisto elˆqisto miac sunˆrthshc

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

The Friction Stir Welding Process

The Friction Stir Welding Process 1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB Peiramatiko Lukeio Euaggelikhc Sqolhc Smurnhc Taxh B, Majhmatika Jetikhc kai Teqnologikhc Kateujunshc, Askhseic Kajhght c: Shmei seic gia sqolik qr sh. MporoÔn na anaparaqjoôn kai na dianemhjoôn eleôjera

Διαβάστε περισσότερα

Problems in curvilinear coordinates

Problems in curvilinear coordinates Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the

Διαβάστε περισσότερα

È Ö Ñ Ø Ó ÄÙ Ó Ù Ð ËÕÓÐ ËÑÙÖÒ Ì Ü Å Ñ Ø Â Ø Ì ÕÒÓÐÓ Ã Ø Ù ÙÒ Ë Ñ Û Â ÛÖ Ã Ø ÆºËº Å ÙÖÓ ÒÒ Ç Ñ ô ÙØ Ò ÕÓÐ ÕÖ º ÅÔÓÖÓ Ò Ò Ò Ô Ö Õ Ó Ò Ò Ò Ñ Ó Ò Ð Ö Ö¹ Ò Ñ Ò ÐÐ Ü ÑÓÖ ØÓÙº ØÓÒ Ô Ö ÓÖ Ñ ØÛÒ Ò Ô Ù ØÛÒ Ð ôò

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SofÐa ZafeirÐdou: GewmetrÐec

SofÐa ZafeirÐdou: GewmetrÐec Tm ma Majhmatik n Panepist mio Patr n Bohjhtikèc Shmei seic gia to mˆjhma GewmetrÐec SofÐa ZafeirÐdou Anaplhr tria Kajhg tria Pˆtra 2018 Oi shmei seic autèc grˆfthkan gia tic anˆgkec tou maj matoc GewmetrÐa.

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Obital angula momentum and the spheical hamonics Apil 2, 207 Obital angula momentum We compae ou esult on epesentations of otations with ou pevious expeience of angula momentum, defined fo a point paticle

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i) Peiramatiko Lukeio Euaggelikhc Sqolhc Smurnhc Taxh G, Majhmatika Jetikhc kai Teqnologikhc Kateujunshc, Askhseic Kajhght c: Oi shmei seic autèc eðnai gia sqolik qr sh. MporoÔn na anaparaqjoôn kai na dianemhjoôn

Διαβάστε περισσότερα

Course Reader for CHEN 7100/7106. Transport Phenomena I

Course Reader for CHEN 7100/7106. Transport Phenomena I Couse Reade fo CHEN 7100/7106 Tanspot Phenomena I Pof. W. R. Ashust Aubun Univesity Depatment of Chemical Engineeing c 2012 Name: Contents Peface i 0.1 Nomenclatue........................................

Διαβάστε περισσότερα

JEMATA EXETASEWN Pragmatik Anˆlush I

JEMATA EXETASEWN Pragmatik Anˆlush I JEMATA EXETASEWN Pragmatik Anˆlush I JEMA 1o. A)(M. 1.5) Na qarakthrðsete (me aitiolìghsh) tic protˆseic pou akoloujoôn me thn èndeixh Swstì Lˆjoc: (i) 'Estw x 0 tètoio ste x < ε, gia kˆje ε > 0. Tìte

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα