1.1 Neodre deni integral

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.1 Neodre deni integral"

Transcript

1 . Neodre deni integrl.. Površinski problem Uvod u površinski problem Iko većin rzmišlj o integrlu isključivo ko o obrtu izvod, osnove integrlnog rčun sežu mnogo dlje u prošlost od modernih vremen. Jedn od velikih problem više mtemtike je: Definicij.. Ako je dt reln funkcij f koj je neprekidn i nenegtivn n intervlu [, b], ndjite površinu koj se nlzi izme du grf funkcije f i intervl [, b] n x-osi. Uvod u površinski problem Uvod u površinski problem Površinske formule z osnovne geometrijske figure, ko što su prvougonici, poligoni i krugovi idu nzd do njrnijih mtemtičkih zpis. Prvi prvi npredk od njprimitivnih pokušj je nprvio strogrčki mtemtičr Arhimed ( Aρχιµηδης), koji je rzvio genijlnu, li npornu tehniku, koj se zove tehnik iscrpljenj, kko bi nšo površine regij koje su ogrničene prbolm, spirlm i rznim drugim krivim. Do 7-og stoljeć mnogi su mtemtičri otkrili nčine kko izrčunti ove površine koristeći limese. Me dutim, svim ovim metodm je nedostjl generlnost.

2 Uvod u površinski problem Veliki npredk su nprvili nezvisno jedn od drugog Newton i Leibnitz, koji su otkrili d se površine mogu dobiti obrćući proces diferencijcije. Newtonov rd De Anlysi per Aequtiones Numero Terminorum Infinits izdt 7 se smtr početkom više mtemtike. Sir Isc Newton FRS Gottfried Wilhelm Leibniz Početk moderne mtemtike 2

3 Posmtrjmo funkciju y = cos 2 x. Ond znmo d je izvod ove funkcije y = 2 cos x sin x = sin 2x. No št ko mormo rditi untrg, odnosno d nm je dt funkcij y = 2 sin 2x i iz nje trebmo pronći originlnu funkciju? Očito, u ovom slučju je y = cos 2 x, li smo to već unprijed znli. U općem slučju, to nije tko jednostvno i zhtjev posebn pristup. Neodre deni integrl Definicij.2. Funkciju F definisnu n intervlu I, nzivmo primitivom ili primitivnom funkcijom ili prim funkcijom ili nti-izvodom ili integrlom funkcije f(x), ko je n tom intervlu f(x) izvod funkcije F (x), tj. ko vrijedi relcij F (x) = f(x), x I. () Definicij.2 se može formulisti tko d umjesto termin izvod koristimo termin diferencijl i td vrijedi d F (x) = F (x)dx = f(x)dx, x I. (2) Primitiv Funkcij 3 x3 je primitiv funkcije f(x) = x 2 n intervlu (, ), zto što je z svko x (, ) F (x) = d [ ] dx 3 x3 = x 2 = f(x). 3

4 Primjetite d ovo nije jedini primitiv funkcije f n ovom intervlu. Ako dodmo bilo koju konstntu C n 3 x3, ond je funkcij F (x) = 3 x3 + C tko der primitiv funkcije f(x) = x 2, jer je x (, ) F (x) = ( 3 x3 + C) = 3 (x3 ) + C = x 2. Primitiv Teorem.. Nek je F (x), n intervlu I, primitiv funkcije f(x). Td je i funkcij F (x) + C, gdje je C proizvoljn konstnt, tko der primitiv funkcije f(x). Teorem.2. Nek su F (x) i Φ(x) rzličiti primitivi funkcije f(x) n intervlu I. Td je Φ(x) = F (x) + C, C R. (3) Primitiv Dokz. N osnovu pretpostvke teoreme je F (x) = f(x), Φ (x) = f(x), odkle slijedi d je Φ (x) F (x) = [Φ(x) F [x]] = 0, odnosno, vrijedi Φ(x) F (x) = C Φ(x) = F (x) + C. Proces nlženj primitiv nzivmo nti-izvo denjem ili, pozntije, integrcijom. Funkciju F (x) + C nzivmo neodre deni integrl funkcije f(x) i oznčvmo je s f(x)dx = F (x) + C, gdje je C proizvoljn konstnt. Produženo S koje se pojvljuje s lijeve strne definicije neodre denog integrl se zove znk integrcije, što je notcij koju je izumio Leibnitz 675 godine. Funkcij f(x) se zove integrnd ili podintegrlni izrz. C se nziv konstnt integrcije. Pridjev neodre den se odnosi n činjenicu d integrcij ne dje jednu, odre denu funkciju, već čitv snop funkcij (zbog konstnte integrcije). Provjeriti d je ln x x dx = ln2 x 2 + C. Kko je ( d ln 2 ) x + C = 2 ln x dx 2 2 x = ln x x, to je prem definicije neodre denog integrl funkcij ln2 x 2 + C neodre deni integrl funkcije ln x x. 4

5 Neke osobine neodre denog integrl Iz definicije neodre denog integrl direktno slijedi [ f(x)dx] = [F (x) + C] = F (x) = f(x), (4) d f(x)dx = d[f (x) + C] = F (x)dx = f(x)dx, (5) df (x) = F (x)dx = f(x)dx = F (x) + C, (6) F (x)dx = f(x)dx = F (x) + C. (7) Jednostvnij prvil integrcije Prvilo. Nek je R konstnt. Td vrijedi f(x)dx = f(x)dx (8) Prvilo 2. Ako postoje f i (x)dx, i =, 2,..., n, td vrijedi (f + f f n )(x)dx = f (x)dx + f 2 (x)dx +... f n (x)dx. (9) Jednostvnij prvil integrcije Prvilo 3. Nek je f(t)dt = F (t) + C. Td je f(x + b)dx = F (x + b) + C. (0) Dokz. Kko je immo d je d dt df (t) = F (t) = f(t), dt d dt F (x + b) = F (x + b) = f(x + b), [ ] F (x + b) = F (x + b) = F (x + b) = f(x + b). 5

6 ..2 Tblic osnovnih integrl Tblic osnovnih integrl Integrcij je u osnovi čisto pog dnje - no obrzovno pog dnje! Mi u osnovi pokušvmo d pogodimo št je funkcij iz njenog izvod. Veliki broj integrl možemo riješiti koristeći se nekim, osnovnim integrlim stndrdnih funkcij. Ovdje ćemo nvesti neke od njih. Tblic osnovnih integrl. 0 dx = C; dx = x + C, 2. x dx = + x+ + C, 0,, R, 3. dx = ln x + C, x Tblic osnovnih integrl dx = rc tg x + C; + x2 dx = rcsin x + C; x 2 dx = rc ctg x + C, + x2 dx = rccos x + C, x 2 6. x dx = x ln + C, e x dx = e x + C, Tblic osnovnih integrl 7. sin xdx = cos x + C; cos xdx = sin x + C, cos 2 dx = tg x + C; x sin 2 dx = ctg x + C, x x2 ± 2 dx ln x + x2 ± 2 + C. 6

7 Tblic osnovnih integrl 0. sec x tn xdx = sec x + C; csc x ctg xdx = csc x + C, Primjeri (x 3 + 2x 5)dx. xdx. sin(mx)dx. Primjeri x + 3 dx. 2x + 5 x 2 + 5x + dx. tg 2 xdx. Primjeri x e x2 + dx. dx x ln x dx. 2dx sin 2x dx. 7

8 Primjeri cos x sin 2 x dx = cos x sin x sin x dx = t 2 2t 4 ( ) t 4 dt = t 2 2 = = t 2t + C = 2t + C. t csc x ctg xdx = csc x + C t 2 dt + ( 2)dt..3 Integrcij metodom smjene Integrcij smjenom U dosdšnjim primjerim smo se smo koristili osnovnim prvilim i tblicm integrl. Tkvi slučjevi su rijetki i u nekim slučjevim uvo denjem smjene nezvisne promjenljive podintegrlne funkcije možemo svesti integrl n tblični slučj. Nek trebmo izrčunti f(x)dx. () Umjesto nezvisne promjenljive x uvedimo novu promjenljivu t, i nek je x = g(t), dx = g (t)dt. (2) Integrcij smjenom Td integrl () glsi f[g(t)]g (t)dt. (3) Teorem.3. Nek su J i J 2 otvoreni integrli u skupu R. Nek je f : J 2 R, x J 2, neprekidn funkcij n J 2 i nek funkcij g : J J 2 im neprekidne izvode n J. Td z svko t J i svko x = g(t) J 2 vrijedi f(x)dx = f[g(t)]g (t)dt. (4) Integrcij smjenom Tčnost tvrdnje prti n osnovu definicije izvod posredne funkcije i definicije neodre denog integrl. 8

9 sin 3 x cos xdx. Uvodimo smjenu sin x = t, cos xdx = dt. Td posmtrni integrl glsi sin 3 x cos xdx = t 3 dt = 4 t4 + C = 4 sin4 x + C. Integrcij smjenom xe x2 dx. dx + 4x dx. Integrcij smjenom dx + x dx. cos x + sin 2 x dx. sin 3 xdx...4 Metod prcijlne integrcije Prcijln integrcij Nek su u = f(x) i v = g(x) funkcije promjenljive x i nek imju izvode u = f (x) i v = g (x). Td je po prvilu diferencirnj proizvod d(u v) = u dv + v du, odkle slijedi odnosno u dv = d(u v) v du v du = d(u v) u dv. Iz prethodnih jednkosti integrcijom dobivmo 9

10 Prcijln integrcij u dv = u v v du (5) odnosno v du = u v u dv. (6) Gornje relcije dju prvil prcijlne integrcije. Primjeri Nek treb nći xe 2x dx. Uzmimo d je u = x, du = dx, dv = e 2x v = e 2x dx = 2 e2x. Td je prem relciji (5) xe 2x dx = x 2 e2x 2 e 2x dx = x 2 e2x 4 e2x + C. Primjeri = x3 ln x 3 x 2 ln x = 3 u = ln x du = dx x dv = x 2 dx v = 3 x3 x 3 dx x = x3 ln x 3 3 x 2 dx = x3 ln x 3 x9 9 + C. Primjeri Izrčunti e x cos(bx)dx. Oznčimo dti integrl s J i nek je Td je prem relciji (5) J = e x cos(bx)dx = u = e x, dv = cos(bx)dx. u = e x du = e x dx dv = cos(bx)dx v = b sin(bx) 0

11 Primjeri = b ex sin(bx) b e x sin(bx)dx. Ako se z izrčunvnje e x sin(bx)dx uzme u = e x (du = e x dx), dv = sin(bx)dx (v = b cos(bx) ), td slijedi J = b ex sin(bx) b [ b ex cos(bx) + b ] e x cos(bx)dx, Primjeri J = b ex sin(bx) + b 2 ex cos(bx) 2 b 2 J. Rješvnjem prethodne jednčine po J dobijmo ili J = e x cos(bx)dx = b sin(bx) + cos(bx) 2 + b 2 e x, b sin(bx) + cos(bx) 2 + b 2 e x + C. Primjeri Izrčunti dx (x ) n, n N. J = x2 + 2 dx...5 Integrcij rcionlnih funkcij Integrcij rcionlnih funkcij Rcionln funkcij je funkcij oblik: R(x) = P n(x) Q n (x) = nx n + n x n x + 0 b m x m + b m x m b x + b 0

12 Ako je. n m td je funkcij R(x) neprv rcionln funkcij; 2. n < m td je funkcij R(x) prv rcionln funkcij. U prvom slučju, prvo polinome P n (x) i Q m (x) podijelimo, tj. R(x) = P n(x) Q n (x) = Λ n m(x) + R (x) Q m (x). Drugi dio desne strne ove jednkosti je ond prv rcionln funkcij. 2x 3 x 2 + x + 5 x 2 4x + = 2x x 2 x 2 4x +. Izrčunvnje integrl rcionlne funkcije svodi se n izrčunvnje prve rcionlne funkcije. No, prije tog mormo prvu rcionlnu funkciju rzložiti n prostije rcionlne funkcije, tzv. prcijlne rzlomke, ztim rčunti integrle z svki od tih prcijlnih rzlomk. Rstvljnje prve rcionlne funkcije Prostim rcionlnim funkcijm zovemo rcionlne funkcije oblik gdje su A i relni brojevi, odnosno A (x α) k (k N ) (7) Mx + N (x 2 + px + q) k ( k N ; p 2 4 q < 0 ), (2.26 ) gdje su M, N, p i q relni brojevi. Svku prvu rcionlnu funkciju možemo predstviti u obliku (prem fundmentlnoj teoremi lgebre): P n (x) Q m (x) = P n (x) (x ) k (x M ) k M (x2 + p x + q ) l (x 2 + p N x + q N ) l, k i, l N i N, M+N = m Pri tome je p 2 4q < 0, tj. x 2 + px + q se ne može dlje rstviti n proste relne fktore (nem nul u R). Td rcionlnu funkciju možemo izrziti ko: P n (x) (x ) k (x 2 + px + q) l = A x + A 2 (x ) A k (x ) k + + M x + N x 2 + px + q + M 2x + N 2 (x 2 + px + q) M lx + N l (x 2 + px + q) l. 2

13 A, A 2,..., A n, M, M 2,..., M l, N, N 2,..., N l su nepoznti koeficijenti koje treb odrediti. Ond integrl Pn (x) Q n (x) se u stvri pretvr u k + l integrl koje već možemo riješiti stndrdnim putem! = 2 (x ) 2 dx + 2 3x 2 x + 2 (x ) 2 (x 2 + ) x dx + 2 x + x 2 dx = 2 x + 2 ln(x ) + 2 rctn x 4 ln(x2 + ) + C. Npomen: U opštem slučju, integrl oblik Mx + N x 2 + px + q dx = Mx + N (x + p/2) rješvmo pomoću smjene x + p 2 = t..2 Odre deni inetgrl.2. Odre deni integrl Odredjeni integrl Nek je funkcij nm je dt funkcij f(x) i nek procesom izrčunvnj neodre- denog integrl možemo nći njen primitiv F (x). U ovoj sekciji ćemo se bviti pojmom tzv. odre denog integrl, li ne teoretskim, već smo primjenjenim putem. Dkle, nećemo formlno definisti odre deni integrl, već smo pomoću njegove veze s neodre denim integrlom. Odre deni integrl funkcije f integrbilne n segmentu [, b] oznčvmo s Ispostvlj se d je b b Ov formul se po dogovoru zpisuje ko f(x)dx f(x)dx = F (b) F ()! b f(x)dx = F (x) b. 3

14 Ov formul se nziv Newton-Leibnitzov formul! Vidimo d nm odre deni integrl vrć konkretnu vrijednost, p stog i njegovo ime! Osobinu d postoji odre deni integrl funkije n segmentu [, b] ćemo oznčvti s f I[, b]. Osobine odre denog integrl Nek je f I [,b]. Td je, po definiciji, f(x)dx = b b f(x)dxi λ f(x)dx =0, λ [, b]. Lem.. Ako je f I [,b] i α < β b, td je f integrbiln n segmentu [α, β]. Lem.2. Nek je < c < b i nek je funkcij f integrbiln n [, b]. Td vrijedi b f(x)dx = c λ b f(x)dx+ c f(x)dx. (8) Teorem.4. Nek f, g I [,b]. Td su funkcije f + g, f g, λ g integrbilne n segmentu [, b], gdje je λ R ; pri tome vrijedi () (b) b b (f(x) ± g(x))dx = (λf(x)) dx = λ b b f(x)dx. f(x)dx ± b g(x)dx, Teorem.5. Nek su f, g I [,b] tkve d je f(x) g(x) z svko x [, b], td vrijedi b f(x)dx b g(x)dx. (9) Teorem.6. Ako je f integrbiln funkcij n segmentu [, b], td su integrbilne i funkcije f + i f ; osim tog, vrijedi nejednkost b b f(x)dx f(x) dx. (20) Teorem.7. Ako je f C [,b], td je f I [,b]. Izrčunti integrl 3 3 dx +x. 2 dx +x = rctgx 3 = rctg( 3) rctg( ) = π 2 3 ( π 4 ) = 7π 2. 4

15 Glvni metodi izrčunvnj neodre denog integrl, metod smjene promjenljive i metod prcijlne integrcije, mogu se primijeniti i kod izrčunvnj odre denog integrl. Teorem.8. Nek su funkcije u(x) i v(x) gltke n segmentu [, b]. Td vrijedi jednkost b u(x)dv(x) = u(x)v(x) b b v(x)du(x). (2) Izrčunti odre deni integrl e x 2 ln xdx. Teorem.9. Nek je f : [A, B] R neprekidn, funkcij im neprekidnu derivciju φ (t). Ako je td vrijedi jednkost Izrčunti φ : [α 0, β 0 ] [A, B] α, β [α 0, β 0 ], = φ(α), b = φ(β), b f(x)dx = 0 β α x2 dx. Ako se u izrčunvnju integrl polzni integrl trnsformir u f (φ(t)) φ (t)dt. (22) 2π 0 ( = π ) 4 2π 0 dx 4 3 cos x = +t 2 ( 2dt 4 3 t2 0 0 dx 4 3 cos x, uvede smjen t = tg x 2 +t 2 ) = 0., td se S druge strne, f(x) = 4 3 cos x je pozitivn i neprekidn funkcij n [0, 2π], zto njen integrl mor biti pozitivn (v. teorem 0). Dkle, negdje je nstl grešk. (Smjen t = tg x 2 nije korektn, jer z x = π [0, 2π], nije ni definirn.).2.2 Primjen odre denog integrl Primjen odre denog integrl 5

16 Teorem.0. Nek je z y = f(x), x [, b] prv derivcij f (x) neprekidn funkcij n [, b] i Γ = (x, f(x)), x [, b]. Td se otvoren kriv y = f(x), x [, b] može rektificirti i dužin krive Γ L(f;, b), izržv formulom L(f;, b) = b + (f (x)) 2 dx. (23) Teorem.. Nek su ϕ(t)iψ(t), α t β, funkcije čije su prve derivcije neprekidne funkcije n [α, β]. Td se kriv Γ, odre den jednčinm x = ϕ(t), y = ψ(t), α t β može rektificirti. Još više, ko je ϕ(α) = i ϕ(β) = b, tj. ϕ ([α, β]) = [, b] R + {0}, njen dužin s(γ) iznosi s(γ) = β α ϕ 2 (t) + ψ 2 (t)dt. Nći obim jediničnog krug centrirnog u nuli. Površinski problem Sd se končno možemo vrtiti i nšem ntičkom problemu površine ispod krive! Nime površin ispod neke nenegtivne krive (do x-ose) n intervlu [, b] je jednk odre denom integrlu : P = b f(x)dx! Ukoliko se kriv nlzi ispod x ose, ond je površin iznd te krive n intervlu [, b] jednk P = b f(x)dx. Površinski problem Izrčunti površinu lik ome denog krivim y = x 2 + 4x + 5 i y = x Nesvojstveni integrl Nesvojstveni integrl Nesvojstveni (ili neprvi) integrl je grničn vrijednost odre denog integrl, kd se jedn grničn tčk (ili obje grnične tčke) intervl integrcije približv/ju bilo nekom odre denom relnom broju ili + ili. 6

17 7

18 Slik : Nesvjostveni integrl u beskončnosti Prvi slučj je kd je desni krj intervl integrcije jednk + (slično i kd je lijevi krj intervl jednk : + f(x)dx = f(x)dx = b lim b + lim b b f(x)dx = f(x)dx = lim [F (b) F ()] b + lim [F () F (b)] b Drug mogućnost je kd funkcij im prekid u tčki x = c. Td posmtrmo b f(x)dx = c f(x)dx + b c f(x)dx. No kko posmtrti te individulne integrle? U slučju prvog integrl: u slučju drugog b c c b = lim f(x)dx, ε 0 c+ε = lim ε 0 c ε dx x 2 f(x)dx 8

19 Slik 2: Nesvjostveni integrl s prekidom.3 Primjen integrl u ekonomiji Primjen integrl u ekonomiji Sjetimo se grničnih funkcij (prihod, troškov, dobiti, itd). One su bile definisne ko izvodi originlnih funkcij. Koristeći se integrlim, možemo nći ukupnu funkciju iz grnične funkcije! ukupn funkcij = grničn funkcij Zdn je funkcij grničnih troškov GT (Q) = Q(2 Q)e Q+0 i fiksni ukupni troškovi su nul F T = 0. ODrediti funkciju prosječnih troškov. Zdn je funkcij grničnih troškov GT (Q) = 8(Q 2), fiksni troškovi su 0, dok je funkcij potržnje dt ko funkcij cijene Q = p + 2. Izvesti funkciju ukupne dobiti. 9

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler

Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler Integrli Frnk Mirim Brückler Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcij (primitivn funkcij) zdne funkcije f : I R (gdje je I otvoren intervl) je svk

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

1 Odredeni integral. Integrabilnost ograničene funkcije

1 Odredeni integral. Integrabilnost ograničene funkcije Odredeni integrl. Integrbilnost ogrničene funkcije Njprije uvedimo dvije pretpostvke. Prv, d je reln funkcij segment[, b] končne dužine ( < < b < + ). Definicij 2. Podjel segment [, b], u oznci P, je svki

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

Formule iz Matematike II. Mandi Orlić Tin Perkov

Formule iz Matematike II. Mandi Orlić Tin Perkov Formule iz Mtemtike II Mndi Orlić Tin Perkov INTEGRALI NEODREDENI INTEGRALI Svojstv 1. (f(x) ± g(x)) = ± g(x) 2. = Tblic integrl f(x) F(x) + C x + C x x +1 +1 + C 1 x ln x + C 1 x+b ln x + b + C e x e

Διαβάστε περισσότερα

DIPLOMSKI RAD. Nesvojstveni integral. Univerzitet u Kragujevcu Prirodno matematički fakultet. Kandidat: Marta Milošević 47/00

DIPLOMSKI RAD. Nesvojstveni integral. Univerzitet u Kragujevcu Prirodno matematički fakultet. Kandidat: Marta Milošević 47/00 Univerzitet u Krgujevu Prirodno mtemtički fkultet IPLOMSKI RA Nesvojstveni integrl Mentor: r Mirjn Pvlović Kndidt: Mrt Milošević 47/ KRAGUJEVAC,. Sdržj. Nesvojstveni jednostruki integrl 3.. efiniij, primeri

Διαβάστε περισσότερα

Matematika 2. Boris Širola

Matematika 2. Boris Širola Mtemtik 2 (. Riemnnov integrl) Boris Širol predvnj . Riemnnov integrl 3 Pretpostvimo d immo neku neprekidnu relnu funkciju f, definirnu n nekom segmentu; tj., nek je dn neprekidn funkcij f : [, b] R.

Διαβάστε περισσότερα

UVOD. Ovi nastavni materijali namijenjeni su studentima

UVOD. Ovi nastavni materijali namijenjeni su studentima UVOD Ovi nstvni mterijli nmijenjeni su studentim u svrhu lkšeg prćenj i boljeg rzumijevnj predvnj iz kolegij mtemtik. Ovi mterijli čine suštinu nstvnog grdiv p, uz obveznu literturu, mogu poslužiti studentim

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Matematička analiza 4

Matematička analiza 4 Mtemtičk nliz 4 Drgn S. Dor dević 14.5.214. 2 Sdržj Predgovor 5 1 Integrcij 7 1.1 Žordnov mer u R n....................... 7 1.1.1 Mer prvougonik u R 2................ 7 1.1.2 Mer n-intervl u R n..................

Διαβάστε περισσότερα

1. NEODREÐENI INTEGRAL

1. NEODREÐENI INTEGRAL . NEODREÐENI INTEGRAL Pitnj: Je li dn reln funkcij f : A! R, A R, derivcij neke relne funkcije g : A! R? Riješiti jedndbu g = f, pri cemu se z dni f tri g. T jedndb ili nem rješenj ili ih im beskoncno

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

R A D N I M A T E R I J A L I

R A D N I M A T E R I J A L I Krmen Rivier R A D N I M A T E R I J A L I M A T E M A T I K A II. dio SPLIT 7. IV. FUNKCIJE 4.. POTREBNO PREDZNANJE 4.. REALNE FUNKCIJE JEDNE VARIJABLE 4.. INTERPOLACIJA 7 4.. NEKE OSNOVNE ELEMENTARNE

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

Matematika za ekonomiste Časlav Pejdić, (064)

Matematika za ekonomiste Časlav Pejdić, (064) Mtemtik z ekonomiste Čslv Pejdić, (06) 09 0 SADRŽAJ SADRŽAJ UVOD DEO RELACIJE I FUNKCIJE DEO ALGEBRA 6 DEO NIZOVI I REDOVI DEO NEPREKIDNOST I DIFERENCIJABILNOST FUNKCIJE 7 5 DEO LIMESI I IZVODI 9 6 DEO

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

M A T E M A T I Č K A A N A L I Z A

M A T E M A T I Č K A A N A L I Z A Miloš Miličić M A T E M A T I Č K A A N A L I Z A Akdemsk miso Beogrd, 2012 Dr Miloš Miličić redovni profesor Držvnog univerzitet u Novom Pzru MATEMATIČKA ANALIZA Recenzenti Dr Ćeml Dolićnin redovni profesor

Διαβάστε περισσότερα

Primjene odreženog integrala

Primjene odreženog integrala VJEŽBE IZ MATEMATIKE Ivn Brnović Miroslv Jerković Lekcij 5 Primjen određenog integrl Poglvlje Primjene odreženog integrl. Povr²in rvninskog lik Z dni rvninski lik omežen krivuljm y = f(x) i y = g(x) te

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Krivolinijski integral

Krivolinijski integral Poglvlje 4 Krivolinijski integrl 4.1 Vektorsko polje U ovom i nrednom poglvlju, osim sklrnih, rdićemo i s vektorskim funkcijm više promenljivih, F : R n R m, F = (F1,...,F m ), F i : R n R, i = 1,...,m,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Neprekinute slu cajne varijable

Neprekinute slu cajne varijable 5 Neprekinute slu cjne vrijble Slu cjnevrijbleirzdiobe Funkcije neprekinutih slu cjnihvrijbli6 Rije senizdtci Zdtci z vje zbu 8 5 Slu cjne vrijble i rzdiobe U ovom ćemo poglvlju prou cvti slu cjne vrijble

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

Dru{tvo matemati~ara Srbije. Republi~ki seminar 2011, Novi Sad, Srbija. Pripremawe u~enika osnovnih {kola za takmi~ewa iz matematike

Dru{tvo matemati~ara Srbije. Republi~ki seminar 2011, Novi Sad, Srbija. Pripremawe u~enika osnovnih {kola za takmi~ewa iz matematike Dru{tvo mtemti~r Srije Repuli~ki seminr 0, Novi Sd, Srij Pripremwe u~enik osnovnih {kol z tkmi~ew iz mtemtike \or e Brli}, Mtemti~ki institut SANU, Beogrd, Srij Zdrvko Cvetkovski, Evropski univerzitet,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Ολοκληρώµατα ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 85 3 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των ολοκληρωµάτων πραγµατικών συναρτήσεων

Διαβάστε περισσότερα

Matematika 2 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić.

Matematika 2 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić. Ivn Slpničr Mrko Mtić Mtemtik 2 PODSJETNIK ZA UČENJE http://www.fesb.hr/mt2 Fkultet elektrotehnike, strojrstv i brodogrdnje Split, 2003. Sdržj 1 Neodredeni integrl 3 2 Odredeni integrl 5 3 Funkcije više

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x) Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Ενότητα 1: Λογισμός ΙΙ Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός ΙΙ 1 / 210 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

FKKT Matematika 2. shxdx = chx+c. chxdx = shx+c. tanxdx = ln cosx +C. cotxdx = ln sinx +C. sin 2 x = cotx+c. cos 2 x = tanx+c. = 1 2 2a ln a+x a x

FKKT Matematika 2. shxdx = chx+c. chxdx = shx+c. tanxdx = ln cosx +C. cotxdx = ln sinx +C. sin 2 x = cotx+c. cos 2 x = tanx+c. = 1 2 2a ln a+x a x FKKT Mtemtik Integrlni rčun Nedoločeni integrl Definicij. Nj bo dn funkcij f : D R R. Funkcij F, z ktero v vski točki iz x D velj F (x) = f(x) se imenuje nedoločeni integrl funkcije f. f(x). Izrek. Če

Διαβάστε περισσότερα

Matematički osnovi Z transformacije

Matematički osnovi Z transformacije Mtemtiči osnovi Z trnsformcije Uvod u Z-trnsformciju: Z-trnsformcij i njen invern trnsformcij se u mtemtici rmtrju i rlog što ovve trnsformcije imju neposrednu primenu u eletrotehnici i to prvenstveno

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

f(x) = a x, 0<a<1 (funkcija strogo pada)

f(x) = a x, 0<a<1 (funkcija strogo pada) Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα