n = r J n,r J n,s = J

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "n = r J n,r J n,s = J"

Transcript

1 Ανάλυση Fourer και Ολοκλήρωμα Lebesgue ( ) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό ανοικτό διάστημα (c, d) [a, b]. Δείξτε ότι ([a, b]\e) (c, d). (Πράγματι, αφού µ ((c, d)) = d c > 0, και µ (F ) µ (E) = 0 για κάθε υποσύνολο F του E, το (c, d) δεν μπορεί να περιέχεται ολόκληρο στο E.) 2. (α) Εστω E μετρήσιμο σύνολο με µ(e) <. Δείξτε ότι, για κάθε F E, µ (F \ E) = µ (F ) µ(e). (β) Δείξτε ότι: αν E R με µ (E) < και αν υπάρχει μετρήσιμο υποσύνολο F του E ώστε µ(f ) = µ (E), τότε το E είναι μετρήσιμο. Υπόδειξη. (α) Από τον ορισμό του μετρήσιμου συνόλου έχουμε ότι για κάθε F R, µ (F ) = µ (F E) + µ (F E c ) = µ (F E) + µ (F \ E). (1) Αν επιπλέον F E, τότε µ (F E) = µ (E) = µ(e), και αφού µ(e) <, από την (1) προκύπτει το ζητούμενο. (β) Από το (α), µ (E \ F ) = µ (E) µ(f ) = 0, άρα το E \ F είναι μετρήσιμο. Ομως τότε και το E = F (E \ F ) είναι μετρήσιμο.. Εστω A, B R ώστε d(a, B) = f{ x y : x A, y B} > 0. Δείξτε ότι µ (A B) = µ (A) + µ (B). Υπόδειξη. Από την υποπροσθετικότητα του εξωτερικού μέτρου, µ (A B) µ (A) + µ (B). Για να δείξουμε την αντίστροφη ανισότητα, θεωρούμε ε > 0 και βρίσκουμε ακολουθία ανοικτών φραγμένων διαστημάτων (I ) ώστε A B I και l(i ) µ (A B) + ε. Επίσης, θέτουμε δ := d(a, B)/2 και ορίζουμε τα σύνολα A δ := (x δ, x + δ), B δ := (y δ, y + δ). x A Παρατηρήστε ότι τα σύνολα A δ, B δ είναι ανοικτά, ξένα μεταξύ τους, και ότι A A δ, B B δ (αν κάποιο απ τα A, B είναι κενό, τότε αντίστοιχα και το A δ ή B δ θα είναι κενό). Για κάθε, τα σύνολα I := I A δ, I := I B δ είναι ανοικτά και φραγμένα υποσύνολα του R, άρα μπορούμε να τα γράψουμε ως αριθμήσιμες ενώσεις από ανοικτά, φραγμένα και ξένα ανά δύο διαστήματα: y B I = r J,r, I = r J,r με τα J,r, J,r να είναι φραγμένα διαστήματα, και J,r J,s = J,r J,s = όταν r s

2 (προσοχή, κάποια από τα J,r, J,r μπορεί να είναι και το κενό διάστημα). Τότε, l(j,r) = µ(j,r) = µ(i ) = µ(i A δ ), l(j,r) = µ(i B δ ) r r r και µ(i A δ ) + µ(i B δ ) µ(i ) = l(i ), άρα l(j,r) + l(j,r) = r r (µ(i ) + µ(i )) l(i ). Ομως η ακολουθία (J,r),r N είναι κάλυψη του συνόλου A από ανοικτά, φραγμένα διαστήματα, και η (J,r),r N κάλυψη του B (εξηγήστε γιατί), άρα µ (A) + µ (B) l(j,r) + l(j,r) l(i ) µ (A B) + ε. r r Αφού το ε > 0 ήταν τυχόν, καταλήγουμε στο ζητούμενο. 4. (α) Εστω f : B R R συνάρτηση Lpschtz με σταθερά C, δηλαδή f(x) f(y) C x y για κάθε x, y B. Δείξτε ότι µ (f(a)) Cµ (A) για κάθε A B. (β) Εστω A R με µ(a) = 0. µ(a ) = 0. Δείξτε ότι το σύνολο A = {x 2 x A} έχει επίσης μέτρο Υπόδειξη. (α) Εστω ε > 0. Μπορούμε να βρούμε ακολουθία (I ) από ανοικτά, φραγμένα διαστήματα τέτοια ώστε A I και l(i ) µ (A) + ε C. (2) Αφού A B, έχουμε ότι A (I B) και μπορούμε για ευκολία να υποθέσουμε ότι κάθε I έχει μη κενή τομή με το B. Εχουμε τότε για κάθε ότι το σύνολο f(i B) είναι μη κενό, φραγμένο υποσύνολο του R και ότι sup f(i B) f f(i B) Cl(I ). () (Πράγματι, για να δείξουμε ότι το f(i B) είναι φραγμένο, θεωρούμε ένα x I B. Τότε, για κάθε z f(i B) θα μπορούμε να βρούμε y I B ώστε z = f(y), και άρα, αφού η f είναι Lpschtz με σταθερά C, θά έχουμε ότι z f(x) = f(y) f(x) C y x Cl(I ) δεδομένου ότι y x l(i ) αφού x, y I. Με τον ίδιο τρόπο, για κάθε δ > 0 και για κάθε z 1, z 2 f(i B) με z 1 > sup f(i B) δ και z 2 < f f(i B) + δ, θα υπάρχουν y 1, y 2 I με z = f(y ), = 1, 2, οπότε θα ισχύει ότι sup f(i B) f f(i B) 2δ < z 1 z 2 f(y 1 ) f(y 2 ) C y 1 y 2, από το οποίο προκύπτει η ().) Για κάθε ορίζουμε το ανοικτό, φραγμένο διάστημα ( J := f f(i B) ε 2 +1, sup f(i B) + ε ) 2 +1, και έχουμε ότι η ακολουθία (J ) είναι κάλυψη του f(a) αφού ( ) f(a) f (I B) = f(i B) [ f f(i B), sup f(i B) ], και ότι l(j ) = ( sup f(i B) f f(i B) + ε 2 ) Cl(I ) + ε Cµ (A) + 2ε

3 εξαιτίας της (2). Προκύπτει το ζητούμενο. (β) Για κάθε N θέτουμε A := A [, ], και έχουμε ότι A = {x2 x A }. Επεται ότι µ (A ) µ ( {x 2 x A } ), επομένως αρκεί να δείξουμε ότι µ ( {x 2 x A } ) = 0 για κάθε. Αφού η συνάρτηση g(x) = x 2 περιορισμένη στο διάστημα [, ] είναι Lpschtz με σταθερά 2, έχουμε από το (α) ότι µ ( {x 2 x A } ) = µ (g(a )) 2 µ (A ) 2 µ (A) = Για κάθε φραγμένο E R ορίζουμε µ (E) = sup{µ (K) : K συμπαγές και K E}. (α) Δείξτε ότι για κάθε φραγμένο E R ισχύει µ (E) µ (E). (β) Δείξτε ότι αν E 1, E 2 είναι φραγμένα υποσύνολα του R και E 1 E 2 τότε µ (E 1 ) µ (E 2 ). (γ) Δείξτε ότι ένα φραγμένο υποσύνολο E του R είναι μετρήσιμο αν και μόνο αν µ (E) = µ (E). Υπόδειξη. (α) Από την μονοτονία του εξωτερικού μέτρου έχουμε ότι για κάθε K E, µ (K) µ (E). Άρα, µ (E) = sup{µ (K) : K συμπαγές και K E} µ (E). (β) Προκύπτει αμέσως από τον ορισμό του supremum, αφού {µ (K) : K συμπαγές και K E 1 } {µ (K) : K συμπαγές και K E 2 }. (γ) Αρχικώς υποθέτουμε ότι το E είναι μετρήσιμο. Άρα και το E c είναι μετρήσιμο, επομένως για κάθε ε > 0 υπάρχει G ε E c με µ (G ε \ E c ) < ε. Θέτουμε K ε = R \ G ε και έχουμε ότι το K ε είναι κλειστό υποσύνολο του R και ότι K ε E, άρα το K ε είναι και φραγμένο. Επεται ότι το K ε είναι συμπαγές υποσύνολο του E. Επίσης, αφού το K ε είναι συμπαγές, γνωρίζουμε ότι είναι μετρήσιμο με πεπερασμένο μέτρο Lebesgue, άρα από την άσκησι 2(α) έχουμε ότι που σημαίνει ότι µ (E) µ (K ε ) = µ (E \ K ε ) = µ (G ε \ E c ) < ε, µ (E) = sup{µ (K) : K συμπαγές και K E} µ (K ε ) > µ (E) ε. Αφού το ε ήταν τυχόν, έχουμε ότι µ (E) µ (E), ενώ την αντίστροφη ανισότητα την ξέρουμε ήδη από το (α). Εστω τώρα ότι για κάποιο φραγμένο σύνολο E R έχουμε ότι µ (E) = µ (E). (Παρατηρήστε ότι µ (E) < αφού το E είναι φραγμένο.) Τότε για κάθε N μπορούμε να βρούμε ένα συμπαγές K E με µ (K ) > µ (E) 1. Ορίζουμε K := K και έχουμε ότι K E και ότι το K είναι σύνολο Borel, άρα μετρήσιμο. Επίσης, µ(k) µ(k ) > µ (E) 1 για κάθε, οπότε προκύπτει ότι µ(k) = µ (E). Ομως τώρα από την άσκηση 2(β) έχουμε ότι και το E είναι μετρήσιμο. 6. Εστω f : R R συνεχής συνάρτηση. Δείξτε ότι για κάθε Borel B R το f 1 (B) είναι σύνολο Borel. Υπόδειξη. Εστω C f η οικογένεια όλων των συνόλων B R των οποίων η αντίστροφη εικόνα μέσω της f είναι σύνολο Borel, C f := {B R : το f 1 (B) είναι σύνολο Borel}. Αφού η f είναι συνεχής, αντιστρέφει ανοικτά σύνολα σε ανοικτά, άρα σε Borel σύνολα, το οποίο σημαίνει ότι η οικογένεια C f περιέχει όλα τα ανοικτά υποσύνολα του R. Επίσης, η οικογένεια C f είναι σ-άλγεβρα. (Πράγματι, R C f, ενώ αν κάποιο σύνολο A ανήκει στην C f, δηλαδή αν το f 1 (A) είναι Borel, τότε και το f 1 (R \ A) = R \ f 1 (A) είναι Borel, οπότε και το R \ A ανήκει στην C f.

4 Επιπλέον, αν το f 1 (A ) είναι Borel για κάθε, τότε και το f 1 ( A ) = f 1 (A ) είναι Borel, που σημαίνει ότι η C f περιέχει τις αριθμήσιμες ενώσεις στοιχείων της.) Επεται ότι η Borel σ-άλγεβρα του R, δηλαδή η μικρότερη σ-άλγεβρα που περιέχει όλα τα ανοικτά διαστήματα (άρα και όλα τα διαστήματα), είναι υποάλγεβρα της C f, επομένως κάθε Borel υποσύνολο του R έχει την ιδιότητα η αντίστροφη εικόνα του μέσω της f να είναι σύνολο Borel. 7. Εστω A η ένωση όλων των διαστημάτων της μορφής [x δ, x + δ] με κέντρο x σημείο του συνόλου Cator: A = [x δ, x + δ]. Βρείτε το µ(a). x C Υπόδειξη. Θυμόμαστε πώς ορίζεται το σύνολο Cator: C = C όπου κάθε C [0, 1] είναι ένωση 2 κλειστών διαστημάτων, ξένων ανά δύο, καθένα από τα οποία έχει μήκος 1. Παρατηρήστε ότι αν το x [0, 1] είναι αριστερό άκρο ενός από τα 2 διαστήματα του C για κάποιο, τότε το x συνεχίζει να είναι αριστερό άκρο ενός απ τα 2 m διαστήματα του C m για κάθε m >, και άρα προφανώς x C. Αντίστοιχα ισχύουν και αν το x είναι δεξιό άκρο. Συμβολίζουμε λοιπόν με x, = 1, 2,..., 2, τα αριστερά άκρα των ξένων ανά δύο διαστημάτων που αποτελούν το C, με y, = 1, 2,..., 2, τα αντίστοιχα δεξιά άκρα, και δείχνουμε ότι A = x C[x δ, x + δ] = ( [x δ, x + δ] [y δ, y + δ] )) =1 (από αυτό προκύπτει και ότι το A είναι μετρήσιμο). Πράγματι, έστω z C και έστω 0 ο ελάχιστος 1 φυσικός ώστε 2δ. Αφού z C C 0 0, υπάρχει κάποιο διάστημα [x 0, y 0 ] του C 0 το οποίο περιέχει το z. Τότε, επειδή y 0 x 0 = 1 2δ, έχουμε ότι 0 και επομένως [x 0, y 0 [z δ, z + δ] [x 0 ] [x 0, x 0 + δ] [y 0 δ, y 0 ], δ, x 0 + δ] [y 0 δ, y 0 + δ]. Αν υποθέσουμε ότι 0 = 1 (δηλαδή 1 2δ), τότε όπως παραπάνω βλέπουμε ότι A = 2 ( [x 1 δ, x 1 + δ] [y 1 δ, y 1 + δ] ) =1 και άρα µ(a) = 1 + 2δ. = [ δ, δ] [ 1 δ, 1 + δ] [2 δ, 2 + δ] [1 δ, 1 + δ] = [ δ, 1 + δ], Ας υποθέσουμε τώρα ότι 0 > 1. Δείχνουμε τότε ότι C 0 1 A, και άρα [0, 1] \ A = ([0, 1] \ C 0 1) \ A = ( ([0, 1] \ C ) \ A ). (4) (Για να δείξουμε ότι C 0 1 A, θεωρούμε z C 0 1. Τότε το z ανήκει σε ένα από τα ξένα ανά δύο διαστήματα που αποτελούν το C 0 1, δηλαδή z [x 0 1, y 0 1 ] για κάποιο {1, 2,..., }. Από την κατασκευή του C 0, γνωρίζουμε ότι και ότι x 0 1 x 0 2, y 0 1 εύκολα ότι C 0 [x =1, y 0 1 ] = [x 0 1, x ] [y , y0 1 0 ] = x 0 1, x = 0 y0 1 για κάποιο 1 {1, 2,..., 2 0 }, και ομοίως y = 0 = y 0 2 για κάποιο 2 {1, 2,..., 2 0 }, 2 1. Τότε όμως, αφού 1 2δ, βλέπουμε 0 [x 0 1, y 0 1 ] 2 ( [x 0 j=1 j δ, x 0 j + δ] [y 0 j δ, y 0 j + δ] ),

5 και άρα z 2 ( j=1 [x 0 j δ, x 0 j + δ] [y 0 j δ, y 0 j + δ] ) A.) Για να βρούμε λοιπόν το µ(a), αρκεί να παρατηρήσουμε ότι A = [ δ, 0] [1, 1 + δ] ([0, 1] A) (που σημαίνει ότι µ(a) = µ([0, 1] A) + 2δ) και χρησιμοποιώντας την (4) να υπολογίσουμε το µ([0, 1] A). Ξέρουμε ότι [0, 1] \ C 1 = ( 1, 2 ), άρα ([0, 1] \ C 1 ) \ A = ( 1, 2 ) \ ( [ 1, 1 + δ] [ 2 δ, 2 ]) = ( 1 + δ, 2 δ) και µ(([0, 1] \ C 1 ) \ A) = 1 2δ. Με όμοιο τρόπο βλέπουμε ότι ([0, 1] \ C 2 ) \ A = ( δ, 2 9 δ) + ( 1 + δ, 2 δ) + ( δ, 8 9 δ), και άρα µ(([0, 1] \ C 2 ) \ A) = 1 2δ + 2( 1 9 2δ). Επαγωγικά μπορούμε να δείξουμε ότι για κάθε m 0 1, m ( ) 2 1 ) m µ(([0, 1] \ C m ) \ A) = 2 δ = 1 (2 m+1 2)δ. Επεται ότι =1 ) 0 1 µ([0, 1] \ A) = µ(([0, 1] \ C 0 1) \ A) = 1 (2 0 2)δ, και άρα ) 0 1 µ(a) = 2δ + µ([0, 1] A) = 2δ + (1 µ([0, 1] \ A)) = δ. 8. Δείξτε ότι κάθε υποσύνολο A του R με µ (A) > 0 έχει μη μετρήσιμο υποσύνολο. Υπόδειξη. Μιμούμαστε την απόδειξη της ύπαρξης μη μετρήσιμου E [0, 1]. Για κάθε φυσικό, θέτουμε A := A [, ], και έχουμε ότι A = A, άρα 0 < µ (A) µ (A ). Αυτό σημαίνει ότι υπάρχει 0 με µ (A 0 ) > 0. Ορίζουμε τώρα σχέση ισοδυναμίας στο A 0 ως εξής: x y x, y A 0 και x y Q. Αφού A 0 [ 0, 0 ], για κάθε δύο στοιχεία x, y του A 0 θα έχουμε ότι x y [ 2 0, 2 0 ]. Συμβολίζουμε με X το σύνολο των κλάσεων ισοδυναμίας που ορίζει η, δηλαδή X := {[y] y A 0 } όπου [y] := {x A 0 x = y + q για κάποιον ρητό q [ 2 0, 2 0 ]}. Το Αξίωμα της Επιλογής μας επιτρέπει να βρούμε ένα σύνολο E που θα περιέχει ακριβώς έναν αντιπρόσωπο από κάθε κλάση ισοδυναμίας. Ισχύει ότι E A 0 A. Θα δείξουμε επίσης ότι το E δεν είναι μετρήσιμο. Ας υποθέσουμε προς άτοπο ότι είναι. Θεωρούμε μία αρίθμηση {q k : k N} των ρητών στο [ 2 0, 2 0 ] και ορίζουμε τα σύνολα E k := E + q k. Εχουμε τότε ότι για κάθε k, το E k είναι μετρήσιμο σύνολο και E k A 0 + q k [ 0, 0 ]. Επεται ότι και η ένωση των (αριθμήσιμων το πλήθος) E k είναι μετρήσιμο σύνολο και k E k [ 0, 0 ]. Επίσης, τα σύνολα E k είναι ξένα ανά δύο (εξηγήστε γιατί), ενώ A 0 k E k. Άρα, από την μονοτονία του εξωτερικού μέτρου και την αριθμήσιμη προσθετικότητα του μέτρου Lebesgue, βλέπουμε ότι 0 < µ (A 0 ) µ ( k E k ) µ ([ 0, 0 ]) = 6 0 (5) και µ ( ) ( E k = µ ) E k = µ(e k ) = µ(e).

6 Ομως, αυτό είναι άτοπο, γιατί εξαιτίας της αριστερής ανισότητας στην (5) δεν μπορεί να ισχύει µ(e) = 0, αλλά τότε µ(e) = + > 6 0. Επομένως, το σύνολο E είναι μη μετρήσιμο υποσύνολο του A. 9. Εστω E το σύνολο των x R για τα οποία η ακολουθία {s(2 x)} =1 συγκλίνει. Δείξτε ότι µ(e) = 0. Υπόδειξη. Επειδή οι συναρτήσεις s(2 x) είναι Borel μετρήσιμες, το E είναι μετρήσιμο σύνολο. Εστω x, y E. Τότε, s(2 (x + y)) = s(2 x) cos(2 y) + cos(2 x) s(2 y), και γνωρίζουμε ότι οι ακολουθίες {s(2 x)} =1, {s(2 y)} =1 συγκλίνουν. Επειδή για κάθε, cos(2 +1 x) = cos(2 2 x) = 1 2 s 2 (2 x) και cos(2 +1 y) = 1 2 s 2 (2 y), έχουμε ότι και οι ακολουθίες {cos(2 x)} =1, {cos(2 y)} =1 συγκλίνουν. Άρα η {s(2 (x+y))} =1 συγκλίνει και x + y E. Παρατηρούμε επίσης ότι αν x E, τότε και το x ανήκει στο E. Εστω λοιπόν προς άτοπο ότι για το μετρήσιμο σύνολο E ισχύει µ(e) > 0. Τότε από το λήμμα του Stehaus μπορούμε να βρούμε δ > 0 ώστε ( δ, δ) E E = {x y x, y E}. Ομως, από τα προηγούμενα έχουμε ότι αν x, y E, τότε x, y E, και άρα x y E. Επεται ότι ( δ, δ) E E E. Αυτό όμως είναι άτοπο, αφού το E δεν μπορεί να περιέχει κανένα διάστημα με κέντρο το 0, δεδομένου ότι δεν περιέχει κανένα στοιχείο της μηδενικής ακολουθίας {z m } m=1 όπου z m := k=m π 2 4k+1 + k=m π 2 4k+ = π ( m + 1 ) π ( 4(m+1) m ) 2 + 4(m+1)+2 (αφού για κάθε k m, s(2 4k z m ) = s ( π) > 0, ενώ s(2 4k+2 z m ) = s π 4 15 π) < 0.) 10. Εστω f : [0, 1] R συνεχής συνάρτηση με f(0) = f(1). Θεωρούμε το σύνολο A = {t [0, 1] : υπάρχει x [0, 1] ώστε f(x + t) = f(x)}. (α) Δείξτε ότι το A είναι κλειστό, άρα μετρήσιμο. (β) Αν B = {t [0, 1] : 1 t A}, δείξτε ότι A B = [0, 1]. (γ) Δείξτε ότι µ(a) 1/2. Υπόδειξη. (α) Εστω ακολουθία (t ) στοιχείων του A η οποία συγκλίνει σε κάποιο t R. Προφανώς, αφού κάθε t [0, 1], θα έχουμε και ότι t [0, 1]. Για κάθε βρίσκουμε x [0, 1] ώστε x + t [0, 1] και f(x + t ) = f(x ). Η ακολουθία των x περιέχεται ολόκληρη στο συμπαγές [0, 1], άρα έχει συγκλίνουσα υπακολουθία (x k ) η οποία συγκλίνει σε κάποιο x 0 [0, 1]. Τότε όμως x 0 + t [0, 1] (αφού x k + t k x 0 + t και για κάθε, 0 x k + t k 1), ενώ από την συνέχεια της f, lm f(x k ) = f(x 0 ) και lm f(x k + t k ) = f(x 0 + t). Αφού για κάθε, f(x k + t k ) = f(x k ), συμπεραίνουμε ότι f(x 0 + t) = f(x 0 ), που σημαίνει ότι t A. (β) Αφού f(0) = f(1), μπορούμε να επεκτείνουμε συνεχώς την f σε μία 1-περιοδική συνάρτηση f : R R (όπου f(z) = f(z z )). Εστω t [0, 1]. Ορίζουμε g : [0, 1] R με g(x) = f(x + t) f(x). Η g μηδενίζεται για κάποιο x R (αφού, αν θεωρήσουμε y [0, 1] τέτοιο ώστε f(y) = m f = m f, θα ισχύει g(y t) 0 g(y)). Επειδή η g είναι και 1-περιοδική, μπορούμε να βρούμε x 0 [0, 1] στο οποίο η g να μηδενίζεται. Παρατηρούμε τώρα ότι αν x 0 +t 1 τότε t A. Αλλιώς, αν x 0 + t > 1, τότε 0 < x 0 + t 1 1 και g(x 0 1) = 0, άρα f(x 0 + t 1) = f(x 0 ) = f((x 0 + t 1) + 1 t). Αυτό σημαίνει ότι 1 t A, ή ισοδύναμα ότι t B.

7 (γ) Από το (β) έχουμε ότι [0, 1] \ A B. Επίσης, µ(b) = µ(( A + 1) [0, 1]) µ( A + 1) = µ(a). Επομένως, έχουμε ότι 1 = µ([0, 1]) = µ(a) + µ([0, 1] \ A) µ(a) + µ(b) 2µ(A), το οποίο μας δίνει το ζητούμενο.

Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ Περιεχόμενα 1. Το εξωτερικό μέτρο Lebesgue 2 2. Mετρήσιμα σύνολα 4 3. Η κανονικότητα του μέτρου Lebesgue

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της

Διαβάστε περισσότερα

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.

Διαβάστε περισσότερα

j=1 x n (i) x s (i) < ε.

j=1 x n (i) x s (i) < ε. Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.

Διαβάστε περισσότερα

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx. Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε

Διαβάστε περισσότερα

Μέτρο Lebesgue. Κεφάλαιο Εξωτερικό µέτρο Lebesgue

Μέτρο Lebesgue. Κεφάλαιο Εξωτερικό µέτρο Lebesgue Κεφάλαιο 1 Μέτρο Lebesgue 1.1 Εξωτερικό µέτρο Lebesgue Θα ϑέλαµε να ορίσουµε το «µήκος» κάθε υποσυνόλου A του R, δηλαδή να αντιστοιχίσουµε σε κάθε A R έναν µη αρνητικό αριθµό λ(a) (ή το + ). Είναι λογικό

Διαβάστε περισσότερα

R f. P = {a = x 0 < x 1 < x 2 <... < x n = b} m k = inf{f(x) : x k x x k+1 } και M k = sup{f(x) : x k x x k+1 }

R f. P = {a = x 0 < x 1 < x 2 <... < x n = b} m k = inf{f(x) : x k x x k+1 } και M k = sup{f(x) : x k x x k+1 } Σημειώσεις Θεωρίας Μέτρου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2014 ii Πρώτη έκδοση, πιθανόν με τυπογραφικά λάθη. Περιεχόμενα Εισαγωγή 1 1 σ-άλγεβρες 5 1.1 Άλγεβρες και σ-άλγεβρες.........................

Διαβάστε περισσότερα

Σημειώσεις Θεωρίας Μέτρου. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο

Σημειώσεις Θεωρίας Μέτρου. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Σημειώσεις Θεωρίας Μέτρου Θέμης Μήτσης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Περιεχόμενα Κεφάλαιο 1. Μέτρα 5 Κεφάλαιο 2. Εξωτερικά μέτρα 7 Κεφάλαιο 3. Το μέτρο Lebesgue 9 Κεφάλαιο 4. Το σύνολο

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0.

sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0. ΑΣΚΗΣΕΙΣ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι, Φυλλάδιο 3 Λύσεις Ασκήσεων. Να υπολογίσετε τα παρακάτω όρια. sia) i) ποιες συνθήκες πρέπει να ισχύουν για τα a, β ώστε να έχει νόημα το όριο;) 0 siβ) si5 ) si4) cos cos

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

σημειωσεις θεωριας μετρου

σημειωσεις θεωριας μετρου σημειωσεις θεωριας μετρου Σάμος 2009 Επιλογή υλικού Αντώνης Τσολομύτης Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών. Δημιουργία πρώτου ηλεκτρονικού αρχείου Μαγδαληνή Πλιόγκα Απόφοιτος του Τμήματος Μαθηματικών

Διαβάστε περισσότερα

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1

G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Επαναληπτικές Εξετάσεις στη Θεωρία Μέτρου και Ολοκλήρωση Θέμα. Εστω R Lebesgue μετρήσιμο σύνολο. (αʹ) Να αποδειχθεί ότι για κάθε ε

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Πραγματική Ανάλυση Μέτρο και ολοκλήρωμα Lebesgue στο R Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Το μέτρο Lebesgue.. Μήκη διαστημάτων..................................2

Διαβάστε περισσότερα

Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής.

Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής. f(x) ομοιόμορφα συνεχής στο I ɛ > 0, δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ f(x) ΜΗ ομοιόμορφα συνεχής ɛ > 0, δ > 0 : x, ξ I, x ξ < δ f(x) f(ξ) ɛ f(x) συνεχής στο [a, b] f(x) ομοιόμορφα συνεχής

Διαβάστε περισσότερα

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy Augustin- Louis Cauchy 1789-1857 ΠΛΕΥΡΙΚΑ ΟΡΙΑ Ορισμός σύγκλισης Cauchy συγκλίνει για x ξ Η συνάρτηση f(x) ɛ > 0 δ (ɛ, ξ) : x ξ < δ f(x) l < ɛ f(x) = l + f(x) = l +

Διαβάστε περισσότερα

n k=1 k=n+1 k=1 k=1 k=1

n k=1 k=n+1 k=1 k=1 k=1 Πιθανότητες ΙΙ - Λύσεις Ασκήσεων Άσκηση 1 Εστω A σ-άλγεβρα. Τότε, A και A κλειστή στα συμπληρώματα (ιδιότητες (i) και (ii) της σ-άλγεβρας). Εστω A 1, A 2,..., A πεπερασμένη ακολουθία στοιχείων της A. Αφού

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ) που αντιστοιχεί σε υποσύνολα του Ω, έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες: P ( Ω ) 2 Η πιθανότητα της αριθμήσιμης ένωσης

Διαβάστε περισσότερα

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο. Κεφάλαιο 2 Ολοκλήρωµα Lebesgue 2.1 Οµάδα Α 1. Αν η f : (a, b) R είναι παραγωγίσιµη, τότε η f είναι µετρήσιµη. Υπόδειξη. Θεωρούµε την ακολουθία f : (a, b) R µε f (x) = [f(x + 1/) f(x)]. Εφόσον, η f είναι

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ»

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» Εφαρμογές

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

x < A y f(x) < B f(y).

x < A y f(x) < B f(y). Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 2: Το Θεώρημα Καραθεοδωρή και τα μέτρα Borel Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3 Αρµονική Ανάλυση (2017 2018) Φυλλάδιο Ασκήσεων 3 0. (α) Εστω f L (T). είξτε ότι σ n ( f ) f n N. (ϐ) Εστω f L (T). είξτε ότι (γ) είξτε ότι S n ( f ) f + n k=1 sin(kt) k n k= n [Υπόδειξη: Για το (γ) ϑεωρήστε

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη) Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.

Διαβάστε περισσότερα

(β ) ((X c Y ) (X c Y c )) c

(β ) ((X c Y ) (X c Y c )) c Λύσεις Ασκήσεων στα Θεμέλια των Μαθηματικών II Ρωμανός-Διογένης Μαλικιώσης Παρασκευή, 29 Οκτωβρίου 2010 Άσκηση 1. Απλοποιήστε τις ακόλουθες εκφράσεις (α ) (D c F ) c (D F ) (β ) ((X c Y ) (X c Y c )) c

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος Ανάλυση Fourier και Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών Αθήνα 2015 Περιεχόµενα 1 Μέτρο Lebesgue 3 1.1 Εξωτερικό µέτρο Lebesgue........................... 3

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ), που αντιστοιχεί σε υποσύνολα του Ω έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες:. P ( Ω ). 2. Η πιθανότητα της αριθμήσιμης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΚΤΟ ΜΑΘΗΜΑ Τώρα θα μας απασχολήσουν τρία ερωτήματα σε σχέση με την κατά σημείο σύγκλιση ακολουθίας συναρτήσεων. Και για τα τρία ερωτήματα θα υποθέσουμε ότι f f στο

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B. Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων

Διαβάστε περισσότερα

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3...,

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3..., ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 017-18 ΜΕΜ31-ΤΟΠΟΛΟΓΙΑ 1, 3Η ΔΙΑΛΕΞΗ ΣΥΝΤΟΜΗ ΕΠΑΝΑΛΗΨΗ ΤΗΣ ΤΟΠΟΛΟΓΙΑΣ ΤΟΥ R ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Ανοικτα και κλειστα συνολα του R Το σύνολο R των πραγματικών

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Riemann και ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Riemann και ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Riemnn και ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μέτρο Lebesgue. Κεφάλαιο Οµάδα Α. λ(a) (µε A B συµβολίζουµε τη συµµετρική διαφορά (A \ B) (B \ A) των A και B).

Μέτρο Lebesgue. Κεφάλαιο Οµάδα Α. λ(a) (µε A B συµβολίζουµε τη συµµετρική διαφορά (A \ B) (B \ A) των A και B). Κεφάλαιο 1 Μέτρο Lebesgue 1.1 Οµάδα Α 1. α) Εστω A ϕραγµένο υποσύνολο του R d. είξτε ότι λ A) < +. ϐ) Εστω ότι το A R d έχει τουλάχιστον ένα εσωτερικό σηµείο. είξτε ότι λ A) > 0. Υπόδειξη. α) Αφού το A

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης.

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κεφάλαιο 1 Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Stein and Shakarchi 2009 και Wheeden 2015. 1.1 Μέτρο Lebesgue στο R Αν E R το μέτρο

Διαβάστε περισσότερα

x A. Είναι δηλαδή: ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ

x A. Είναι δηλαδή: ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Σελίδα από 4 ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Βαγγέλης Μουρούκος Μπάμπης Στεργίου ΥΠΟ ΔΙΑΜΟΡΦΩΣΗ-ΔΕΝ ΕΧΟΥΝ ΓΙΝΕΙ ΔΙΟΡΘΩΣΕΙΣ Περίληψη Στο άρθρο αυτό επιχειρούμε να εντοπίσουμε, να καταγράψουμε

Διαβάστε περισσότερα

1 + t + s t. 1 + t + s

1 + t + s t. 1 + t + s Κεφάλαιο 1 Μετρικοί χώροι Ομάδα Α 1.1. Εστω (X, ) χώρος με νόρμα. Δείξτε ότι η νόρμα είναι άρτια συνάρτηση και ικανοποιεί την ανισότητα x y x y για κάθε x, y X. Υπόδειξη. Για κάθε x X έχουμε x = ( 1)x

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ). ΕΜ0 - Διακριτά Μαθηματικά Ιανουαρίου 006 Άσκηση - Λύσεις Πρόβλημα [0 μονάδες] Εστω L και L δύο κυκλώματα σε ένα γράφημα G. Εστω a μία ακμή που ανήκει και στο L και στο L και έστω b μία ακμή που ανήκει

Διαβάστε περισσότερα

lim y < inf B + ε = x = +. f(x) =

lim y < inf B + ε = x = +. f(x) = ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηματική Ανάλυση Ι ΟΜΑΔΑ: Α 8 Μαρτίου, 0 Θέμα. (αʹ) Εστω A, B μη κενά σύνολα πραγματικών αριθμών τέτοια ώστε x y, για

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, 12-12-13 Μ. Παπαδημητράκης. 1 Ας δούμε ένα παράδειγμα υπολογισμού ορίου με χρήση της συνέχειας της σύνθεσης συνεχών συναρτήσεων. Παράδειγμα. Θέλουμε να υπολογίσουμε το όριο

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

n a n = 2. Θεωρούµε τα σύνολα a n = n2 n n 2 + n 1. n a n = a > 0, δείξτε ότι a n > 0 τελικά.

n a n = 2. Θεωρούµε τα σύνολα a n = n2 n n 2 + n 1. n a n = a > 0, δείξτε ότι a n > 0 τελικά. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α) Κάθε

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x

Διαβάστε περισσότερα

f 1 (A) = {f 1 (A i ), A i A}

f 1 (A) = {f 1 (A i ), A i A} ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ, 11Η ΔΙΑΛΕΞΗ ΣΥΜΠΑΓΕΙΑ ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ Μετά τη συνεκτικότητα, όπου είδαμε κάπως αναλυτικά την ιδιότητα εκείνη που επιτρέπει σύνολα

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ Άσκηση 11.1.2. (i) Είναι η συνάρτηση d : R R R με τύπο d(x, y) = (x y) 2 μετρική στο R; (ii) Ίδια ερώτηση για την d : R R R με τύπο d(x, y) = x y

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

= lim. e 1. e 2. = lim. 2t 3

= lim. e 1. e 2. = lim. 2t 3 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ, 6/06/017 Θέμα 1. Δίνεται η συνάρτηση f : R R με f(0, 0) = 0 και f(x, y) = x3 + y 3 x + y αν (x, y) (0, 0). (i) Δείξτε ότι η f είναι συνεχής στο (0, 0). (ii) Αν u

Διαβάστε περισσότερα

Ολοκλήρωµα Lebesgue. Κεφάλαιο Μετρήσιµες συναρτήσεις Ορισµός και ϐασικές ιδιότητες

Ολοκλήρωµα Lebesgue. Κεφάλαιο Μετρήσιµες συναρτήσεις Ορισµός και ϐασικές ιδιότητες Κεφάλαιο 2 Ολοκλήρωµα Lebesgue 2.1 Μετρήσιµες συναρτήσεις Οι συναρτήσεις για τις οποίες ϑα επιχειρήσουµε να ορίσουµε το ολοκλήρωµα Lebesgue είναι συναρτήσεις µε πεδίο ορισµού κάποιο µετρήσιµο υποσύνολο

Διαβάστε περισσότερα

Ενα δεύτερο μάθημα στις πιθανότητες Περιεχόμενα Μέρος I Γνώσεις Θεωρίας Μέτρου 1 1 σ-άλγεβρες 3 1.1 σ-άλγεβρες 3 1.2 Παραγόμενη σ-άλγεβρα 5 1.3 Τα σύνολα Borel 6 Ασκήσεις 7 2 Μέτρα 9 2.1 Μέτρα σε μετρήσιμο

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

(ii) X P(X). (iii) X X. (iii) = (i):

(ii) X P(X). (iii) X X. (iii) = (i): Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Άσκηση 1.9 (σελ. 17), από τις σημειώσεις του Σκανδάλη. Εστω A, B δεδομένα σύνολα. Θα χρησιμοποιήσουμε τα αξιώματα αλλά αναφερόμενοι, αποκλειστικά, είτε

Διαβάστε περισσότερα

= f(x) για κάθε x R.

= f(x) για κάθε x R. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 4: Συνέχεια και όρια συναρτήσεων Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α)

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, 8-10-13 Μ. Παπαδημητράκης. 1 Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο έχει την εξής ιδιότητα: x για κάθε x > 0. Τότε 0. Απόδειξη. Για να καταλήξουμε

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Χώροι L p. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Χώροι L p. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Χώροι L p Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται

Διαβάστε περισσότερα