Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:"

Transcript

1 Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : Παρασκευή 25 Οκτωβρίου 2013 Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: x R y x y Q Να δείξετε ότι η R είναι μια σχέση ισοδυναμίας στο R, και να περιγράψετε το σύνολο πηλίκο R/R. Λύση. Χάριν απλότητας γράφουμε: αντι R, [x] αντί [x] R, κτλ. Για κάθε x, y, z R έχουμε: Ανακλαστική ιδιότητα δηλαδή x x : Επειδή x x = 0 Q έπεται ότι x x. Συμμετρική ιδιότητα δηλαδή x y = y x : Αν x y τότε x y Q = y x Q = y x Μεταβατική ιδιότητα δηλαδή x y και y z = x z : Επειδή x y και y z, έχουμε x y Q = x z Q = x z y z Q Άρα η R είναι μια σχέση ισοδυναμίας στο R. Έστω x R. Τότε η κλάση ισοδυναμίας [x] του x ως προς τη σχέση R είναι το ακόλουθο σύνολο: [x] = { y R x y } = { y R x y Q } = { y R x y = r Q } = { x r R r Q } = { x + r R r Q } := x + Q και άρα το σύνολο πηλίκο του R ως προς την R είναι R/R = { [x] R x R } = { x + Q x R }

2 2 Ασκηση 2. Στο σύνολο των ρητών αριθμών Q ορίζουμε μια σχέση R Q Q ως εξής: x R y x y Z Να δείξετε ότι η R είναι μια σχέση ισοδυναμίας στο Q, και υπάρχει μια 1-1 και επί επεικόνιση f : Q/R Q [0, 1) Λύση. Χάριν απλότητας γράφουμε: αντι R, [x] αντί [x] R, κτλ. Για κάθε x, y, z Q έχουμε: Ανακλαστική ιδιότητα δηλαδή x x : Επειδή x x = 0 Z έπεται ότι x x. Συμμετρική ιδιότητα x y = y x : Αν x y τότε x y Z = y x Z = y x Μεταβατική ιδιότητα δηλαδή x y και y z = x z : Επειδή x y και y z έχουμε x y Z = x z Z = x z y z Z Άρα η R είναι μια σχέση ισοδυναμίας στο Q. Έστω x Q. Τότε η κλάση ισοδυναμίας του x ως προς τη σχέση R είναι το ακόλουθο σύνολο: [x] = { y Q x y } = { y Q x y Z } = { y Q x y = m Z } = { x m Q m Z } = { x + m Q m Z } := x + Z και άρα το σύνολο πηλίκο του Q ως προς τη σχέση ισοδυναμίας R είναι Q/R = { [x] R x Q } = { x + Z x Q } Για να περιγράψουμε αναλυτικότερα το σύνολο-πηλίκο Q/R, σταθεροποιούμε έναν ρητό αριθμό x = p q, όπου προφανώς μπορούμε να υποθέσουμε ότι q > 0. Από την Ευκλείδια διαίρεση έπεται ότι: υπάρχουν α, β Z έτσι ώστε : p = α q + β, όπου 0 β < q Επομένως θα έχουμε 0 β q < 1, και τότε x = p q = a q + β = a + β q q = x β q = a Z = x R Επομένως [x] = [ β q ], όπου β Q [0, 1) q Η παραπάνω ανάλυση μας επιτρέπει να ορίσουμε μια αντιστοιχία f : Q/R Q [0, 1), [ p q ] f([p q ]) = β q όπου p = α q + β και 0 β q < 1. Θα δείξουμε ότι η f είναι μια καλά ορισμένη απεικόνιση: β q

3 Η f είναι καλά ορισμένη: Έστω [x], [y] Q/R, όπου x = p p q και y = q, και έστω ότι [x] = [y], δηλαδή [ p q ] = [ p q ]. Επειδή όπως παραπάνω μπορούμε να γράψουμε [ p q ] = [ β ] και [p q q ] = [ β q ] όπου p = α q + β, 0 β < q και p = α q + β, 0 β < q, έπεται ότι [ β q ] = [ β q ] = β q β q = k Z = β q = β β + k = 0 q q + k < 1 Επειδή k Z από την τελευταία ανισότητα έπεται προφανώς ότι κ = 0 και άρα β q = β q = f([ p ]) = f([p ]) = f([x]) = f([y]) q q Επομένως η f είναι μια καλά ορισμένη απεικόνιση. Θα δείξουμε ότι η f είναι 1-1 και επί. Η f είναι 1-1: Έστω f([ p p q ]) = f([ q ]) όπου όπως παραπάνω p q = α + β και p q q = α + β q. Τότε και άρα έχουμε: β q = β q p q p q = α α Z = [ p q ] = [p q ] Συνεπώς η f είναι ένα προς ένα. Η f είναι επί: Για κάθε ρητό αριθμό p q Q [0, 1), επειδή 0 p q < 1, θα έχουμε προφανώς ότι p q = b. Άρα q f([ p q ]) = p q, δηλαδή η f είναι επί. Άρα δείξαμε ότι υπάρχει μια καλά ορισμένη 1-1 και επί απεικόνιση f : Q/R Q [0, 1). 3 Ασκηση 3. Θεωρούμε το υποσύνολο S = { z C z = 1 } του συνόλου C των μη-μηδενικών μιγαδικών αριθμών. Στο C ορίζουμε μια σχέση R ως εξής: z R w zw 1 S 1. Να δείξετε ότι η R είναι μια σχέση ισοδυναμίας στο C, και ακολούθως νa περιγραφεί το σύνολο-πηλίκο C /R. 2. Είναι το υποσύνολο S κλειστό ως προς την πράξη πολλαπλασιασμού στο σύνολο C ; 3. Είναι η πράξη πολλαπλασιασμού στο σύνολο C συμβιβαστή με την σχέση ισοδυναμίας R; Λύση. Παρατηρούμε ότι: z R w zw 1 S zw 1 = 1 z w 1 = 1 z w 1 = 1 z = w. 1. Έστω y, z, w C. Έχουμε: Ανακλαστική ιδιότητα: y R y, αφού y = y. Συμμετρική ιδιότητα: Αν y R z, δηλαδή y = z, τότε και z = y. Επομένως, z R y. Μεταβατική ιδιότητα: Έστω y R z και z R w, δηλαδή y = z και z = w. Τότε y = w. Επομένως, y R w. Άρα η R είναι μια σχέση ισοδυναμίας στο C. Το σύνολο πηλίκο του C ως προς την R είναι C /R = { [z] R z C }

4 4 όπου η κλάση ισοδυναμίας του z C ως προς τη σχέση R είναι το σύνολο: [z] R = { w C z R w } = { w C z = w } Γεωμετρικά: η κλάση τού z C είναι η περιφέρεια με κέντρο την αρχή των συντεταγμένων τού μιγαδικού επιπέδου και ακτίνα το μέτρο του z. Το σύνολο-πηλίκο (πηλικοσύνολο) C /R είναι το σύνολο όλων αυτών των ομόκεντρων περιφερειών. Ri z 5 z 3 z 4 z 2 z 1. R z 6 Στο παραπάνω σχήμα παρουσιάζεται το μιγαδικό επίπεδο ή επίπεδο Gauss και το πηλικοσύνολο C /R. Μιγαδικοί αριθμοί z, z με [z] R = [z ] R, δηλαδή με το ίδιο μέτρο z = z, κείνται πάνω στην ίδια περιφέρεια τού επιπέδου Gauss, η οποία έχει ως κέντρο την αρχή των συντεταγμένων και ακτίνα z. Για παράδειγμα, στο σχήμα είναι z 1 = z 2, z 3 = z 4 και z 5 = z 6. Έτσι μπορούμε να πούμε ότι γεωμετρικά το πηλικοσύνολο C /R «ταυτίζεται» με το σύνολο των περιφερειών που περιγράψαμε προηγούμενα στο επίπεδο τού Gauss. Αλγεβρικά: Θεωρούμε το σύνολο R + των θετικών πραγματικών αριθμών και την «αντιστοιχία» f : C /R R +, [z] R f([z] R ) := z. Η f είναι μια απεικόνιση, αφού είναι ανεξάρτητη από τον αντιπρόσωπο τής κλάσης [z] R, μολονότι ορίστηκε μέσω ενός συγκεκριμένου αντιπροσώπου!. Πράγματι αν, z [z] R, δηλαδή [z ] R = [z] R, τότε z = z και γι αυτό f([z ] R ) = f([z] R ). Η f είναι μια «επί» απεικόνιση, αφού αν r R +, τότε υπάρχει κλάση [z] R C /R με f([z] R ) := z = r. Πράγματι, αρκεί να θυμηθούμε ότι R + C, αφού r = r + 0i και να θεωρήσουμε την κλάση [r] R, η εικόνα τής οποίας είναι προφανώς η f(r) = r = r. Η f είναι μια «1-1» απεικόνιση, αφού αν f([z] R ) = f([z ] R ), όπου [z] R, [z ] R C /R, τότε επειδή f([z] R ) = z και f([z ] R ) = z, έπεται z = z και γι αυτό z R z. Συνεπώς [z] R = [z ] R και η f είναι μια «1-1» απεικόνιση. Έτσι μπορούμε να πούμε ότι αλγεβρικά το πηλικοσύνολο C /R «ταυτίζεται» με το σύνολο R Το υποσύνολο S είναι κλειστό ως προς την πράξη πολλαπλασιασμού στο σύνολο C αφού αν z, w S τότε zw = z w = 1, δηλαδή zw S.

5 3. Για να είναι η σχέση ισοδυναμίας R C C συμβιβαστή με την πράξη πολλαπλασιασμού : C C C, θα πρέπει x, y, z, w C με x R z και y R w, δηλαδή με x = z και y = w, να ισχύει x y R z w. Προφανώς αν, x = z και y = w, τότε x y = z w και επομένως x y R z w και γι αυτό η συγκεκριμένη σχέση ισοδυναμίας R στο σύνολο C είναι συμβιβαστή με την πράξη πολλαπλασιασμού. 5 Ασκηση 4. Να εξεταστεί, ποια από τα ακόλουθα υποσύνολα τού καρτεσιανού γινομένου Z Z ορίζουν μια σχέση ισοδυναμίας φ επί του συνόλου των ακεραίων αριθμών Z και για κάθε σχέση ισοδυναμίας φ να προσδιοριστούν οι αντίστοιχες κλάσεις ισοδυναμίας καθώς και η προκύπτουσα διαμέριση του συνόλου Z: (1) g 1 = {(z, z) z Z}, (2) g 2 = {(z, z + 1) z Z}, (3) g 3 = {(z + 1, z) z Z}, (4) g 4 = g 1 g 2, (5) g 5 = g 1 g 2 g 3 (6) g 6 = {(1, 2), (2, 3), (1, 3)}, (7) g 7 = {(1, 2), (2, 3), (1, 3), (2, 1), (3, 2), (3, 1)}, (8) g 8 = g 1 g 7, (9) g 9 = g 1 g 7 {(7, 8), (8, 7)}, (10) g 10 = g 1 g 7 {(3, 4), (4, 3)}. Λύση. (1) Το σύνολο g 1 = {(z, z) z Z} είναι σχέση ισοδυναμίας. Για κάθε z Z oι κλάσεις ισοδυναμίας είναι [z] = {z} και άρα Z = z Z [z]. (2) Το σύνολο g 2 = {(z, z + 1) z Z} δεν είναι σχέση ισοδυναμίας αφού για κάθε z Z το (z, z) / g 2. (3) Όμοια με το σύνολο g 2 έχουμε ότι το σύνολο g 3 = {(z + 1, z) z Z} δεν είναι σχέση ισοδυναμίας. (4) Το σύνολο g 4 = g 1 g 2 δεν είναι σχέση ισοδυναμίας δίοτι για παράδειγμα το στοιχείο (0, 1) g 4 ενώ το (1, 0) / g 4 και άρα δεν ισχύει η συμμετρική ιδιότητα. (5) Το σύνολο g 5 = g 1 g 2 g 3 είναι σχέση ισοδυναμίας επί του Z. (6) Το στοιχείο (1, 2) g 6 αλλά το (2, 1) / g 6 και άρα το σύνολο g 6 = {(1, 2), (2, 3), (1, 3)} δεν είναι σχέση ισοδυναμίας. (7) Για παράδειγμα τα στοιχεία (1, 2), (2, 1) g 7 αλλά το (1, 1) / g 7 και άρα το σύνολο g 7 δεν είναι σχέση ισοδυναμίας. (8) Το σύνολο g 8 = g 1 g 7 είναι σχέση ισοδυναμίας και οι κλάσεις ισοδυναμίας είναι [1] = [2] = [3] = {1, 2, 3} και τα μονοσύνολα [z] = {z} για κάθε z Z\{1, 2, 3}. (9) Το σύνολο g 9 = g 1 g 7 {(7, 8), (8, 7)} είναι σχέση ισοδυναμίας και οι κλάσεις ισοδυναμίας είναι [1] = [2] = [3] = {1, 2, 3}, [7] = [8] = {7, 8} και τα μονοσύνολα [z] = {z} για κάθε z Z\{1, 2, 3, 7, 8}. (10) Το σύνολο g 10 = g 1 g 7 {(3, 4), (4, 3)} δεν είναι σχέση ισοδυναμίας δίοτι τα στοιχεία (4, 3), (3, 1) g 10 αλλά (4, 1) / g 10. Ασκηση 5. Έστω X ένα μη-κενό σύνολο και {R i } i I μια οικογένεια σχέσεων ισοδυναμίας επί του X. 1. Να δείξετε ότι η τομή R = i I R i είναι μια σχέση ισοδυναμίας επί του X. 2. Να εξετάσετε αν η ένωση R = i I R i είναι σχέση ισοδυναμίας επί του X.

6 6 Λύση. 1. Έστω x X. Τότε το (x, x) R i, i I, και άρα (x, x) i I R i. Συνεπώς η σχέση R είναι ανακλαστική. Έστω (x, y) i I R i. Τότε έχουμε (x, y) R i, i I = (y, x) R i, i I = (y, x) i I R i και άρα η R είναι συμμετρική. Έστω (x, y) i I R i και (y, z) i I R i. Τότε για κάθε i I έχουμε (x, y) R i = (x, z) R i, i I = (x, z) R i (y, z) R i i I δηλαδή η R είναι μεταβατική. Επομένως η τομή R = i I R i είναι μια σχέση ισοδυναμίας επί του X. 2. Θα δείξουμε με ένα (αντι)παράδειγμα ότι γενικά η ένωση R = i I R i δεν είναι σχέση ισοδυναμίας επί του συνόλου X. Αντιπαράδειγμα: Έστω X = {1, 2, 3} και θεωρούμε τα παρακάτω υποσύνολα του καρτεσιανού γινομένου X X: R 1 = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 1) } και R 2 = { (1, 1), (2, 2), (3, 3), (2, 3), (3, 2) } Τότε R = R 1 R2 = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2) } Παρατηρούμε ότι τα (1, 2), (2, 3) R αλλά το (1, 3) / R και άρα η R δεν είναι σχέση ισοδυναμίας αφού δεν ισχύει η μεταβατική ιδιότητα. Παρατήρηση: Διαπιστώνουμε στο (αντι)παράδειγμα αυτό ότι η ένωση σχέσεων ισοδυναμίας R είναι ανακλαστική και συμμετρική σχέση. Γενικά εύκολα βλέπουμε ότι η ένωση σχέσεων ισοδυναμίας επί ενός μη-κενού συνόλου ικανοποιεί την ανακλαστική και συμμετρική ιδιότητα, αλλά όπως είδαμε στο παραπάνω αντιπαράδειγμα, δεν ικανοποιεί γενικά την μεταβατική ιδιότητα. Ασκηση 6. Θεωρούμε το σύνολο X = { 1, 2, 3, 4}. 1. Έστω η σχέση Λύση. R = { (1, 1), (2, 1), (3, 1), (2, 4), (4, 2), (3, 3), (4, 1), (2, 3) } X X Να βρεθεί η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R. 2. Έστω η σχέση R = { (1, 1), (2, 3), (4, 1) } X X Να βρεθεί η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R. 1. H μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R θα πρέπει να περιέχει και τα ζεύγη (1, 3), (1, 4), (3, 2), (1, 2). Άρα θα πρέπει να περιέχει και τα ακόλουθα: (2, 1) R R = (2, 2) R (1, 2) R R (4, 2) R R (2, 4) R R = (4, 4) R

7 (3, 1) R R (1, 4) R R = (3, 4) R = (4, 3) R Επομένως η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R θα πρέπει να περιέχει όλα τα διατεταγμένα ζεύγη στοιχείων του X. Άρα R = X X 2. Όμοια όπως παραπάνω βρίσκουμε ότι η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R είναι R = { (1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 2), (1, 4), (4, 1) } 7 Ασκηση 7. Να περιγραφούν όλες οι πιθανές σχέσεις ισοδυναμίας επί ενός συνόλου X με πλήθος στοιχείων X = 1, X = 2, X = 3, και X = 4. Λύση. Υπενθυμιζουμε ότι υπάρχει μια 1-1 και επί αντιστοιχία μεταξύ των σχέσεων ισοδυναμίας R επί ενός συνόλου X και των διαμερίσεων Δ επί του X: R X X Δ R = X/R = { [x] R X x X } Δ = { A i X i I } R Δ = {(x, y) X X i I : x, y A i } Θα χρησιμοποιήσουμε την παραπάνω αντιστοιχία για να περιγράψουμε τις ζητούμενες σχέσεις ισοδυναμίας. Έστω X = {a}. Τότε X X = {(a, a)} και άρα έχουμε μόνο μια σχέση ισοδυναμίας την R = X X. Έστω X = {a, b}. Τότε X X = {(a, a), (a, b), (b, a), (b, b)}. Για να βρούμε όλες τις σχέσεις ισοδυναμίας του X αρκεί να βρούμε όλες τις διαμερίσεις του. Στη περίπτωση αυτή έχουμε τη διαμέριση Δ 1 = {a, b} = X και άρα την σχέση ισοδυναμίας R 1 = X X, και τη διαμέριση Δ 2 = {{a}, {b}} όπου η σχέση ισοδυναμίας είναι R 2 = {(a, a), (b, b)}. Έστω X = {a, b, c}. Τότε οι διαμερίσεις του συνόλου X και οι αντίστοιχες σχέσεις ισοδυναμίας είναι Δ 1 = { a, b, c } = X X R 1 = X X Δ 2 = { {a, b}, {c} } R 2 = { (a, b), (b, a), (a, a), (b, b), (c, c) } Δ 3 = { {a, c}, {b} } R 3 = { (a, c), (c, a), (a, a), (c, c), (b, b) } Δ 4 = { {b, c}, {a} } R 4 = { (b, c), (c, b), (b, b), (c, c), (a, a) } Δ 5 = { {a}, {b}, {c} } R 5 = { (a, a), (b, b), (c, c) } Έστω X = {a, b, c, d}. Τότε οι διαμερίσεις του συνόλου X είναι οι ακόλουθες: Δ 1 = { a, b, c, d } = X X Δ 2 = { {a, b, c}, d } Δ 3 = { {b, c, d}, {a} } Δ 4 = { {a, c, d}, {b} } Δ 5 = { {a, b, d}, {c} } Δ 6 = { {a, b}, {c, d} } Δ 7 = { {a, c}, {b, d} } Δ 8 = { {a, d}, {b, c} } Δ 9 = { {a, b}, {c}, {d} } Δ 10 = { {a, c}, {b}, {d} } Δ 11 = { {a, d}, {b}, {c} } Δ 12 = { {b, c}, {a}, {d} } Δ 13 = { {b, d}, {a}, {c} } Δ 14 = { {c, d}, {a}, {b} } Δ 15 = { {a}, {b}, {c}, {d} }

8 8 Επομένως προκύπτουν 15 σχέσεις ισοδυναμίας R Δi, των οποίων αφήνεται ως άσκηση. 1 i 15, επί του συνόλου X, η περιγραφή Ασκηση Στο σύνολο N N, όπου N = { 0, 1, 2, 3, }, ορίζουμε τη σχέση R: Λύση. (a, b), (c, d) N N : (a, b) R (c, d) a + d = b + c Δείξτε ότι η R είναι μια σχέση ισοδυναμίας στο N N και περιγράψτε το σύνολο πηλίκο (N N)/R. 2. Στο σύνολο Z Z ορίζουμε τη σχέση S: (x, y), (a, b) Z Z : (x, y) S (a, b) xb = ya Δείξτε ότι η S είναι μια σχέση ισοδυναμίας στο Z Z και περιγράψτε το σύνολο πηλίκο (Z Z )/S. 1. Για κάθε (a, b), (c, d), (e, f) N N έχουμε: Ανακλαστική ιδιότητα: Επειδή a + b = b + a έπεται ότι (a, b) (a, b). Συμμετρική ιδιότητα: Αν (a, b) (c, d) τότε a + d = b + c = c + b = d + a = (c, d) (a, b) Μεταβατική ιδιότητα: Αν (a, b) (c, d) και (c, d) (e, f) τότε έχουμε a + d = b + c c + f = d + e = a + d + f = b + c + f = b + d + e = a + d + f = b + d + e = (a, b) (e, f) Άρα η R είναι μια σχέση ισοδυναμίας στο N N. Έστω (a, b) N N. Τότε η κλάση ισοδυναμίας του (a, b) ως προς τη σχέση R είναι το ακόλουθο σύνολο: [(a, b)] = { (c, d) N N (a, b) (c, d) } = { (c, d) N N a + d = b + c } = { (c, d) N N a b = c d } Για να περιγράψουμε το σύνολο πηλίκο του N N ως προς την R ορίζουμε τη παρακάτω αντιστοιχία: f : (N N)/R Z, [(a, b)] R f([(a, b)] R ) = a b και θα δείξουμε ότι η f είναι μια καλά ορισμένη, ένα προς ένα και επί απεικόνιση. Καλά ορισμένη: Έστω [(a, b)] = [(c, d)]. Τότε (a, b) R (c, d) = a + d = b + c = a b = c d = f([(a, b)]) = f([(c, d)]) και άρα η f είναι καλά ορισμένη. Ένα προς ένα: Έστω f([(a, b)]) = f([(c, d)]). Τότε a b = c d = a + d = b + c = (a, b) (c, d) = [(a, b)] = [(c, d)] Συνεπώς η f είναι ένα προς ένα.

9 9 Επί: Έστω k Z. Αν k 0 τότε f([(k, 0)]) = k 0 = k ενώ αν k < 0 τότε f([(0, κ)]) = 0 ( κ) = k. Άρα η f είναι επί. Επομένως το σύνολο πηλίκο (N N)/R είναι σε 1-1 και επί αντιστοιχία με το σύνολο Z των ακεραίων αριθμών. 2. Για κάθε (x, y), (a, b), (c, d) Z Z έχουμε: Ανακλαστική ιδιότητα: Επειδή x y = y x έπεται ότι (x, y) (x, y). Συμμετρική ιδιότητα: Αν (x, y) (a, b) τότε x b = y a = a y = b x = (a, b) (x, y) Μεταβατική ιδιότητα: Έστω (x, y) (a, b) και (a, b) (c, d). Τότε έχουμε x b = y a = x b d = y a d = y b c = (x d) b = (y c) b a d = b c = x d = y c διότι b 0 = (x, y) (c, d) Άρα η S είναι μια σχέση ισοδυναμίας στο Z Z. Για να περιγράψουμε το σύνολο πηλίκο του Z Z ως προς την S ορίζουμε τη παρακάτω αντιστοιχία: f : Z Z /S Q, [(x, y)] S f([(x, y)] S ) = x y και θα δείξουμε ότι είναι μια καλά ορισμένη, ένα προς ένα και επί απεικόνιση. Καλά ορισμένη: Έστω [(x, y)] = [(a, b)]. Τότε (x, y) S (a, b) = x b = y a = x y = a b = f([(x, y)]) = f([(a, b)]) και άρα η f είναι καλά ορισμένη. Ένα προς ένα: Έστω f([(x, y)]) = f([(a, b)]). Τότε x y = a = x b = a y = (x, y) (a, b) = [(x, y)] = [(a, b)] b Συνεπώς η f είναι ένα προς ένα. Επί: Έστω p q Q. Άρα p, q Z με q 0 και τότε f([(p, q)]) = p q. Άρα η f είναι επί. Επομένως το σύνολο πηλίκο Z Z /S είναι σε 1-1 και επί αντιστοιχία με το σύνολο των ρητών αριθμών Q. Ασκηση 9. Θεωρούμε το σύνολο CS(Q) των ακολουθιών Cauchy ρητών αριθμών. Υπενθυμίζουμε ότι μια ακολουθία (r n ) n N, r n Q, n N, ρητών αριθμών ονομάζεται ακολουθία Cauchy ακριβώς τότε όταν ε Q, ε > 0, n 0 N : m, n n 0 είναι r n r m < ε.

10 10 Στο σύνολο CS(Q) ορίζουμε τη σχέση R CS(Q) CS(Q) ως εξής: (r n ) n N R (r n) n N η (r n r n) n N είναι μια μηδενική ακολουθία: lim (r n r n) = 0 (1) Να δειχθεί ότι η R είναι μια σχέση ισοδυναμίας επί τού CS(Q). (2) Να περιγραφεί το σύνολο πηλίκο CS(Q)/R. Λύση. (1) Δείχνουμε ότι η R είναι μια σχέση ισοδυναμίας στο σύνολο CS(Q). (αʹ) Για κάθε (r n ) n N CS(Q), ισχύει ότι (r n ) n N R (r n ) n N, αφού όλοι οι όροι τής ακολουθίας (r n r n ) n N είναι ίσοι με μηδέν και ως εκ τούτου η (r n r n ) n N είναι μια μηδενική ακολουθία. Ώστε η σχέση R διαθέτει την ανακλαστική ιδιότητα. (βʹ) Αν (r n ) n N R(r n) n N, τότε η ακολουθία (r n r n) n N είναι μια μηδενική ακολουθία και γι αυτό και η ακολουθία (r n r n) n N = (r n r n ) n N είναι επίσης μια μηδενική ακολουθία. Επομένως, (r n) n N R (r n ) n N. Ώστε η σχέση R διαθέτει την συμμετρική ιδιότητα. (γʹ) Αν (r n ) n N R (r n) n N και (r n) n N R (r n ) n N, τότε οι ακολουθίες (r n r n) n N και (r n r n ) n N είναι μηδενικές ακολουθίες. Αλλά όπως γνωρίζουμε και το άθροισμά τους, δηλαδή η ακολουθία (r n r n) n N + (r n r n ) n N = (r n r n ) n N είναι επίσης μια μηδενική ακολουθία και γι αυτό θα έχουμε (r n ) n N R (r n ) n N. Ώστε η σχέση R διαθέτει τη μεταβατική ιδιότητα. (2) Είναι γνωστό από τον Απειροστικό Λογισμό ότι κάθε ακολουθία Cauchy ρητών αριθμών (r n ) n N συγκλίνει στο σύνολο R των πραγματικών αριθμών και άρα θα έχουμε lim r n R. Αυτό μας επιτρέπει να ορίσουμε μια αντιστοιχία Φ: CS(Q)/R R, Φ ( [(r n ) n N ] ) = lim r n (αʹ) Η Φ είναι καλά ορισμένη απεικόνιση: Έστω (r n ) n N και (r n) n N δύο ακολουθίες Cauchy ρητών αριθμών και υποθέτουμε ότι οι αντίστοιχες κλάσεις ισοδυναμίας [(r n ) n N ] και (r n) n N ] είναι ίσες (ως στοιχεία του συνόλου πηλίκο CF/R). Τότε όπως γνωρίζουμε (βλέπε Λήμμα 1.9 των Σημειώσεων Θεωρητικών Θεμάτων), θα έχουμε [(r n ) n N ] = [(r n) n N ] = (r n ) n N R (r n) n N = lim(r n r n) = 0 Χρησιμοποιώντας γνωστές ιδιότητες ορίων, η τελευταία σχέση δίνει ότι lim r n = lim r n. Αυτό όμως σημαίνει Φ ( [(r n ) n N ] ) = Φ( ( [(r n) n N ] ) και άρα η Φ είναι μια καλά ορισμένη απεικόνιση. (βʹ) Η Φ είναι 1-1: Έστω (r n ) n N και (r n) n N δύο ακολουθίες Cauchy ρητών αριθμών και υποθέτουμε ότι Φ ( [(r n ) n N ] ) = Φ ( (r n) n N ]). Τότε lim r n = lim r n και επομένως η ακολουθία (r n r n) n N είναι μηδενική: lim(r n r n) = 0. Τότε όμως θα έχουμε (r n ) n N R (r n) n N και επομένως [(r n ) n N R ][(r n) n N ]. Αυτό σημαίνει ότι η Φ είναι 1-1. (γʹ) Η Φ είναι επί: Έστω r R ένας πραγματικός αριθμό. Από τον Απειροστικό λογισμό γνωρίζουμε ότι ο r είναι όριο μιας ακολουθίας Cauchy: r = lim r n, όπου (r n ) n N είναι μια ακολουθία Cauchy ρητών αριθμών. Τότε Φ ( [(r n ) n N ] ) = r και επομένως η απεικόνιση Φ είναι επί. Επομένως το σύνολο πηλίκο CS(Q)/R είναι σε 1-1 και επί αντιστοιχία με το σύνολο R των πραγματικών αριθμών. Ασκηση 10. Έστω K ένα σώμα (K = Q, R, C), και έστω H(t) ένα τυχόν πολυώνυμο υπεράνω του K. Στο σύνολο των πολυωνύμων K[t], ορίζουμε μια σχέση R ως εξής: P(t), Q(t) K[t] : P(t) R Q(t) H(t) P(t) Q(t) (1) Να δείξετε ότι η σχέση R είναι μια σχέση ισοδυναμίας επί του K[t]. (2) Να εξετασθεί αν η σχέση R είναι συμβιβαστή με τις πράξης πρόσθεσης και πολλαπλασιασμού πολυωνύμων. (3) Αν K = R και H(t) = t 2 + 1, ποιό είναι το σύνολο πηλίκο R[t]/R;

11 Λύση. (1) Δείχνουμε ότι η σχέση R είναι σχέση ισοδυναμίας επί του R[t]. (αʹ) Προφανώς για κάθε πολυώνυμο P(t) ισχύει P(t) R P(t) διότι H(t) P(t) P(t). (βʹ) Έστω ότι για τα πολυώνυμα P(t) και Q(t) ισχύει ότι P(t) R Q(t), δηλαδή H(t) P(t) Q(t). Τότε προφανώς H(t) Q(t) P(t) και άρα Q(t) R P(t). (γʹ) Έστω ότι για τα πολυώνυμα P(t), Q(t) και R(t) ισχύει ότι P(t) R Q(t) και Q(t) R R(t), δηλαδή H(t) P(t) Q(t) και H(t) Q(t) R(t). Τότε προφανώς θα έχουμε H(t) [P(t) Q(t) + Q(t) R(t)], δηλαδή H(t) P(t) R(t) και επομένως P(t) R R(t). (2) Έστω P(t), Q(t), R(t), S(t) πολυώνυμα και υποθέτουμε ότι: P(t) R Q(t) & R(t) R S(t) και άρα H(t) P(t) Q(t) & H(t) R(t) S(t) Τότε υπάρχουν πολυώντυμα F(t) και G(t) έτσι ώστε: Τότε θα έχουμε P(t) Q(t) = F(t) H(t) & R(t) S(t) = G(t) H(t) ( ) (P(t) + R(t)) (Q(t) + S(t)) = P(t) Q(t) + R(t) S(t) = F(t) H(t) + G(t) H(t) = (F(t) + G(t)) H(t) δηλαδή H(t) (P(t) + R(t)) (Q(t) + S(t)) και επομένως P(t) + R(t) R Q(t) + S(t), δηλαδή η πράξη της πρόσθεσης πολυωνύμων είναι συμβιβαστή με την σχέση ισοδυναμίας R. Παρόμοια από τις σχέσεις ( ) θα έχουμε: και άρα P(t)R(t) Q(t)R(t) = F(t)R(t)H(t) & R(t)Q(t) S(t)Q(t) = G(t)Q(t)H(t) P(t)R(t) Q(t)S(t) = ( F(t)R(t)+G(t)Q(t) ) H(t) = H(t) ( P(t)R(t) Q(t)S(t) ) = P(t)R(t) R Q(t)S(t) Δηλαδή η πράξη του πολλαπλασιασμού πολυωνύμων είναι συμβιβαστή με την σχέση ισοδυναμίας R. (3) Έστω P(t) R[t] τυχόν πολυώνυμο. Από την Ευκλείδεια διαίρεση πολυωνύμων, θα έχουμε: P(t) = P (t)(t 2 + 1) + R(t), όπου R(t) = 0 ή deg R(t) < 2 Επομένως το υπόλοιπο R(t) θα είναι ένα πολυώνυμο της μορφής R(t) = a + bt, Έτσι από την παραπάνω σχέση θα έχουμε a, b R P(t) (a + bt) = P (t)(t 2 + 1) = t P(t) (a + bt) = P(t) R (a + bt) = P(t) R[t] : [P(t)] R = [a + bt] R όπου a + bt είναι το υπόλοιπο της διαίρεσης του πολυωνυμου P(t) με το πολυώνυμο t 2 + 1, και επομένως το σύνολο πηλίκο έχει ισοδύναμα την ακόλουθη περιγραφή R[t]/R = { [a + bt] R R[t] a, b R } Με βάση τα παραπάνω ορίζουμε μια απεικόνιση Φ: R[t]/R C, Φ([P(t)] R ) = Φ([a + bt] R ) = a + bi (αʹ) Η απεικόνιση Φ είναι καλά ορισμένη: Έστω [a + bt] R = [a + b t] R. Τότε ως γνωστόν, θα έχουμε a+bt R a +b t, κα άρα (a+bt) (a +b t) = F(t)(t 2 +1), για κάποιο ππολυώνυμο F(t) R[t]. Τ ποτε υπολογίζοντας ρτην παραπάνω σχέση στην φανταστική μονάδα, θα έχουμε: (a + bi) (a + b i) = F(i)(i 2 + 1) = 0 και επομένως (a + bi) = (a + b i). Αυτό σημαίνει ότι Φ([a + bt] R ) = Φ([a + b t] R ), και άρα η Φ είναι καλά ορισμένη. (βʹ) Η απεικόνιση Φ είναι 1-1: Έστω Φ([a+bt] R ) = Φ([a +b t] R ), και επομένως a+bi = a +b i. Τότε όμως θα έχουμε a = a και b = b και επομένως [a + bt] R = [a + b t] R. Άρα η απεικόνιση Φ είναι

12 12 (γʹ) Η απεικόνιση Φ είναι επί: Αν z = a + bi C είναι ένας μιγαδικός αριθμός, θεωρούμε το πολυώνυμο P(t) = a + bt. Τότε Φ([P(t)] R ) = P(i) = a + bi και άρα η απεικόνιση Φ είναι επί. Επομένως η απεικόνιση Φ είναι 1-1 και επί. Σχόλιο 1. Ας δούμε πως δουλεύει η απεικόνιση Φ της Άσκησης 10, σε μια ειδική αλλά χαρακτηριστική περίπτωση. Θεωρούμε το πολυώνυμο t 2. Τότε σύμφωνα με την απόδειξη της Άσκησης 10, για να υπολογίσουμε την τιμή Φ([t 2 ] R ), εκτελούμε την Ευκλείδεια Διαίρεση του πολυωνύμου t 2 με το πολυώνυμο t 2 + 1: t 2 = 1(t 2 + 1) 1 και τότε γνωρίζουμε ότι [t] 2 R = [t] R [t] R = [t 2 ] R = [ 1] R Άρα Φ([t 2 ] R ) = 1. Από την άλλη πλευρά, επειδή η πράξη πολλαπλασιασμού πολυωνύμων είναι συμβιβαστή με την σχέση ισοδυναμίας R, θα έχουμε τον ακόλουθο καλά ορισμένο πολλαπλασιασμό στο σύνολο πηλίκο [P(t)] R [Q(t)] R = [P(t) Q(t)] R Ιδιαίτερα θα έχουμε [t] R [t] R = [t 2 ] R, και άρα: Φ([t] R [t] R ) = Φ([t 2 ] R ) = 1 = i 2 = i i = Φ([t] R ) Φ([t] R ) Γενικότερα μπορούμε να δούμε εύκολα ότι η 1-1 και επί απεικόνιση Φ διατηρεί τος πράξεις πρόσθεσης και πολλαπλασιασμού στα σύνολα R[t]/R και C, δηλαδή: Φ([P(t) R ] + [Q(t) R ]) = Φ([P(t) R ]) + Φ([Q(t) R ]) & Φ([P(t) R ] [Q(t) R ]) = Φ([P(t) R ]) Φ([Q(t) R ]) Όπως θα δούμε και αργότερα αυτό σημαίνει ότι οι αλγεβρικές δομές (R[t]/R, +, ) και (C, +, ) έχουν τις ίδιες αλγεβρικές ιδιότητες και επομένως μπορούμε να τις ταυτίσουμε μέσω της 1-1 και επί απεικόνισης Φ η οποία διατηρεί τις πράξεις.¹ Με βάση αυτή τη ταύτιση τον ρόλο της φανταστικής μονάδας παίζει η κλάση ισοδυναμίας [t] R του πολυώνυμου t. Σχόλιο 2. Οι παραπάνω Άσκήσεις 8, 9 και 10 κατασκευάζουν : (1) Το σύνολο Z των ακεραίων αριθμών από το σύνολο N των φυσικών αριθμών ως σύνολο-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 1 επί του N N. (2) Το σύνολο Q των ρητών αριθμών από το σύνολο των ακεραίων αριθμών ως σύνολο-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 2 επί του Z Z. (3) Το σύνολο R των πραγματικών αριθμών από το σύνολο Q των ρητών αριθμών, σε δύο βήματα: το πρώτο βήμα είναι η κατασκευή συνόλου CS(Q) των ακολουθιών Cauchy ρητών αριθμών, και το δεύτερο βήμα είναι η κατασκευή του συνόλου-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 3 επί του συνόλου CS(Q). Το σύνολο των ακολουθιών Cauchy ρητών αριθμών κατασκευάζεται από το Q ως το εξής υποσύνολο CS(Q) του συνόλου Q Q των ακολουθιών ρητών αριθμών: CS(Q) = { (r n ) n N Q Q ε Q +, n N : r n r m < ε, m, n n 0 } ¹Οι τριάδες (R[t]/R, +, ) και (C, +, ) έχουν την αλγεβρική δομή του μεταθετικού δακτυλίου με μονάδα, ειδικότερα του σώματος, και όπως θα δούμε αργότερα, η απεικόνιση Φ είναι ένας ισομορφισμός δακτυλίων.

13 (4) Το σύνολο C των μιγαδικών αριθμών από το σύνολο R των πραγματικών αριθμών, σε δύο βήματα: το πρώτο βήμα είναι η κατασκευή του συνόλου R[t] των πολυωνύμων με συντελεστές πραγματικούς αριθμούς, και το δεύτερο βήμα είναι η κατασκευή του συνόλου-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 4 επί του συνόλου R[t]. Το σύνολο R[t] των πολυωνύμων με συντελεστές πραγματικούς αριθμούς κατασκευάζεται από το σύνολο R των πραγματικών αριθμών ως το εξής υποσύνολο R[t] του συνόλου R R των ακολουθιών πραγματικών αριθμών αριθμών: R[t] = { (r n ) n N R R n N : r m = 0, m > n } Αποδεικνύεται εύκολα ότι οι σχέσεις ισοδυναμίας R i, 1 i 4, είναι συμβιβαστές με τις πράξεις της πρόσθεσης και πολλαπλασιασμού στα σύνολα N N, Z Z, CS(Q), και R[t] οι οποίες επάγονται διαδοχικά με φυσικό τρόπο από τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασμού φυσικών αριθμών. Έτσι τα αντίστοιχα σύνολα πηλίκα είναι εφοδιασμένα με πράξεις πρόσθεσης και πολλαπλασιασμού οι οποίες αντιστοιχούν με τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασμού στα σύνολα N, Q, R, και C μέσω των 1-1 και επί απεικονίσεων που κατασκευάστηκαν στις ασκήσεις 8, 9, και 10. Έτσι ξεκινώντας από το σύνολο των φυσικών αριθμών (μαζί με το 0) και τις πράξειες πρόσθεσης και πολλαπλασιασμού φυσικών αριθμών, μπορούμε με τις παραπάνω κατασκευές να ορίσουμε τα σύνολα Z των ακεραίων αριθμών, Q των ρητών αριθμών, R των πραγματικών αριθμών, και C των μιγαδικών αριθμών, τα οποία είναι εφοδιαμσένα με τις γνωστές πράξεις πρόσθεσης και πολλαπλασιασμού. 13 Ασκηση 11. Εξετάστε στις παρακάτω περιπτώσεις αν η διμελής πράξη επί του συνόλου G είναι προσεταιριστική, μεταθετική, υπάρχει ουδέτερο στοιχείο και αν, κάθε στοιχείο έχει αντίστροφο. (1) G = Z και a b = ab. (2) G = Z και a b = a b. (3) G = R + και a b = ab. (4) G = Q και a b = ab. (5) G = R και a b = ab. (6) G = Z + και a b = 2 ab. (7) G = Z + και a b = a b. (8) G = C και a b = a + b. Λύση. (1) Ο πολλαπλασιασμός μεταξύ ακεραίων αριθμών είναι προσεταιριστικός. Το στοιχείο e = 1 είναι το ουδέτερο της πράξης αφού 1 x = x 1 = x, x Z. Όμως για κάθε x Z δεν υπάρχει αντίστροφο στοιχείο ως προς τον πολλαπλασιαμό που να ανήκει στο Z. Για παράδειγμα το 6 Z και από την εξίσωση 6 x = 1 έπεται ότι x = 1 και / Z. (2) Για κάθε a, b, c Z έχουμε (a b) c = (a b) c = a b c και a (b c) = a (b c) = a b + c Συνεπώς η πράξη a b = a b δεν είναι προσεταιριστική. Έστω x G έτσι ώστε a x = a = x a για κάθε a G. Τότε από τη σχέση a x = a έχουμε ότι x = 0 ενώ από τη σχέση x a = a έπεται ότι x = 2a. Άρα θα έπρεπε το a = 0, που είναι άτοπο. Συνεπώς στο σύνολο G = Z η πράξη a b = a b δεν είναι προφανώς μεταθετική, δεν υπάρχει ουδέτερο στοιχείο και άρα ούτε αντίστροφο. (3) Η προσεταιριστική και μεταθετική ιδιότητα προφανώς ισχύουν, το ουδέτερο στοιχείο είναι το e = 1 R +, και για κάθε a R + το αντίστροφο στοιχείο είναι το a = 1 a R+. (4) Η προσεταιριστική και η μεταθετική ιδιότητα ισχύουν, το ουδέτερο στοιχείο είναι το e = 1, αλλά αν κ λ Q τότε το αντίστροφο στοιχείο a = λ κ μπορεί να μην ορίζεται γιατί το κ μπορεί να είναι ίσο με μηδέν. Αντίθετα όμως στο σύνολο Q κάθε στοιχείο έχει αντίστροφο με το πολλαπλασιαμό.

14 14 (5) Πολύ εύκολα διαπιστώνουμε ότι το σύνολο G = R με πράξη τον πολλαπλασιασμό a b = ab ικανοποίει τις ζητούμενες ιδιότητες. (6) Η πράξη είναι μεταθετική δίοτι a b = 2 ab = 2 ba = b a αλλά δεν είναι προσεταιριστική. Έστω x Z + έτσι ώστε a x = a = x a για κάθε a Z +. Τότε 2 ax = a και άρα 2 ax = a = (e ln 2 ) ax = a = e ax ln 2 = a = ax ln 2 = ln a = x = ln a a ln 2 Αντίστροφα έχουμε a ln a a ln 2 = 2a ln a a ln 2 = (e ln 2 ln a a ) a ln 2 = e ln a = a Επομένως το ουδέτερο στοιχείο είναι το e = ln a a ln 2. Τέλος για κάθε a Z+ από a a = ln a υπολογίζουμε το αντίστροφο στοιχείο a ln 2 a του a. (7) Για κάθε a, b, c Z + έχουμε ότι και (a b) c = a b c = (a b ) c = a bc a (b c) = a b c = a bc τη σχέση Όμως υπάρχουν b, c Z + έτσι ώστε bc b c και άρα η πράξη δεν είναι προσεταιριστική. Επίσης η πράξη δεν είναι ούτε μεταθετική. Έστω x Z + έτσι ώστε a x = a = x a για κάθε a Z +. Τότε από τη σχέση a x = a έχουμε ότι a x = a και άρα x = 1, ενώ από τη σχέση x a = a έπεται ότι x a = a. Άρα για x = 1 έχουμε a = 1, που είναι άτοπο. Συνεπώς στο σύνολο G = Z + με πράξη a b = a b δεν υπάρχει ουδέτερο στοιχείο και άρα ούτε αντίστροφο. (8) Η προσεταιριστική και μεταθετική ιδιότητα προφανώς ισχύουν. Επίσης υπάρχει μιγαδικός αριθμός e = 0 + 0i = 0 C έτσι ώστε a e = a + 0 = a = 0 + a = e a για κάθε a C και άρα το e = 0 είναι το ουδέτερο στοιχείο. Τέλος, για κάθε a = m + ni C υπάρχει ο μιγαδικός αριθμός a = a = m ni C έτσι ώστε a + ( a) = 0 και άρα κάθε στοιχείο έχει αντίστροφο. Ασκηση 12. Έστω G = R \ { 1} (δηλαδή G είναι το σύνολο όλων των πραγματικών αριθμών εκτός από το 1), και ορίζουμε x, y G : x y = x + y + xy Να δείξετε ότι η παραπάνω απεικόνιση είναι μια πράξη επί του G. Να εξετασθεί αν η πράξη είναι προσεταιριστική ή μεταθετική. Να εξετασθεί αν υπάρχει στοιχείο e G έτσι ώστε: x e = x = e x, x G. Αν ένα τέτοιο στοιχείο υπάρχει, είναι μοναδικό; Σ αυτή την περίπτωση να εξετασθεί αν για κάθε x G, υπάρχει y G έτσι ώστε: x y = e = y x. Τέλος να εξετασθεί αν η εξίσωση: έχει (μοναδική) λύση στο σύνολο G. a x = b Λύση. Έστω x, y G. Θα δείξουμε πρώτα ότι το x y G, δηλαδή ότι η είναι διμελής πράξη. Αν λοιπόν x y / G τότε x + y + xy = 1 = x (1 + y) + y + 1 = 0 = (x + 1) (y + 1) = 0 = x + 1 = 0 ή y + 1 = 0 και άρα x = 1 ή y = 1. Σε κάθε περίπτωση όμως έχουμε άτοπο διότι x, y G, δηλαδή x 1 και y 1. Επομένως δείξαμε ότι η απεικόνιση ορίζει μια (διμελή) πράξη : G G G επί του G. Έστω x, y, z G. Έχουμε:

15 15 Η πράξη είναι προσεταιριστική: Η πράξη είναι μεταθετική: x (y z) = x (y + z + yz) = x + y + z + yz + xy + xz + xyz = (x + y + xy) z = (x y) z x y = x + y + xy = y + x + yx = y x Άρα η πράξη είναι προσεταιριστική και μεταθετική. Ουδέτερο στοιχείο: Έστω στοιχείο e G έτσι ώστε x e = x = e x, x G. Τότε e (1 + x) = 0 x + e + ex = x = e + ex = 0 = = e = x 0 Το στοιχείο e = 0 G πράγματι ικανοποιεί τις σχέσεις x 0 = x x = x, x G. Συνεπώς το e = 0 είναι το ουδέτερο στοιχείο της πράξης. Αντίστροφο στοιχείο: Έστω x G και υποθέτουμε ότι υπάρχει ένα y G έτσι ώστε x y = 0. Τότε x + y + x y = 0 = y (1 + x) = x = y = x 1 + x G διότι διαφορετικά, αν x x 1+x / G, δηλαδή 1+x = 1, τότε καταλήγουμε στο άτοπο x = x + 1. Αντίστροφα θα έχουμε: x x 1 + x = x + x 1 + x + x ( x) = x + x2 x x 2 = 0 = x 1 + x 1 + x 1 + x x Επομένως για κάθε x G, υπάρχει y = x 1+x G έτσι ώστε: x y = 0 = y x, δηλαδή: x = x 1 + x Η Εξίσωση a x = b: Για κάθε a, b G έχουμε: Διαφορετικά: a x = b = a + x + ax = b = x + ax = b a = x (1 + a) = b a = x = b a 1 + a G a x = b = a (a x) = a b = (a a) x = a 1 + a b = 0 x = a 1 + a + b + a 1 + a b = x = b a 1 + a G

16 16 Άρα η εξίσωση a x = b έχει μοναδική λύση την x = b a 1 + a Ασκηση 13. Έστω ότι K συμβολίζει ένα από τα ακόλουθα σώματα Q, R, C, και έστω M m n (K) το σύνολο των m n πινάκων με στοιχεία από το K. Υπενθυμίζουμε ότι δύο πίνακες A, B M m n (K) καλούνται ισοδύναμοι αν υπάρχει αντιστρέψιμος n n πίνακας P και αντιστρέψιμος m m πίνακας Q έτσι ώστε: (1) Δείξτε ότι ορίζοντας: Q 1 A P = B A B ο πίνακας Α είναι ισοδύναμος με τον B αποκτούμε μια σχέση ισοδυναμίας στο σύνολο M m n (K). (2) Να περιγραφεί το σύνολο πηλίκο M m n (K)/. (3) Είναι η πρόσθεση, και ο πολλαπλασιασμός πινάκων (όταν m = n), συμβιβαστή πράξη με την σχέση ισοδυναμίας πινάκων; Λύση. 1. Έστω A, B, C M m n (K). Έχουμε: Ανακλαστική ιδιότητα δηλαδή A A : Θεωρούμε τους πίνακες I m =..... M m m (K) και I n =..... M n n (K) Τότε Im 1 του. A I n = I m A I n = A και άρα A A, δηλαδή ο πίνακας A είναι ισοδύναμος με τον εαυτό Συμμετρική ιδιότητα δηλαδή A Β B A : Επειδή A B υπάρχουν αντιστρέψιμοι πίνακες P M n n (K) και Q M m m (K) έτσι ώστε Q 1 A P = B = Q B P 1 = A = (Q 1 ) 1 B P 1 = A = B A Μεταβατική ιδιότητα δηλαδή A Β και B C A C : Επειδή A Β και B C, υπάρχουν αντιστρέψιμοι πίνακες P 1, P 2 M n n (K) και Q 1, Q 2 M m m (K) έτσι ώστε Q 1 1 A P 1 = B Q 1 2 B P 2 = C = Q 1 2 Q 1 1 A P 1 P 2 = C = (Q 1 Q 2 ) 1 A (P 1 P 2 ) = C = A C Άρα η σχέση είναι σχέση ισοδυναμίας στο M m n (K). 2. Από την Γραμμική Άλγεβρα, γνωρίζουμε ότι: A B r(a) = r(b) ( )

17 όπου r(a) είναι η βαθμίδα του πίνακα A. Ως συνέπεια έχουμε ότι αν A M m n (K) και r(a) = r, τότε r(a) min{m, n} και Α I r = όπου α αριθμός 1 εμφανίζεται r φορές. Ορίζουμε μια αντιστοιχία Φ : M m n (K)/ {0, 1, 2,, min{m, n}}, Φ ( [A] ) = r(a) (1) Η Φ είναι καλά ορισμένη απεικόνιση: Έστω A, B M m n (K), και έστω ότι οι κλάσεις ισοδυναμίας τους ως προς την σχέση ισοδυναμίας είναι ίσες: [A] = [B]. Τότε όπως γνωρίζουμε, ισχύει ότι A B και επομένως από την σχέση ( ) θα έχουμε r(a) = r(b). Αυτό σημαίνει ότι Φ ( [A] ) = Φ ( [B] ) και επομένως η Φ είναι μια καλά ορισμένη απεικόνιση. (2) Η Φ είναι 1-1: Έστω A, B M m n (K) και υποθέτουμε ότι Φ ( [A] ) = Φ ( [B] ), δηλαδή r(a) = r(b). Τότε από την σχέση ( ) θα έχουμε A B και επομένως [Α] = [Β], δηλαδή η απεικόνιση Φ είναι 1-1. (3) Η Φ είναι επί: Έστω r {0, 1, 2,, min{m, n}}. Τότε ο m n πίνακας I r έχει βαθμίδα r(i r ) = r και προφανώς: Φ([I r ]) = r. Επομένως η απεικόνιση Φ είναι μια 1-1 και επί αντιστοιχία μεταξύ του συνόλου πηλίκο M m n (K)/ και του συνόλου {0, 1, 2,, min{m, n}}: Φ : M m n (K)/ { 0, 1, 2,, min{m, n} } 3. Θεωρούμε τους πίνακες: ( ) 0 1 A = = B, Γ = 0 0 ( ) και Δ = ( ) Τότε A B και Γ Δ διότι r(a) = r(b) = 1 και r(γ) = r(δ) = 1. Όμως r(aγ) = 0 1 = r(bδ) αφού ( ) ( ) A Γ = και Β Δ = Συνεπώς AΓ BΔ και άρα ο πολλαπλασιασμός πινάκων (όταν m = n) δεν είναι συμβιβαστή πράξη με την σχέση ισοδυναμίας πινάκων. Θεωρούμε τους πίνακες A, Γ και Δ όπως παραπάνω. Τότε A A και Γ Δ αλλά r(a + Γ) = 1 2 = r(a + Δ), αφού A + Γ = ( ) και Α + Δ = ( ) Επομένως A + Γ Α + Δ και άρα η πρόσθεση πινάκων (όταν m = n) δεν είναι συμβιβαστή πράξη με την σχέση ισοδυναμίας πινάκων. 17

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

n = r J n,r J n,s = J

n = r J n,r J n,s = J Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1. .. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Κεφάλαιο 7 ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϑεµελιώδη έννοια του δακτυλίου, ϑα αναπτύξουµε τις ϐασικές ιδιότητες δακτυλίων και ϑα αναλύσουµε µια σειρά

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Γεώργιος Δ Ακρίβης Τμήμα Πληροφορικής Πανεπιστήμιο Ιωαννίνων ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (πανεπιστημιακές παραδόσεις) ΙΩΑΝΝΙΝΑ, 2003 i Πρόλογος Η Γραμμική Άλγεβρα αποτελεί, μαζί με την Ανάλυση, το θεμέλιο των μαθηματικών

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001 Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 ) Συνέχεια Συνάρτησης Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 1 εκεµβρίου 013 1 Ορισµός Ορισµός 1.1 Μια πραγµατική συνάρτηση f : A R λέµε ότι είναι συνεχής στο x 0 A αν και µόνο αν : x x 0 fx

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΜΑΘΗΜΑ 5. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση - Αντίστροφη συνάρτηση Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση :Α R λέγεται συνάρτηση, όταν για οποιαδήποτε, Α µε ισχύει

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Διανυσματική Ανάλυση. Γιάννης Γιαννούλης

Διανυσματική Ανάλυση. Γιάννης Γιαννούλης Διανυσματική Ανάλυση Γιάννης Γιαννούλης Ιωάννινα, 30 Απριλίου 2014 Σημείωση: Οι παρούσες σημειώσεις δημιουργήθηκαν κατά την διάρκεια της διδασκαλίας του μαθήματος Απειροστικός Λογισμός ΙΙΙ και IV σε φοιτητές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ Η θεωρία αριθμών και οι αλγεβρικές δομές τα τελευταία χρόνια χρησιμοποιούνται όλο και περισσότερο στην κρυπτολογία. Αριθμο-θεωρητικοί αλγόριθμοι χρησιμοποιούνται σήμερα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

5.1.1 Η θεωρία και τι προσέχουμε

5.1.1 Η θεωρία και τι προσέχουμε Κεφάλαιο 5 Συνέχεια συνάρτησης σε διάστημα Συνέπειες του Θεωρήματος Bolzano 5.. Η θεωρία και τι προσέχουμε Τα κύρια χαρακτηριστικά μιας συνεχούς συνάρτησης f ορισμένης σε ένα διάστημα Δ, είναι: i. Η γραφική

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012 ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα