Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :"

Transcript

1 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την οποία κάθε στοιχείο αντιστοιχίζεται σε ένα μόνο πραγματικό αριθμό Το ονομάζεται τιμή της στο και συμβολίζεται με, δηλαδή ( ) χόλια: Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : : Το γράμμα που παριστάνει οποιοδήποτε στοιχείο του συνόλου λέγεται ανεξάρτητη μεταβλητή, ενώ το γράμμα που παριστάνει την τιμή της στο, λέγεται εξαρτημένη μεταβλητή Το πεδίο ορισμού της συνάρτησης συνήθως συμβολίζεται με D ( Domus = οίκος ) ή Τι λέμε σύνολο τιμών μιας συνάρτησης με πεδίο ορισμού το σύνολο ; ύνολο τιμών της λέμε το σύνολο που έχει για στοιχεία του τις τιμές της για όλα τα Το σύνολο τιμών της στο συμβολίζεται με Είναι δηλαδή: / για κάποιο 3 Τι λέμε γραφική παράσταση μιας συνάρτησης με πεδίο ορισμού το σύνολο ; Γραφική παράσταση της λέμε το σύνολο των σημείων, οποία ισχύει, δηλαδή το σύνολο των σημείων, χόλια: Η γραφική παράσταση της και συμβολίζεται συνήθως με C του επιπέδου, για τα, με Η εξίσωση, επαληθεύεται μόνο από τα σημεία της C Επομένως, η είναι η εξίσωση της γραφικής παράστασης της Όταν δίνεται η γραφική παράσταση C μιας συνάρτησης, τότε: α) Το πεδίο ορισμού της είναι το σύνολο των τετμημένων των σημείων της C Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

2 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου β) Το σύνολο τιμών της είναι το σύνολο των τεταγμένων των σημείων της C γ) Η τιμή της στο είναι η τεταγμένη του σημείου τομής της ευθείας και της C = C (Α) C () C A(,()) O Α (α) O (β) O (γ) Όταν δίνεται η γραφική παράσταση C, μιας συνάρτησης μπορούμε, επίσης, να σχεδιάσουμε και τις γραφικές παραστάσεις των συναρτήσεων και α) Η γραφική παράσταση της συνάρτησης είναι συμμετρική ως προς τον άξονα, της γραφικής παράστασης της, γιατί αποτελείται από τα σημεία, που είναι συμμετρικά των, ως προς τον άξονα (χ 9) β) Η γραφική παράσταση της αποτελείται από τα τμήματα της C που βρίσκονται πάνω από τον άξονα και από τα συμμετρικά, ως προς τον άξονα, των τμημάτων της που βρίσκονται κάτω από τον άξονα αυτόν (χ ) C O = () O Μ(,()) Μ (,()) =() =() =() 4 Να χαράξετε τις γραφικές παραστάσεις των βασικών συναρτήσεων α) β), γ) 3,,, g, δ),, ε) Οι γραφικές παραστάσεις είναι οι παρακάτω: α) Η πολυωνυμική συνάρτηση O O O a> a< a= Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

3 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου β) Η πολυωνυμική συνάρτηση, O α> O α< γ) Η πολυωνυμική συνάρτηση 3, O O α> α< δ) Η ρητή συνάρτηση,, O O α> α<,, g, ε) Οι συναρτήσεις O O 5 Να χαράξετε τις γραφικές παραστάσεις των παρακάτω συναρτήσεων: α),, β), γ) log, Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 3 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

4 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Οι γραφικές παραστάσεις είναι οι παρακάτω: α) οι τριγωνομετρικές συναρτήσεις:,, O π π =ημ (α) O π π =συν (β) π/ O π/ 3π/ =εφ (γ) και, ενώ η συνάρτηση Υπενθυμίζουμε ότι, οι συναρτήσεις περίοδο είναι περιοδικές με είναι περιοδική με περίοδο β) Η εκθετική συνάρτηση, α α O O α> (α) <α< (β) Ιδιότητες: Υπενθυμίζουμε ότι: Αν, τότε: Αν, τότε: γ) Η λογαριθμική συνάρτηση log, Όταν e τη συμβολίζουμε ( ) ln Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 4 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

5 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου O α O α α> (α) <α< (β) Ιδιότητες: ) log log ) log και a 3) log και log log log log 4) 5) log log log log log 6) 7) Αν, τότε: log log, ενώ αν, log log 8) e ln ln, αφού e 6 Πότε δύο συναρτήσεις, g λέγονται ίσες; Δύο συναρτήσεις και g λέγονται ίσες όταν: Έχουν το ίδιο πεδίο ορισμού και Για κάθε ισχύει g Έστω τώρα, g δύο συναρτήσεις με πεδία ορισμού Α, Β αντιστοίχως και Γ ένα υποσύνολο των Α και Β Αν για κάθε ισχύει ( ) g( ), τότε λέμε ότι οι συναρτήσεις και g είναι ίσες στο σύνολο Γ Για παράδειγμα, οι συναρτήσεις Ο Γ B A ( ) και g ( ), που έχουν πεδία ορισμού τα σύνολα A R {} και B R {} αντιστοίχως, είναι ίσες στο σύνολο Γ R {,}, αφού για κάθε ισχύει ( ) g( ) Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 5 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

6 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 7 Πώς ορίζονται οι πράξεις της πρόσθεσης, αφαίρεσης, γινομένου και πηλίκου δύο συναρτήσεων, g ; Ορίζουμε ως άθροισμα συναρτήσεων, g τις συναρτήσεις με τύπους g, διαφορά g, γινόμενο g και πηλίκο g δύο g g g g g g g g,,, Το πεδίο ορισμού των g, g και g είναι η τομή των πεδίων ορισμού και των συναρτήσεων και g αντιστοίχως, ενώ το πεδίο ορισμού της, εξαιρουμένων των τιμών του που μηδενίζουν τον παρονομαστή το σύνολο και, με g g είναι το g, δηλαδή 8 Τι λέμε σύνθεση της συνάρτησης με τη συνάρτηση g ; (A) B A () g(b) A g g g( ()) Αν, g είναι δύο συναρτήσεις με πεδίο ορισμού, αντιστοίχως, τότε ονομάζουμε σύνθεση της με την g, και την συμβολίζουμε με g go g χόλια:, τη συνάρτηση με τύπο α) Το πεδίο ορισμού της g αποτελείται από όλα τα στοιχεία του πεδίου ορισμού της για τα οποία τα ανήκει στο πεδίο ορισμού της g Δηλαδή είναι το σύνολο Είναι φανερό ότι η go ορίζεται, αν, δηλαδή αν β) Γενικά, αν, g είναι δύο συναρτήσεις και ορίζονται οι go και og, τότε αυτές δεν είναι υποχρεωτικά ίσες Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 6 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

7 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου γ) Αν, g, h είναι τρεις συναρτήσεις και ορίζεται η ho go τότε ορίζεται και η και ισχύει ho go hog o Τη συνάρτηση αυτή τη λέμε σύνθεση των, hog o g και h, τη συμβολίζουμε με hogo Η σύνθεση συναρτήσεων γενικεύεται και για περισσότερες από τρεις συναρτήσεις 9 Πότε μια συνάρτηση λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα σε ένα διάστημα ; Η συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα του πεδίου ορισμού της, όταν για οποιαδήποτε, με ισχύει: (σχήμα α ) Η συνάρτηση λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της, όταν για οποιαδήποτε, με ( ) ( ) ισχύει: () () ( σχήμα β ) Ο Δ (a) Ο Δ (β) Πότε μια συνάρτηση με πεδίο ορισμού λέμε ότι παρουσιάζει στο ολικό μέγιστο και πότε ολικό ελάχιστο; Μια συνάρτηση με πεδίο ορισμού θα λέμε ότι: Παρουσιάζει στο ( σχήμα α ) Παρουσιάζει στο ( σχήμα β ) (ολικό) μέγιστο, το, όταν για κάθε (ολικό) ελάχιστο, το, όταν για κάθε () C ( ) () () O O (β) (a) C Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 7 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

8 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Πότε μια συνάρτηση με πεδίο ορισμού λέγεται ; Μια συνάρτηση : λέγεται συνάρτηση, όταν για οποιαδήποτε, ισχύει η συνεπαγωγή: χόλια, τότε α) Μια συνάρτηση : λέγεται συνάρτηση, αν και μόνο αν για οποιαδήποτε ισχύει η συνεπαγωγή:, πρόταση ), τότε ( Αντιθετοαντίστροφη Προσοχή να μη συγχέουμε με τον ορισμό της συνάρτησης, δηλαδή την ισοδυναμία: β) Από τον ορισμό προκύπτει ότι μια συνάρτηση είναι, αν και μόνο αν: Για κάθε στοιχείο του συνόλου τιμών της η εξίσωση έχει ακριβώς μια λύση ως προς Δεν υπάρχουν σημεία της γραφικής της παράστασης με την ίδια τεταγμένη Αυτό σημαίνει ότι κάθε οριζόντια ευθεία τέμνει τη γραφική παράσταση της το πολύ σε ένα σημείο Αν μια συνάρτηση είναι γνησίως μονότονη, τότε είναι συνάρτηση Το αντίστροφο γενικά δεν ισχύει Υπάρχουν δηλαδή συναρτήσεις που είναι αλλά δεν είναι γνησίως μονότονες =() O, Παράδειγμα : Η συνάρτηση g,, αλλά δεν είναι γνησίως μονότονη είναι O =g() Πότε μια συνάρτηση με πεδίο ορισμού αντιστρέφεται ; Πώς ορίζουμε την αντίστροφη συνάρτηση ; Μια συνάρτηση : αντιστρέφεται, αν και μόνο αν είναι Η αντίστροφη συνάρτηση της που συμβολίζεται με ορίζεται από τη σχέση Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 8 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

9 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου χόλια: α) Ισχύει ότι:, και, β) Η αντίστροφη της έχει πεδίο ορισμού το σύνολο τιμών της, και σύνολο τιμών το πεδίο ορισμού της γ) Οι γραφικές παραστάσεις C και C των συναρτήσεων και ως προς τη ευθεία που διχοτομεί τις γωνίες και : είναι συμμετρικές Ας πάρουμε μια συνάρτηση και ας θεωρήσουμε τις γραφικές παραστάσεις C και C των και της στο ίδιο σύστημα αξόνων Επειδή ( ) ( ), C M(α,β) M (β,α) αν ένα σημείο M ( α, β) ανήκει στη γραφική παράσταση C της, τότε το σημείο Μ ( β, α) θα ανήκει στη γραφική παράσταση C της και αντιστρόφως Τα σημεία, όμως, αυτά είναι συμμετρικά ως προς την ευθεία που διχοτομεί τις γωνίες O και O = O C Ποια πρόταση συνδέει το όριο της στο και τα πλευρικά όρια της στο ; Ισχύει ότι: Αν μια συνάρτηση είναι ορισμένη σε ένα σύνολο της μορφής,,, τότε ισχύει η ισοδυναμία: lim lim lim Παρατηρήσεις στο όριο α) Ισχύει ότι: i lim l lim l ii lim lim l h l h β) Τους αριθμούς l και l lim l l lim τους λέμε πλευρικά όρια της στο και συγκεκριμένα το l αριστερό όριο της στο, ενώ το l δεξιό όριο της στο Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 9 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

10 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου γ) Για να αναζητήσουμε το όριο της στο, πρέπει η να ορίζεται όσο θέλουμε «κοντά στο», δηλαδή η να είναι ορισμένη σε ένα σύνολο της μορφής,, ή ή,, Το μπορεί να ανήκει στο πεδίο ορισμού της συνάρτησης ή να μην ανήκει σε αυτό Η τιμή της στο, όταν υπάρχει, μπορεί να είναι ίση με το όριό της στο ή διαφορετική από αυτό δ) Ισχύει ότι lim και lim c c Πότε λέμε ότι μια συνάρτηση έχει κοντά στο μια ιδιότητα ; Μια συνάρτηση λέμε ότι έχει κοντά στο μια ιδιότητα, όταν ισχύει μια από τις παρακάτω τρεις συνθήκες: α) Η είναι ορισμένη σε ένα σύνολο της μορφής,, έχει την ιδιότητα και το σύνολο αυτό β) Η είναι ορισμένη σε ένα σύνολο της μορφής,, έχει σ αυτό την ιδιότητα, αλλά δεν ορίζεται σε σύνολο της μορφής γ) Η είναι ορισμένη σε ένα σύνολο της μορφής, αλλά δεν ορίζεται σε σύνολο της μορφής,,, έχει σ αυτό την ιδιότητα, 3 Να γράψετε τις ιδιότητες των ορίων στο Για το όριο ισχύουν οι παρακάτω ιδιότητες: α) Θεώρημα ο Αν lim, τότε Αν lim, τότε κοντά στο κοντά στο β) Θεώρημα ο Αν οι συναρτήσεις, g έχουν όριο στο lim lim g ( σχήμα α και β ) και ισχύει g κοντά στο, τότε Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

11 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου C C C g C g O α β O α β (a) (β) γ) Θεώρημα 3 ο Αν υπάρχουν τα όρια των συναρτήσεων και g στο, τότε: i lim g lim lim g ii lim lim iii lim g lim lim g iv για κάθε σταθερά lim g lim, εφόσον lim g g v lim lim lim vi lim lim, εφόσον κοντά στο δ) θεώρημα 4 ο και Έστω τώρα το πολυώνυμο : ύμφωνα με τις ιδιότητες των ορίων έχουμε: Είναι τότε: lim lim lim lim lim lim lim lim lim Επομένως, lim Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

12 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Έστω η ρητή συνάρτηση, όπου, Q Q με Q Θα είναι τότε: lim, όπου Q Q πολυώνυμα του και Q ε) Θεώρημα 5 ο Κριτήριο παρεμβολής: Έστω οι συναρτήσεις, g, h Αν h g κοντά στο και lim h lim g l, C g C τότε lim l O C h α β στ) Ισχύει ότι:, για κάθε Η ισότητα ισχύει μόνο όταν lim lim lim lim 5 Έστω η ρητή συνάρτηση, όπου, Q Q και με Q Να δείξετε ότι: lim, όπου Q Q Έχουμε, lim lim lim Q lim Q Q Επομένως, πολυώνυμα του Q Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

13 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου lim Q εφόσον Q Q 6 Πώς υπολογίζουμε το όριο της σύνθετης συνάρτησης g στο Αν θέλουμε να υπολογίσουμε το όριο της σύνθετης συνάρτησης g στο σημείο, δηλαδή το lim g ) Θέτουμε u g, τότε εργαζόμαστε ως εξής: ) Υπολογίζουμε (αν υπάρχει) το u g lim και 3) Υπολογίζουμε (αν υπάρχει) το l u g Αν lim lim uu u κοντά στο, τότε το ζητούμενο όριο είναι ίσο με l, δηλαδή ισχύει: lim g u uu 7 Να γράψετε τις ιδιότητες του άπειρου ορίου στο Όπως στην περίπτωση των πεπερασμένων ορίων έτσι και για τα άπειρα όρια συναρτήσεων,,,, ισχύουν οι παρακάτω που ορίζονται σε ένα σύνολο της μορφής ισοδυναμίες: α) lim lim lim β) lim lim lim γ) Αν lim κοντά στο δ) Αν lim lim, τότε κοντά στο, ενώ αν, τότε lim lim, ενώ αν lim, τότε, τότε ε) Αν lim ή, τότε lim Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 3 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

14 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου στ) Αν και lim και lim κοντά στο, τότε lim κοντά στο, τότε lim, ενώ αν ζ) Αν lim ή, τότε lim η) Αν lim, τότε lim k θ) i) lim και γενικά lim, ii) lim, και lim, * ι) Για το άθροισμα και το γινόμενο ισχύουν τα παρακάτω θεωρήματα: ΘΕΩΡΗΜΑ ο (όριο αθροίσματος) Αν στο το όριο της είναι: και το όριο της g είναι: τότε το όριο της g είναι: ; ; ΘΕΩΡΗΜΑ ο (όριο γινομένου) Αν στο το όριο της είναι: και το όριο της g είναι: τότε το όριο της g είναι: α> α< α> α< ; ; χόλιο: Οι παρακάτω μορφές λέγονται απροσδιόριστες μορφές:,,,,, 8 Να γράψετε τις ιδιότητες για το όριο στο άπειρο α) Για τον υπολογισμό του ορίου στο ή ενός μεγάλου αριθμού συναρτήσεων χρειαζόμαστε το παρακάτω βασικά όρια: Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 4 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

15 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου lim και lim,, ά lim και, ό * lim, * β) Για την πολυωνυμική συνάρτηση lim lim και lim lim, με ισχύει: γ) Για τη ρητή συνάρτηση,, ισχύει: lim lim και lim lim δ) Για το όριο εκθετικής - λογαριθμικής συνάρτησης ισχύει ότι: Αν (χ 6), τότε lim, lim =a =log a limlog, lim log O Αν (χ 6), τότε lim, lim limlog, lim log =a O χόλια: =log a Για να αναζητήσουμε το όριο μιας συνάρτησης στο, πρέπει η να είναι ορισμένη σε διάστημα της μορφής, Για να αναζητήσουμε το όριο μιας συνάρτησης στο, πρέπει η να είναι ορισμένη σε διάστημα της μορφής, Για τα όρια στο, ισχύουν οι γνωστές ιδιότητες των ορίων στο με την προϋπόθεση ότι: - οι συναρτήσεις είναι ορισμένες σε κατάλληλα σύνολα και - δεν καταλήγουμε σε απροσδιόριστη μορφή Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 5 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

16 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Πότε μια συνάρτηση λέγεται συνεχής στο σημείο του πεδίου ορισμού της; Μια συνάρτηση λέγεται συνεχής στο σημείο του πεδίου ορισμού της, όταν lim χόλια: α) ύμφωνα με τον παραπάνω ορισμό, μια συνάρτηση δεν είναι συνεχής σε ένα σημείο του πεδίου ορισμού της όταν: i) Δεν υπάρχει το όριό της στο ή ii) Υπάρχει το όριό της στο, αλλά είναι διαφορετικό από την τιμή της, στο σημείο β) Μια συνάρτηση που είναι συνεχής σε όλα τα σημεία του πεδίου ορισμού της, θα λέγεται, συνεχής συνάρτηση γ) Κάθε πολυωνυμική συνάρτηση είναι συνεχής, αφού για κάθε ισχύει lim Κάθε ρητή συνάρτηση είναι συνεχής, αφού για κάθε του πεδίου ορισμού της Q ισχύει lim Q Οι συναρτήσεις Q και g ισχύει lim και lim Οι συναρτήσεις και g log, είναι συνεχείς αφού για κάθε είναι συνεχείς Να διατυπώσετε πρόταση που αφορά τη συνέχεια και τις πράξεις συναρτήσεων Για τη συνέχεια και τις πράξεις συναρτήσεων ισχύει το παρακάτω θεώρημα: Αν οι συναρτήσεις και g είναι συνεχείς στο, τότε είναι συνεχείς στο και οι συναρτήσεις: Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 6 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

17 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου g, c, όπου c, g,, και με την προϋπόθεση ότι ορίζονται σε g ένα διάστημα που περιέχει το 3 Να διατυπώσετε πρόταση που αφορά τη συνέχεια σύνθετης συνάρτησης Για τη συνέχεια σύνθετης συνάρτησης ισχύει το παρακάτω θεώρημα: Αν η συνάρτηση είναι συνεχής στο τότε η σύνθεσή τους go είναι συνεχής στο, και η συνάρτηση g είναι συνεχής στο 4 Πότε μια συνάρτηση λέγεται συνεχής σε ένα ανοικτό διάστημα, και πότε στο κλειστό διάστημα, ; Μια συνάρτηση λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα,, όταν είναι συνεχής σε κάθε σημείο του, Μια συνάρτηση θα λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα,, όταν είναι συνεχής σε κάθε σημείο του, και επιπλέον lim και lim 5 Να διατυπώσετε το θεώρημα του Bolzano και να δώσετε τη γεωμετρική ερμηνεία του Έστω μια συνάρτηση, ορισμένη σε ένα κλειστό διάστημα, Αν: Η είναι συνεχής στο, και, επιπλέον, ισχύει, τότε υπάρχει ένα, τουλάχιστον, τέτοιο, ώστε, Δηλαδή, υπάρχει μια, τουλάχιστον, ρίζα της εξίσωσης στο ανοικτό διάστημα, χόλια: Αν μια συνάρτηση είναι συνεχής σε ένα διάστημα και δε μηδενίζεται σ αυτό, τότε αυτή ή είναι θετική για κάθε ή είναι αρνητική για κάθε, δηλαδή διατηρεί πρόσημο στο διάστημα ( σχήμα α και β ) Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 7 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

18 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου ()> O a β O a ()< β (α) (β) Μια συνεχής συνάρτηση διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της χωρίζουν το πεδίο ορισμού της ρ + ρ ρ 3 + ρ 4 + ρ 5 Γεωμετρική ερμηνεία του θεωρήματος Bolzano το διπλανό σχήμα έχουμε τη γραφική παράσταση μιας συνεχούς συνάρτησης στο [ α, β] Επειδή τα σημεία A ( α, ( α)) και B ( β, ( β)) βρίσκονται εκατέρωθεν του άξονα, η γραφική παράσταση της τέμνει τον άξονα σημείο σε ένα τουλάχιστον (β) O (a) a Α(α,(α)) β B(β,(β)) Θεώρημα 6 Να διατυπώσετε και να αποδείξετε το θεώρημα ενδιάμεσων τιμών Έστω μια συνάρτηση, η οποία είναι ορισμένη σε ένα κλειστό διάστημα, Αν: Η είναι συνεχής στο, και (β) η (a) Α(α,(α)) B(β,(β)) =η Τότε, για κάθε αριθμό μεταξύ των και υπάρχει ένας, τουλάχιστον,, τέτοιος, ώστε O a β Ας υποθέσουμε ότι Τότε θα ισχύει θεωρήσουμε τη συνάρτηση g,, (χ 67) Αν, παρατηρούμε ότι: Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 8 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

19 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Η g είναι συνεχής στο, και g g, Αφού g και g Επομένως, σύμφωνα με το θεώρημα του Bolzano, υπάρχει, οπότε χόλια: τέτοιο, ώστε, α) Η εικόνα ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης είναι διάστημα β) Αν μια συνάρτηση είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα,, τότε το σύνολο τιμών της στο διάστημα αυτό είναι,, όπου lim και lim Αν, όμως, η είναι γνησίως φθίνουσα και συνεχής στο,, το σύνολο τιμών της στο διάστημα αυτό είναι Γεωμετρική ερμηνεία του ΘΕΤ:, τότε Η οριζόντια ευθεία = n τέμνει την γραφική παράσταση της συνάρτησης τουλάχιστον μια φορά 7 Να διατυπώσετε το θεώρημα μέγιστης - ελάχιστης τιμής Το θεώρημα μέγιστης - ελάχιστης τιμής διατυπώνεται ως εξής: Αν είναι συνεχής συνάρτηση στο,, τότε η παίρνει στο, μια μέγιστη τιμή και μια ελάχιστη τιμή m Δηλαδή, υπάρχουν,, τέτοια, ώστε, αν m και m, για κάθε, χόλιο:, να ισχύει Από το παραπάνω θεώρημα και το θεώρημα ενδιάμεσων τιμών προκύπτει ότι το σύνολο τιμών μιας συνεχούς συνάρτησης με πεδίο ορισμού το, είναι το κλειστό διάστημα m,, όπου m η ελάχιστη τιμή και η μέγιστη τιμή της Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 9 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

20 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Πότε μια συνάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της; Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του πεδίου ορισμού της, αν και μόνο αν υπάρχει το lim αυτό ονομάζεται παράγωγος της στο lim και είναι πραγματικός αριθμός Το όριο και συμβολίζεται με Δηλαδή: χόλια α) Αν, τώρα, στην ισότητα h lim h h lim θέσουμε h, τότε έχουμε β) Αν το είναι εσωτερικό σημείο ενός διαστήματος του πεδίου ορισμού της, τότε: Η είναι παραγωγίσιμη στο, αν και μόνο αν υπάρχουν στο lim, lim και είναι ίσα τα όρια Αν η συνάρτηση είναι παραγωγίσιμη στο σημείο, να γράψετε την εξίσωση της εφαπτομένης της Η εξίσωση της εφαπτομένης της χόλιο: C στο σημείο της, C στο σημείο της, Την κλίση της εφαπτομένης στο, ή κλίση της στο είναι: θα τη λέμε κλίση της C στο Θεώρημα Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

21 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 3 Αν μια συνάρτηση είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Για έχουμε lim lim lim lim αφού η είναι παραγωγίσιμη στο συνεχής στο χόλιο:, οπότε θα είναι: Επομένως, lim, δηλαδή η είναι Το αντίστροφο του παραπάνω θεωρήματος δεν ισχύει Ισχύει όμως ότι: Αν μια συνάρτηση δεν είναι συνεχής σ ένα σημείο, τότε, δεν μπορεί να είναι παραγωγίσιμη στο Ορισμός 4 Πότε μια συνάρτηση λέγεται: α) Παραγωγίσιμη στο σύνολο β) Παραγωγίσιμη στο ανοικτό διάστημα, γ) Παραγωγίσιμη στο κλειστό διάστημα, Έστω μια συνάρτηση με πεδίο ορισμού ένα σύνολο Θα λέμε ότι: α) Η είναι παραγωγίσιμη στο ή, απλά, παραγωγίσιμη, όταν είναι παραγωγίσιμη σε κάθε σημείο β) Η είναι παραγωγίσιμη σε ένα ανοικτό διάστημα, του πεδίου ορισμού της, όταν είναι παραγωγίσιμη σε κάθε σημείο, γ) Η είναι παραγωγίσιμη σε ένα κλειστό διάστημα, του πεδίου ορισμού της, όταν είναι παραγωγίσιμη στο, και επιπλέον ισχύει: lim και lim Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

22 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 5 Να αποδείξετε ότι: α) Αν c, τότε β) Αν, τότε γ) Αν, με,, τότε δ) Αν, τότε α) Για ισχύει: Επομένως,, c c lim, β) Για ισχύει ότι: Επομένως, δηλαδή c lim lim, δηλαδή γ) Αν είναι ένα σημείο του, τότε για ισχύει:, δηλαδή δ) Αν είναι ένα σημείο του,, τότε για ισχύει: οπότε: lim lim, δηλαδή, χόλια Τύποι: Έστω συνάρτηση, δηλαδή Η συνάρτηση είναι παραγωγίσιμη στο και ισχύει Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

23 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Έστω η συνάρτηση ισχύει Η συνάρτηση είναι παραγωγίσιμη στο και, δηλαδή Έστω η συνάρτηση e ισχύει Αποδεικνύεται ότι η είναι παραγωγίσιμη στο και e, δηλαδή e e Έστω η συνάρτηση ln Αποδεικνύεται ότι η είναι παραγωγίσιμη στο, και ισχύει, δηλαδή ln Θεώρημα 6 Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, τότε η συνάρτηση είναι παραγωγίσιμη στο και ισχύει: g g Για, ισχύει: g g g g g g g Επειδή οι συναρτήσεις, g είναι παραγωγίσιμες στο, έχουμε: g g g g lim lim lim δηλαδή g g g, χόλια Τύποι: Α) Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, τότε η συνάρτηση παραγωγίσιμη στο επομένως ότι: και ισχύει: g g g g είναι Ισχύει - Αν οι συναρτήσεις, g είναι παραγωγίσιμες σ ένα διάστημα, τότε για κάθε ισχύει: g g g - Αν είναι παραγωγίσιμη σ ένα διάστημα και c, επειδή c, σύμφωνα με το θεώρημα () έχουμε: c c Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 3 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

24 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Β) Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο συνάρτηση g είναι παραγωγίσιμη στο και ισχύει: g g g g Ισχύει επομένως ότι: και g, τότε και η Αν οι συναρτήσεις, g είναι παραγωγίσιμες σ ένα διάστημα, και για κάθε g g ισχύει g, τότε για κάθε έχουμε: g g * Γ) Έστω η συνάρτηση και ισχύει,, Η συνάρτηση είναι παραγωγίσιμη στο δηλαδή * Πράγματι, για κάθε * έχουμε: Δ) - Έστω η συνάρτηση Η συνάρτηση είναι παραγωγίσιμη στο και ισχύει, δηλαδή Πράγματι, για κάθε έχουμε: - Έστω η συνάρτηση Η συνάρτηση είναι παραγωγίσιμη στο και ισχύει, δηλαδή Θεώρημα Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 4 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

25 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 7 Αν η συνάρτηση g είναι παραγωγίσιμη στο και η είναι παραγωγίσιμη στο g, τότε η συνάρτηση g είναι παραγωγίσιμη στο και ισχύει g g g χόλια: Γενικά, αν μια συνάρτηση g είναι παραγωγίσιμη σε ένα διάστημα και η είναι παραγωγίσιμη στο g, τότε η συνάρτηση g g g Δηλαδή, αν u g, τότε u και u g της αλυσίδας, έχουμε τον τύπο g είναι παραγωγίσιμη στο και ισχύει u u u Με το συμβολισμό του Leibniz, αν d d du που είναι γνωστός ως κανόνας d du d Θεώρημα 8 Να αποδείξετε ότι: α) Η συνάρτηση, Q είναι παραγωγίσιμη στο, β) Η συνάρτηση, ln, γ) Η συνάρτηση * ln είναι παραγωγίσιμη στο και ισχύει ln, είναι παραγωγίσιμη στο, και ισχύει * και ισχύει α) Πράγματι, αν ln και θέσουμε u ln e u u ln e e u e β) Πράγματι, αν ln e ln, τότε έχουμε και θέσουμε u ln, τότε έχουμε u u e e u e ln ln u e Επομένως, u e Επομένως, γ) Πράγματι,, τότε ln ln - αν ενώ Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 5 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

26 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου, τότε ln ln, οπότε, αν θέσουμε ln - αν και u, έχουμε ln u Επομένως, ln u u και άρα ln u 9 Τι λέμε ρυθμό μεταβολής του μεγέθους ως προς το μέγεθος για, αν είναι παραγωγίσιμη συνάρτηση; Αν δύο μεταβλητά μεγέθη, συνδέονται με τη σχέση, όταν είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του ως προς το στο σημείο την παράγωγο Να διατυπώσετε το θεώρημα του Rolle και να δώσετε τη γεωμετρική ερμηνεία Το θεώρημα του Rolle διατυπώνεται ως εξής: Αν μια συνάρτηση είναι: συνεχής στο κλειστό διάστημα, παραγωγίσιμη στο ανοικτό διάστημα, και Μ(ξ,(ξ)) Α(α,(α)) Β(β,(β)) τότε υπάρχει ένα, τουλάχιστον,, τέτοιο, ώστε O α ξ ξ β Γεωμετρικά, αυτό σημαίνει ότι υπάρχει ένα, τουλάχιστον,,, εφαπτομένη της C στο τέτοιο, ώστε η να είναι παράλληλη στον άξονα των Να διατυπώσετε το θεώρημα της μέσης τιμής διαφορικού λογισμού και να δώσετε τη γεωμετρική του ερμηνεία Αν μια συνάρτηση είναι: Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 6 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

27 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου συνεχής στο κλειστό διάστημα, και παραγωγίσιμη στο ανοικτό διάστημα, M(ξ,(ξ)) Β(β,(β)) τότε υπάρχει ένα, τουλάχιστον,, τέτοιο, ώστε: Γεωμετρικά, αυτό σημαίνει ότι υπάρχει ένα, τουλάχιστον,, εφαπτομένη της γραφικής παράστασης της στο σημείο, παράλληλη της ευθείας A(a,(a)) Ο a ξ ξ τέτοιο, ώστε η να είναι β Θεώρημα Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Αν η είναι συνεχής στο και για κάθε εσωτερικό σημείο του, τότε η είναι σταθερή σε όλο το διάστημα Αρκεί να αποδείξουμε ότι για οποιαδήποτε, Αν Αν μέσης τιμής, τότε προφανώς, τότε στο διάστημα, ισχύει Επομένως, υπάρχει, τέτοιο, ώστε Πράγματι η ικανοποιεί τις υποθέσεις του θεωρήματος είναι εσωτερικό σημείο του, ισχύει, οπότε, λόγω της (), είναι Αν, τότε ομοίως αποδεικνύεται ότι λοιπόν, τις περιπτώσεις είναι () Επειδή το ε όλες, Θεώρημα 3 Έστω δύο συναρτήσεις, g ορισμένες σε ένα διάστημα Αν οι, g είναι συνεχείς στο και g για κάθε εσωτερικό σημείο του, τότε υπάρχει σταθερά c τέτοια, ώστε για κάθε να ισχύει: g c Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 7 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

28 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Η συνάρτηση g είναι συνεχής και για κάθε εσωτερικό σημείο ισχύει g g Επομένως, σύμφωνα με το παραπάνω θεώρημα, η συνάρτηση g είναι σταθερή στο Άρα, υπάρχει σταθερά C τέτοια, ώστε για κάθε να ισχύει g c, οπότε g c χόλιο: =g()+c =g() O Τα παραπάνω θεωρήματα (3 και 4) ισχύουν σε διάστημα και όχι σε ένωση διαστημάτων 4 Πρόταση (χωρίς απόδειξη) Αν για μια συνάρτηση ισχύει ότι για κάθε, τότε ce κάθε χόλια: Αντί του μπορούμε να έχουμε τυχαίο διάστημα Η απόδειξη της πρότασης είναι καλή μεθοδολογία για την εύρεση σταθεράς c σε σχέση ύνω ως προς c, θεωρώ συνάρτηση αποδεικνύω ότι έχει παράγωγο μηδέν και με μια τυχαία τιμή βρίσκω το c Επίσης ισχύει : ( ) ( ) για κάθε, τότε ce για κάθε για Θεώρημα 5 Έστω μια συνάρτηση, η οποία είναι συνεχής σε ένα διάστημα Αν σε κάθε εσωτερικό σημείο του, τότε η είναι γνησίως αύξουσα σε όλο το Αν σε κάθε εσωτερικό σημείο του, τότε η είναι γνησίως φθίνουσα σε όλο το Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι Έστω, με Θα δείξουμε ότι Πράγματι στο διάστημα, τις προϋποθέσεις του ΘΜΤ Επομένως, υπάρχει, τέτοιο, ώστε, οπότε έχουμε και Επειδή, έχουμε, οπότε η ικανοποιεί Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 8 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

29 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου την περίπτωση που είναι εργαζόμαστε αναλόγως χόλιο: Το αντίστροφο του παραπάνω θεωρήματος δεν ισχύει Δηλαδή, αν η είναι γνησίως αύξουσα (αντιστοίχως γνησίως φθίνουσα) στο, η παράγωγός της δεν είναι υποχρεωτικά θετική (αντιστοίχως αρνητική) στο εσωτερικό του 6 Πότε μια συνάρτηση με πεδίο ορισμού παρουσιάζει στο τοπικό μέγιστο και πότε τοπικό ελάχιστο; α) Μια συνάρτηση, με πεδίο ορισμού, θα λέμε ότι παρουσιάζει στο τοπικό μέγιστο, όταν υπάρχει, Το τοπικό μέγιστο της, τέτοιο ώστε: για κάθε λέγετε θέση ή σημείο τοπικού μέγιστου, ενώ το β) Μια συνάρτηση, με πεδίο ορισμού, θα λέμε ότι παρουσιάζει στο τοπικό ελάχιστο, όταν υπάρχει, Το τοπικό ελάχιστο της χόλιο:, τέτοιο ώστε: για κάθε λέγετε θέση ή σημείο τοπικού ελάχιστου, ενώ το α) Αν μια συνάρτηση παρουσιάζει μέγιστο, τότε αυτό θα είναι μεγαλύτερο από τα τοπικά μέγιστα, ενώ αν παρουσιάζει, ελάχιστο, τότε αυτό θα είναι μικρότερο από τα τοπικά ελάχιστα β) Το μεγαλύτερο όμως από τα τοπικά μέγιστα μιας συνάρτησης δεν είναι πάντοτε μέγιστο αυτής Επίσης το μικρότερο από τα τοπικά ελάχιστα μιας συνάρτησης δεν είναι πάντοτε ελάχιστο της συνάρτησης Θεώρημα Fermat 7 Έστω μια συνάρτηση ορισμένη σε ένα διάστημα και ένα εσωτερικό σημείο του Αν η παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι: Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 9 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

30 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Ας υποθέσουμε ότι η παρουσιάζει στο τοπικό μέγιστο Επειδή το είναι εσωτερικό σημείο του και η παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει τέτοιο, ώστε:, και, για κάθε, επιπλέον, η είναι παραγωγίσιμη στο, ισχύει lim lim Επομένως, - αν,, τότε, λόγω της (), θα είναι, οπότε θα έχουμε lim - αν, (), τότε, λόγω της (), θα είναι, οπότε θα έχουμε lim (3) Έτσι, από τις () και (3) έχουμε Η απόδειξη για το τοπικό ελάχιστο είναι ανάλογη () Επειδή, 8 α) Ποια λέγονται κρίσιμα σημεία μιας συνάρτησης σε ένα διάστημα ; β) Ποιες είναι οι πιθανές θέσεις ακροτάτων μιας συνάρτησης σε ένα διάστημα ; α) Κρίσιμα σημεία μιας συνάρτησης στο διάστημα λέγονται τα εσωτερικά σημεία του, στα οποία η δεν παραγωγίζεται ή η παράγωγός της είναι ίση με το μηδέν β) Οι πιθανές θέσεις των τοπικών ακροτάτων μιας συνάρτησης σε ένα διάστημα είναι: Τα εσωτερικά σημεία του στα οποία η παράγωγος της μηδενίζεται Τα εσωτερικά σημεία του στα οποία η δεν παραγωγίζεται 3 Τα άκρα του (αν ανήκουν στο πεδίο ορισμού της) 9 Πως βρίσκουμε τα ολικά ακρότατα σε μια συνεχή συνάρτηση σε ένα κλειστό διάστημα; Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 3 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

31 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Για την εύρεση του μέγιστου και ελάχιστου της συνάρτησης σε ένα κλειστό διάστημα εργαζόμαστε ως εξής: Βρίσκουμε τα κρίσιμα σημεία της Υπολογίζουμε τις τιμές της στα σημεία αυτά και στα άκρα των διαστημάτων 3 Από αυτές τις τιμές η μεγαλύτερη είναι το μέγιστο και η μικρότερη το ελάχιστο της Θεώρημα Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα,, με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η είναι συνεχής Αν στο και στο, τότε το μέγιστο της, Αν η διατηρεί πρόσημο στο,,, τότε το τοπικό ακρότατο και η είναι γνησίως μονότονη στο, Επειδή για κάθε, και η είναι συνεχής αύξουσα στο, Έτσι έχουμε, για κάθε, για κάθε, και η είναι συνεχής στο Έτσι έχουμε:, για κάθε φθίνουσα στο, > <, είναι τοπικό δεν είναι, η είναι γνησίως () Επειδή, η είναι γνησίως () >, < ( ) () O a β O a β Επομένως, λόγω των () και (), ισχύει:, για κάθε, ότι το είναι μέγιστο της στο, Έστω ότι, για κάθε,, και άρα τοπικό μέγιστο αυτής, που σημαίνει > > > > O a β O a β Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 3 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

32 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Επειδή η είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα, και, Επομένως, για ισχύει Άρα το τώρα, ότι η είναι γνησίως αύξουσα στο δεν είναι τοπικό ακρότατο της Θα δείξουμε,, Πράγματι, έστω,, - Αν,,, επειδή η είναι γνησίως αύξουσα στο, - Αν,,, επειδή η είναι γνησίως αύξουσα στο, - Τέλος, αν, τότε όπως είδαμε με, θα ισχύει, θα ισχύει Επομένως, σε όλες τις περιπτώσεις ισχύει αύξουσα στο, Ομοίως, αν, για κάθε,,, οπότε η είναι γνησίως Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα ; Η συνάρτηση λέγεται κυρτή ή ότι στρέφει τα κοίλα άνω σ ένα διάστημα όταν είναι συνεχής στο και η είναι γνησίως αύξουσα στο εσωτερικό του Η συνάρτηση λέγεται κοίλη ή ότι στρέφει τα κοίλα προς τα κάτω στο, αν είναι συνεχής στο και η είναι γνησίως φθίνουσα στο εσωτερικό του Να διατυπώσετε το θεώρημα που αφορά τα κοίλα και το πρόσημο της δεύτερης παραγώγου της Ισχύει το παρακάτω θεώρημα: Έστω μια συνάρτηση συνεχής σε ένα διάστημα και δύο φορές παραγωγίσιμη στο εσωτερικό του Αν για κάθε εσωτερικό σημείο του, τότε η είναι κυρτή στο Αν για κάθε εσωτερικό σημείο του, τότε η είναι κοίλη στο 3 Πότε το σημείο, λέγεται σημείο καμπής μιας συνάρτησης ; Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 3 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

33 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Το σημείο, όταν: ονομάζεται σημείο καμπής της γραφικής παράστασης της, Η είναι κυρτή στο, και κοίλη στο, C έχει εφαπτομένη στο σημείο, η χόλιο: Όταν το, είναι σημείο καμπής της καμπή και το λέγεται θέση σημείου καμπής, ή αντιστρόφως, και C, τότε λέμε ότι η παρουσιάζει στο 4 Ποιο θεώρημα αφορά τα σημεία καμπής μιας συνάρτησης που είναι δυο φορές παραγωγίσιμη ; Για τα σημεία καμπής ισχύει το επόμενο θεώρημα: Αν το, είναι σημείο καμπής της γραφικής παράστασης της και η είναι δυο φορές παραγωγίσιμη, τότε Ποιες είναι οι πιθανές θέσεις σημείων καμπής μιας συνάρτησης σε ένα διάστημα Δ; Οι πιθανές θέσεις σημείων καμπής μιας συνάρτησης σε ένα διάστημα είναι: Τα εσωτερικά σημεία του στα οποία η μηδενίζεται Τα εσωτερικά σημεία του στα οποία δεν υπάρχει η Μέθοδος - Κριτήριο: Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Η αλλάζει πρόσημο εκατέρωθεν του και Ορίζεται εφαπτομένη της τότε το, C στο,, και, είναι σημείο καμπής της C, Αν 5 Πότε λέμε ότι η ευθεία είναι κατακόρυφη ασύμπτωτη της C ; Η ευθεία λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της, αν ένα τουλάχιστον από τα όρια lim, lim είναι ή Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 33 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

34 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 6 Πότε λέμε ότι η ευθεία l λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της στο (αντιστοίχως στο ); Η ευθεία l λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της στο (αντιστοίχως στο ), όταν lim l (αντιστοίχως lim l ) 7 Πότε η ευθεία λέγεται ασύμπτωτη της γραφικής παράστασης της στο, αντιστοίχως στο ; Η ευθεία λέγεται ασύμπτωτη της γραφικής παράστασης της στο, αντιστοίχως στο, αν lim, αντιστοίχως αν lim 8 Με ποιες σχέσεις (τύπους) βρίσκουμε τις ασύμπτωτες της μορφής ; Ισχύει το παρακάτω θεώρημα: Η ευθεία είναι ασύμπτωτη της γραφικής παράστασης της στο, αντιστοίχως στο, αν και μόνο αν αντιστοίχως: lim Χρήσιμα σχόλια: Αποδεικνύεται ότι: lim και και lim lim, - Οι πολυωνυμικές συναρτήσεις βαθμού μεγαλύτερου ή ίσου του δεν έχουν ασύμπτωτες - Οι ρητές συναρτήσεις Q, με βαθμό του αριθμητή μεγαλύτερο τουλάχιστον κατά δύο του βαθμού του παρονομαστή, δεν έχουν πλάγιες ασύμπτωτες ύμφωνα με τους παραπάνω ορισμούς, ασύμπτωτες της γραφικής παράστασης μιας συνάρτησης αναζητούμε: - τα άκρα των διαστημάτων του πεδίου ορισμού της στα οποία η δεν ορίζεται - τα σημεία του πεδίου ορισμού της, στα οποία η δεν είναι συνεχής - το,, εφόσον η συνάρτηση είναι ορισμένη σε διάστημα της μορφής,, αντιστοίχως, Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 34 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

35 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 9 Να διατυπώσετε τους κανόνες de L Hospital ος Κανόνας Αν g g lim, lim,,, σε περιοχή του εξαίρεση ίσως το και υπάρχει το lim lim g g ος Κανόνας lim g (πεπερασμένο ή άπειρο), τότε: Αν g g με lim, lim,,, σε περιοχή του με εξαίρεση ίσως το και υπάρχει το lim lim g g χόλιο: lim g (πεπερασμένο ή άπειρο), τότε: α) Οι παραπάνω τύποι απαιτούν προσοχή κατά την εφαρμογή τους β) τις υποθέσεις είναι απαραίτητο να συμπληρώνουμε την g σε μια περιοχή του, με εξαίρεση ίσως το Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 35 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

36 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα ; Αρχική συνάρτηση ή παράγουσα της στο ονομάζουμε κάθε συνάρτηση F που είναι παραγωγίσιμη στο και ισχύει: F, για κάθε Θεώρημα Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Αν F είναι μια παράγουσα της στο, να αποδείξετε ότι: Όλες οι συναρτήσεις της μορφής G F c, c, είναι παράγουσες της στο Κάθε άλλη παράγουσα G της στο παίρνει τη μορφή G F c, c Κάθε συνάρτηση της μορφής G F c, όπου c, είναι μια παράγουσα της στο, αφού G F c F, για κάθε Έστω G είναι μια άλλη παράγουσα της στο Τότε, για κάθε ισχύουν οι σχέσεις F και G, οπότε: G F Άρα υπάρχει σταθερά c τέτοια, ώστε G F c, για κάθε, για κάθε 3 Να δώσετε τον ορισμό του ορισμένου ολοκληρώματος μιας συνεχούς συνάρτησης σε ένα κλειστό διάστημα, Έστω μια συνάρτηση συνεχής στο, Με τα σημεία χωρίζουμε το διάστημα, σε ισομήκη O a= ξ ξ υποδιαστήματα μήκους τη συνέχεια επιλέγουμε αυθαίρετα ένα,,, και σχηματίζουμε το άθροισμα,, για κάθε S το οποίο συμβολίζεται, σύντομα, ως εξής: S Το όριο του αθροίσματος S, δηλαδή το =() ξk v- ξv v=β Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 36 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

37 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου lim σημείων Το παραπάνω όριο ονομάζεται ορισμένο ολοκλήρωμα της συνεχούς υπάρχει στο και είναι ανεξάρτητο από την επιλογή των ενδιάμεσων συνάρτησης από το στο, συμβολίζεται με d και διαβάζεται «ολοκλήρωμα της από το στο» Δηλαδή, lim d 4 Να γράψετε τις ιδιότητες του ολοκληρώματος α) Ισχύει ότι: d d d d Αν για κάθε,, τότε d β) Έστω, g συνεχείς συναρτήσεις στο, και, d d g d d g d και γενικά g d d g d Τότε ισχύουν: γ) Αν η είναι συνεχής σε ένα διάστημα και,,, τότε ισχύει d d d δ) Έστω μια συνεχής συνάρτηση σε ένα διάστημα, Αν για κάθε, και η συνάρτηση δεν είναι παντού μηδέν στο διάστημα αυτό, τότε d 5 Να γράψετε την παράγωγο της συνάρτησης, είναι συνεχής συνάρτηση στο διάστημα Ισχύει ότι: χόλια: F t dt, για κάθε Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 37 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: F d, όπου

38 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου α) Γενικότερα έχουμε το εξής θεώρημα: Αν είναι μια συνεχής συνάρτηση σε ένα διάστημα και είναι ένα σημείο του, τότε η συνάρτηση, είναι μια παράγουσα της στο Δηλαδή ισχύει: t dt για κάθε F t dt, β) Από το παραπάνω θεώρημα και το θεώρημα παραγώγισης σύνθετης συνάρτησης g προκύπτει ότι: t dt g g, με την προϋπόθεση ότι τα χρησιμοποιούμενα σύμβολα έχουν νόημα Θεώρημα 5 Έστω μια συνεχής συνάρτηση σε ένα διάστημα, Αν G είναι μια παράγουσα της στο,, να αποδείξετε ότι: t dt G G ύμφωνα με το γνωστό θεώρημα, η συνάρτηση F t dt είναι μια παράγουσα της στο, Επειδή και η G είναι μια παράγουσα της στο,, θα υπάρχει c τέτοιο, ώστε G F c () Από την (), για, έχουμε G F c t dt c c Επομένως, G F G, οπότε, για, έχουμε, οπότε c G και άρα t dt G G G F G t dt G 6 Να γράψετε τους τύπους της παραγοντικής ολοκλήρωσης και της αντικατάστασης για το ορισμένο ολοκλήρωμα α) Ισχύει ότι: g d g g d, όπου, g είναι συνεχείς συναρτήσεις στο, u β) Ισχύει ότι: g g d u du, όπου, g είναι συνεχείς συναρτήσεις, du u g d και u g u g, Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 38 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

39 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 7 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε, και η συνάρτηση είναι συνεχής Αν μια συνάρτηση είναι συνεχής σε ένα διάστημα, και για κάθε, τότε το εμβαδόν του χωρίου που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα είναι d 8 Να αποδείξετε ότι αν οι συναρτήσεις, g είναι συνεχείς στο, με g για κάθε, τότε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των, g και τις ευθείες και δίνεται από τον τύπο: g d =() =() Ω =g() Ω =g() Ω O (α) O (β) Έστω δύο συναρτήσεις και g συνεχείς στο διάστημα κάθε, O (γ), με g για και το χωρίο που περικλείεται από τις γραφικές παραστάσεις των, g και τις ευθείες Παρατηρούμε ότι και (χ 8α) d g d g d Επομένως, g d () 9 Να αποδείξετε ότι αν για τις συναρτήσεις, g είναι g για κάθε, τότε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των, g και τις ευθείες και δίνεται από τον τύπο: g d Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 39 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

40 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Επειδή οι συναρτήσεις, g είναι συνεχείς στο,, θα υπάρχει αριθμός c τέτοιος, ώστε c g c, για κάθε, έχει το ίδιο εμβαδόν με το χωρίο Είναι φανερό ότι το χωρίο (χα) =()+c Ω =() Ω =g()+c α O β α O β =g() (α) (β) Επομένως, σύμφωνα με τον τύπο (), έχουμε: c g cd g d Άρα χόλια: g d α)όταν η διαφορά g δεν διατηρεί σταθερό πρόσημα στο,, τότε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των, g και τις ευθείες και είναι ίσο με g d β) Το εμβαδόν του χωρίου που περικλείεται από τον άξονα, τη γραφική παράσταση μιας συνάρτησης g, με, και τις ευθείες και είναι ίσο με: g για κάθε g d Πράγματι, επειδή ο άξονας είναι η γραφική παράσταση της συνάρτησης, έχουμε g d g d g d Επομένως, αν για μια συνάρτηση g ισχύει g για κάθε, g d, τότε: O α Ω β =g() Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 4 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

41 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου ΘΕΜΑ ο Αν η συνάρτηση : είναι γνησίως μονότονη στο, τότε η γνησίως μονότονη στο με ίδιο είδος μονοτονίας με την είναι Επειδή η είναι γνησίως μονότονη στο πεδίο ορισμού της, έπεται ότι η είναι συνάρτηση, οπότε η έχει αντίστροφη συνάρτηση και το πεδίο ορισμού της είναι το Έστω ότι η είναι γνησίως αύξουσα στο, θα δείξουμε ότι η στο είναι γνησίως αύξουσα Υποθέτουμε ότι η, με δεν είναι γνησίως αύξουσα στο και, τότε θα υπάρχουν Έχουμε όμως * : άτοπο αφού (*) (αφού Από τα παραπάνω προκύπτει ότι η, για κάθε ) είναι γνησίως αύξουσα στο Ομοίως αποδεικνύεται ότι αν η είναι γνησίως φθίνουσα στο, τότε και η γνησίως φθίνουσα στο είναι Από όλα τα παραπάνω συμπεραίνουμε ότι αν η είναι γνησίως μονότονη στο, τότε και η είναι γνησίως μονότονη στο με το ίδιο είδος μονοτονίας με την ΘΕΜΑ ο Αν η συνάρτηση : είναι γνησίως αύξουσα στο, να δείξετε ότι η εξίσωση είναι ισοδύναμη με την εξίσωση Έστω μια ρίζα της εξίσωσης, τότε θα ισχύει : της προκύπτει ότι, και ( αφού Έχουμε : Θα δείξουμε ότι Από ) Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 4 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

42 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Έστω ότι, τότε θα είναι ή Υποθέτουμε ότι :, τότε θα έχουμε, ΑΤΟΠΟ, αφού, υποθέσαμε ότι Ομοίως σε άτοπο καταλήγουμε αν υποθέσουμε ότι, οπότε ο αριθμός είναι ρίζα της εξίσωσης εξίσωσης είναι και ρίζα της εξίσωσης Αντιστρόφως Έστω μια ρίζα της εξίσωσης προκύπτει ότι και Από την 3 έχουμε Επομένως είναι Άρα κάθε ρίζα της, τότε θα ισχύει :3 ( αφού ) : 4 Από 3 και 4 προκύπτει ότι εξίσωσης Επομένως κάθε ρίζα της εξίσωσης εξίσωσης Από την 3 Άρα ο αριθμός είναι ρίζα της Από τα παραπάνω προκύπτει ότι οι εξισώσεις και ισοδύναμες είναι και ρίζα της είναι ΘΕΜΑ 3 ο Αν για τις συναρτήσεις, : lim g Επειδή είναι, τότε είναι και lim g g ισχύει g lim κοντά στο και είναι έπεται ότι ισχύει g κοντά στο Ακόμα δόθηκε ότι ισχύει g κοντά στο Έτσι κοντά στο ισχύει g κοντά στο ισχύει: : g, οπότε Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 4 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

43 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Είναι ότι lim και lim lim g ( αφού lim g οπότε, λόγω της, προκύπτει Επειδή είναι lim lim και ισχύει, δηλαδή lim κοντά στο, έπεται ότι ημείωση: Αν ισχύει g κοντά στο και είναι lim lim g, τότε και ΘΕΜΑ 4 ο Αν η συνάρτηση είναι συνεχής στο διάστημα, παραγωγίσιμη στο εσωτερικό του διαστήματος και ισχύει είναι αύξουσα στο Έστω, με εσωτερικό του και είναι παραγωγίσιμη στο για κάθε εσωτερικό σημείο του, τότε η Επειδή η είναι συνεχής στο διάστημα, παραγωγίσιμη στο,, έπεται ότι η είναι συνεχής στο,,,, άρα υπάρχει, ώστε : Είναι όμως και, οπότε η ικανοποιεί τις προϋποθέσεις του ΘΜΤ στο και (αφού ) οπότε έχουμε: Επομένως για κάθε, με αύξουσα στο ισχύει, οπότε η είναι ημείωση: Αν η συνάρτηση είναι συνεχής στο διάστημα, παραγωγίσιμη στο εσωτερικό του και για κάθε εσωτερικό σημείο του ισχύει είναι φθίνουσα στο διάστημα, τότε η Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 43 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

44 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου ΘΕΜΑ 5 ο Αν η συνάρτηση :, όπου διάστημα, είναι συνεχής στο και ισχύει για κάθε και t dt Θεωρώ την συνάρτηση g με,, τότε είναι t dt, ( σταθερό σημείο του ) Επειδή η είναι συνεχής στο διάστημα έπεται ότι η g είναι παραγωγίσιμη στο με g, για κάθε Επειδή η είναι συνεχής στο διάστημα και ισχύει για κάθε έπεται ότι η διατηρεί στο σταθερό πρόσημο, οπότε θα είναι για κάθε ή για κάθε, δηλαδή θα είναι g για κάθε ή g κάθε για Επομένως η g θα είναι γνησίως αύξουσα στο ή γνησίως φθίνουσα στο Έτσι, η g ως γνησίως μονότονη στο, είναι συνάρτηση Έχουμε, t dt t dt t dt Άρα είναι g t dt t dt t dt g t dt ( ί g ί ά ) ΘΕΜΑ 6 ο Αν η συνάρτηση είναι συνεχής στο d Θεωρώ την συνάρτηση g t dt,,,, τότε υπάρχει, ώστε Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 44 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

45 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Επειδή η είναι συνεχής στο, έπεται ότι η g είναι παραγωγίσιμη στο, με g για κάθε,, υπάρχει,, ώστε, οπότε η g ικανοποιεί τις προϋποθέσεις του ΘΜΤ στο ( αφού η g είναι συνεχής στο, και παραγωγίσιμη στο, ) Επομένως g g t dt t dt g t dt t dt ΘΕΜΑ 7 ο Αν οι συναρτήσεις, g:, είναι συνεχείς και ισχύει g κάθε, τότε d g d για Θεωρώ τη συνάρτηση h g,, Η h είναι συνεχής στο, ως διαφορά συνεχών συναρτήσεων Ακόμα για κάθε, ισχύει g g h Επειδή η h είναι συνεχής στο h d g d, και ισχύει h για κάθε, d g d Βασικές ανισότητες d g d, έπεται ότι ), για κάθε ( η ισότητα ισχύει μόνο αν ) ) e (μία από τις αποδείξεις στο θέμα ) ( η ισότητα ισχύει μόνο αν ) 3) ln, για κάθε ( η ισότητα ισχύει μόνο αν ) 4), για κάθε, ( η ισότητα ισχύει μόνο αν ) 5), για κάθε ( η ισότητα ισχύει μόνο αν ) Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 45 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

46 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου 6) Αν m M, για κάθε τότε m M m M mm ΘΕΜΑ 8 ο Αν η συνάρτηση :, ( : διάστημα ), είναι παραγωγίσιμη και ισχύει για κάθε, τότε η είναι συνάρτηση Υποθέτουμε ότι η ΔΕΝ είναι συνάρτηση, τότε θα υπάρχουν, με και Επειδή η είναι παραγωγίσιμη στο διάστημα και συνεχής στο και παραγωγίσιμη,, Ακόμη είναι,, οπότε υπάρχει, ώστε, έπεται ότι η είναι Άρα η ικανοποιεί τις προϋποθέσεις του Θ Rolle στο, ΑΤΟΠΟ, αφού δόθηκε ότι για κάθε Επομένως η είναι συνάρτηση ΘΕΜΑ 9 ο Αν η συνάρτηση :, ( : διάστημα ), είναι συνεχής και, τότε η είναι γνησίως μονότονη στο Έστω ότι η ΔΕΝ είναι γνησίως μονότονη στο, τότε δεδομένου ότι η είναι συνάρτηση, θα υπάρχουν,, 3 με 3 και 3 ή 3 ή 3 ή 3 Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 46 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

47 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Έστω 3, τότε επειδή η είναι συνεχής στο, 3, ώστε και επειδή η είναι και ισχύει έπεται, λόγω του θεωρήματος ενδιάμεσων τιμών, ότι υπάρχει 3 προκύπτει ότι 3, ΑΤΟΠΟ, αφού 3 Ομοίως σε άτοπο καταλήγουμε και στις υπόλοιπες περιπτώσεις Επομένως η είναι γνησίως μονότονη στο ΘΕΜΑ ο Αν η συνάρτηση είναι παραγωγίσιμη στο διάστημα και εξίσωση έχει διαφορετικές ρίζες τουλάχιστον ρίζες στο Έστω,,, με έχει στο, τότε η εξίσωση οι στο πλήθος ρίζες τις εξίσωσης Επειδή η είναι παραγωγίσιμη στο έπεται ότι η είναι συνεχής στα διαστήματα,,, 3,,,,,, 3,,, και παραγωγίσιμη στα διαστήματα Ακόμη είναι, αφού οι αριθμοί,, είναι οι ρίζες της εξίσωσης Άρα η ικανοποιεί τις προϋποθέσεις του Θ Rolle σε καθένα από τα διαστήματα,,,,,, 3 Επομένως υπάρχουν,,, 3,,,,,,, οπότε η εξίσωση ρίζες στο διάστημα ώστε έχει τουλάχιστον ΘΕΜΑ ο Για κάθε πραγματικό ισχύει e και το ίσον ισχύει μόνο όταν Από εφαρμογή σχολικού βιβλίου γνωρίζουμε ότι, για όλους τους θετικούς αριθμούς ισχύει ln και το ίσον ισχύει μόνο για Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 47 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

48 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Αντικαθιστούμε στην όπου το e (αφού είναι θετικός), ln e e e άρα e Το ίσον ισχύει όταν το e δηλαδή όταν δηλαδή ΘΕΜΑ ο (μηδενική επί φραγμένη) Αν οι συναρτήσεις, g είναι ορισμένες στο και ισχύει και τότε g lim lim Είναι, g g m g m για όλα τα Άρα για όλα τα ισχύει g m m g m lim m m lim m m και Όμως lim m m lim m m από το Κριτήριο Παρεμβολής έπεται ότι g lim ΘΕΜΑ 3 ο Αν :, συνεχής και στο,, τότε η έχει μια τουλάχιστον ρίζα Επειδή ή θα είναι ή θα είναι Διακρίνουμε περιπτώσεις: i) Αν ισχύει η σχέση, γνωρίζουμε ότι η είναι συνεχής στο, Θεώρημα Bolzano η εξίσωση έχει μία τουλάχιστον ρίζα στο, ii) Αν ισχύει η σχέση, τότε έχουμε ή, οπότε από το : ί ί ή : ί ί Άρα η εξίσωση έχει ρίζες το ή το Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 48 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

49 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου υνολικά από τις περιπτώσεις i και ii παίρνουμε ότι η εξίσωση έχει μία τουλάχιστον ρίζα στο, ΘΕΜΑ 4 ο (πρόταση που λύνουμε ανισώσεις εξισώσεις) α) Μια συνάρτηση είναι γνησίως αύξουσα στο διάστημα, αν, και μόνο αν, για κάθε, ισχύει η ισοδυναμία β) Μια συνάρτηση είναι γνησίως φθίνουσα στο διάστημα, αν, και μόνο αν, για κάθε, ισχύει η ισοδυναμία γ) Αν συνάρτηση είναι στο σύνολο, αν, και μόνο αν, για κάθε, ισχύει η ισοδυναμία α) Ευθύ: Ισχύει από τον ορισμό της γν αύξουσας συνάρτησης Αντίστροφο: Έστω Έστω για κάθε,, θα δείξουμε ότι, τότε από τον ορισμό της συνάρτησης έχουμε, επειδή η είναι γνησίως αύξουσα ισχύει Έστω, ΑΤΟΠΟ, αφού, ΑΤΟΠΟ, αφού Οπότε από τον νόμο της τριχοτομίας έπεται ότι, οπότε ισχύει η ισοδυναμία β) Αντίστοιχα με το (α) γ) Ευθύ: Ισχύει με τον ορισμό της Αντίστροφο: Αν, τότε από τον ορισμό της συνάρτησης έχουμε, (δεν μπορεί το ίδιο να αντιστοιχίζεται σε διαφορετικό, η αντίστοιχη σε αυτή την περίπτωση δεν θα ήταν συνάρτηση) Οπότε ισχύει η ισοδυναμία ΘΕΜΑ 5 ο α) Μια γνησίως μονότονη συνάρτηση έχει το πολύ μια ρίζα Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 49 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

50 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου β) Έστω μια γνησίως μονότονη συνάρτηση στο, τότε η εξίσωση k, έχει μια το πολύ λύση στο α) Έστω μια γνησίως μονότονη συνάρτηση, τότε η είναι γνησίως αύξουσα ή γνησίως φθίνουσα και σε κάθε περίπτωση είναι Έστω ότι η εξίσωση έχει δύο τουλάχιστον διαφορετικές ρίζες τις, τότε : ΑΤΟΠΟ Οπότε η εξίσωση έχει το πολύ μια ρίζα ΘΕΜΑ 6 ο Αν για μια συνάρτηση είναι παραγωγίσιμη στο διάστημα, τότε μεταξύ δύο οποιωνδήποτε διαφορετικών ριζών της βρίσκεται μία τουλάχιστον ρίζα της παραγώγους της, δηλαδή της Έστω δύο ρίζες της στο Η είναι παραγωγίσιμη στο διάστημα, και ισχύει, άρα ικανοποιούνται οι προϋποθέσεις του Θ Rolle στο,, επομένως υπάρχει, τέτοιο ώστε, άρα η εξίσωση, δηλαδή μεταξύ των δύο διαφορετικών ριζών της εξίσωσης λύση στο, έχει μια τουλάχιστον ΘΕΜΑ 7 ο Αν μια συνεχή συνάρτηση ορισμένη σε ένα ανοικτό διάστημα, έχει την ιδιότητα lim, lim (η αντίστροφα), τότε το σύνολο τιμών της είναι το Αρκεί να δείξουμε ότι για κάθε πραγματικό αριθμό είναι τιμή της Επειδή lim, ώστε η θα παίρνει και τιμές μικρότερες του, δηλαδή θα υπάρχει Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 5 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

51 Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Επειδή lim ώστε, η θα παίρνει και τιμές μεγαλύτερες του, δηλαδή θα υπάρχει Προφανώς και από το θεώρημα ενδιάμεσων τιμών θα υπάρχει στο διάστημα με άκρα τα, τέτοιο ώστε Επομένως το είναι τιμή της ΘΕΜΑ 8 ο Ισχύει η ισοδυναμία: lim lim Γνωρίζουμε ότι,, όμως από το Κριτήριο Παρεμβολής έπεται το ζητούμενο lim lim, οπότε ΘΕΜΑ 9 ο α) Οι παραγωγίσιμες συναρτήσεις : με την ιδιότητα είναι της μορφής ce, όπου c σταθερά β) Οι παραγωγίσιμες συναρτήσεις : με την ιδιότητα m είναι της m μορφής ce, όπου cm, σταθερά α) Εφαρμογή σχολικού βιβλίου β) Έχουμε διαδοχικά για κάθε, m m m m e me m e m Άρα η συνάρτηση g e m m τέτοια ώστε c e δηλαδή, είναι σταθερή στο, οπότε έχει σταθερά c ce Πολυχώρος ΓΝώΗς Φροντιστήριο ΜΕ 5 Μακρυγιάννη 56 Άγιος Δημήτριος - Τηλ: 99637

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

Βασικές Μεθοδολογίες για την επίλυση ασκήσεων

Βασικές Μεθοδολογίες για την επίλυση ασκήσεων ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Βασικές Μεθοδολογίες για την επίλυση ασκήσεων ΣΤΕΛΙΟΥ ΜΙΧΑΗΛΟΓΛΟΥ ΕΥΑΓΓΕΛΟΥ ΤΟΛΗ 5-6 Επιμέλεια : Νικόλαος Σαμπάνης Στο φυλλάδιο περιέχονται όλες οι βασικές Μεθοδολογίες

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

Για παραγγελίες των βιβλίων 2310610920

Για παραγγελίες των βιβλίων 2310610920 Για παραγγελίες των βιβλίων 369 Θέματα Προσομοίωσης Πανελλαδικών D.A.T. ΘΕΜΑ o ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013 ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 3 Εισαγωγή Μέσα Μαΐου και ο πυρετός των Πανελλαδικών όλο και ανεβαίνει! Οι μαθητές ξεκοκαλίζουν τα βιβλία για να ανακαλύψουν δύσκολα θέματα διαφορετικά από αυτά που κυκλοφορούν

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Τύποι - Βασικές έννοιες Όρια - Συνέχεια 37. ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Με τη βοήθεια του παρακάτω θεωρήματος διευκολύνεται ο υπολογισμός ορίων (άλγεβρα ορίων): Αν τα όρια lim f () και lim g()

Διαβάστε περισσότερα

f f x f x = x x x f x f x0 x

f f x f x = x x x f x f x0 x 1 Παράγωγος 1. για να βρω την παράγωγο της f σε διάστηµα χρησιµοποιώ βασικές παραγώγους και κανόνες παραγωγισης. για να βρω την παράγωγο σε σηµείο αλλαγής τύπου η σε άκρο διαστήµατος δουλεύω µε ορισµό

Διαβάστε περισσότερα

ΝΙΚΟΛΑΟΣ Κ. ΣΑΜΠΑΝΗΣ. Η επανάληψη Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΝΙΚΟΛΑΟΣ Κ. ΣΑΜΠΑΝΗΣ. Η επανάληψη Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΝΙΚΟΛΑΟΣ Κ. ΣΑΜΠΑΝΗΣ Η επανάληψη Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2015 Βασικά σημεία προσοχής για την τελευταία επανάληψη στην ύλη των Μαθηματικών Γ Λυκείου Θετικής Τεχνολογικής Κατεύθυνσης. Χρήσιμο βοήθημα για όλους

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0 ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι αν () 0 στο, ) και ()

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΘΕΜΑ A A Απόδειξη Σελ 53 Α Ορισμός Σελ 9 Α3 Ορισμός Σελ 58 Α4 α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β Β 4 4 4 Άρα ο γεωμετρικός τόπος των εικόνων των μιγαδικών

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

Σημαντικές παρατηρήσεις

Σημαντικές παρατηρήσεις ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Διαφορικός Λογισμός Σημαντικές παρατηρήσεις Φυλλάδιο Φυλλάδι555 5 ο ο Η έννοια της παραγώγου Να υπάρχει διάστημα της μορφής ή ή α,,β

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Τοπική μονοτονία Αν μια συνεχής συνάρτηση έχει γνήσια θετική αρνητική παράγωγο

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης Γ Λυκείου. Για το Θέμα Α: Ορισμοί. Συλλογή Από. Πανελλήνιες Επαναληπτικές Ομογενών

Μαθηματικά Κατεύθυνσης Γ Λυκείου. Για το Θέμα Α: Ορισμοί. Συλλογή Από. Πανελλήνιες Επαναληπτικές Ομογενών Μαθηματικά Κατεύθυνσης Γ Λυκείου Για το Θέμα Α: Ορισμοί Συλλογή Από Πανελλήνιες Επαναληπτικές Ομογενών 2014.Π 1. Έστω µια συνάρτηση f συνεχής σε διάστηµα και παραγωγίσιµη στο εσωτερικό του. Πότε λέµε ότι

Διαβάστε περισσότερα

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) =

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) = ΣΥΝΑΡΤΗΣΕΙΣ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ Α ΠΕΔΙΟ ΟΡΙΣΜΟΥ Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) () = 4 6 6 ii) () = iii) () = log ( ) iv) () = log ( log4(- )) v) vii) () 5 4 viii) () 5 log

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις. ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

1) κατακόρυφη ασύµπτωτη την ευθεία x = x0 =± ( ηλαδή η ευθεία x = x0. είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια

1) κατακόρυφη ασύµπτωτη την ευθεία x = x0 =± ( ηλαδή η ευθεία x = x0. είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια ΘΕΩΡΙΑ ΑΣΥΜΠΤΩΤΩΝ Η : A έχει: ) κατακόρυφη ασύµπτωτη την ευθεία 0 τ.µ.τ. όταν lim ± ή lim ± ή lim ± ( ηλαδή η ευθεία 0 0 + 0 0 είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια είναι

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 4 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής zi,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 5 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα [α, β]. Αν η f είναι

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β) Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον

Διαβάστε περισσότερα