Βελτίωση - Φιλτράρισμα εικόνας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Βελτίωση - Φιλτράρισμα εικόνας"

Transcript

1 Βελτίωση - Φιλτράρισμα εικόνας /7

2 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται παράθυρο ή μάσκα. Τα παράθυρα αυτά είναι συνήθως τετραγωνικά και οι συντελεστές συμμετρικοί. /7

3 Φιλτράρισμα - Συνέλιξη h(n,n ) x(n,n y(n, n ) = M N k = 0k = 0 x(k, k ) h(n -k, n -k ) y(n, n )= x(n, n )* *h(n, n ) 3/7

4 Η διδιάστατη συνέλιξη - γραφικά 4/7

5 Συνέλιξη υλοποίηση A B C To αποτέλεσμα της συνέλιξης για την τιμή της εικόνας στη θέση n,n δηλ. στο p 5 είναι: D E F G H I p p p 3 p 4 p 5 p 6 p 7 p 8 p 9 y(n,n )=Ap +Bp +Cp 3 +Dp 4 +Ep 5 +Fp 6 Gp 7 +Hp 8 +Ip 9 5/7

6 Συνέλιξη υλοποίηση A B C D E F G H I p p p 3 p 4 p 5 p 6 p 7 p 8 p 9 Το παράθυρο (A,B,C,D,E,F,G,H,I) διατρέχει την εικόνα και κάθε φορά υπολογίζεται το γινόμενο του παραθύρου με τα αντίστοιχα pixel της εικόνας. Στην εικόνα εξόδου το αποτέλεσμα της συνέλιξης αποδίδεται στο κεντρικό pixel του παραθύρου. 6/7

7 Συνέλιξη στο πεδίο της συχνότητας 7/7

8 Μετασχηματισμός Fourier Μετασχηματισμός Fourier DFT-FFT 8/7

9 -D DFT και IDFT Γιά N image : M f ( x, y) O DFT ορίζεται: F ( u, v ) for = u MN = 0, M N x = 0 y = 0 f ( x,,, L, M y ) e j π ( ux / M + vy / N ) v = 0,,, L, N Και ο IDFT: f ( x, y ) = M N u = 0 v = 0 F ( u, v ) e j π ( ux / M + vy / N ) for x = 0,,, L, M y = 0,,, L, N 9/7

10 Μετασχηματισμός Fourier Διαχωρίσιμη πράξη Μιγαδικός αριθμός (μέτρο φάση) Oι τιμέςu,v κοντά στο 0,0 αντιστοιχούν σε χαμηλές συχνότητες. F( 0, 0) MN M N = x= 0 y = 0 f (x, y) = μέση τιμ ή του f(x, y) 0/7

11 Τι είναι πιο σημαντικό? Μέτρο ή φάση α β Πρόσθεση: φάσμα πλάτους της εικόνας (α) και φάσμα φάσης της εικόνας (β) /7

12 Μετασχηματισμός Fourier Παράδειγμα 0 0 /7

13 Filtering στο πεδίο της συχνότητας Βασικές έννοιες: low frequency : μικρές μεταβολές στα χαρακτηριστικά της εικόνας high frequency : απότομες μεταβολές όπως θόρυβος ή περιγράμματα αντικειμένων F( u, v) high frequency low frequency F(0,0) 3/7

14 Συνέλιξη μέσω FFT Βασική ιδιότητα: η πράξη του πολλαπλασιασμού στο πεδίο της συχνότητας ισούται με την συνέλιξη στο χρόνο και αντιστρόφως f(x, y)**h(x,y) F(u, v)h(u, v) ΠΡΟΣΟΧΗ ΣΤΙΣ ΔΙΑΣΤΑΣΕΙΣ 4/7

15 Συνέλιξη μέσω FFT Αρχική εικόνα Filter Mask FFT FFT «φιλτραρισμένη» εικόνα Πολλαπλασιασμός αντίστοιχων pixels Inverse FFT Το «φιλτραρισμένο» φάσμα 5/7

16 Α. Βαθυπερατά φίλτρα Ιδιότητες Φιλτράρουν τις υψηλές συχνότητες (σήματα θορύβου). Λειαίνουν απότομες μεταβολές στην ένταση Θολώνουν την εικόνα (blurring). Απόκριση συχνότητας 6/7

17 Βασικές Κατηγορίες βαθυπερατών φίλτρων Φίλτρα μέσης τιμής (mean filters). Φίλτρα Gaussian μορφής (Gaussian filters). Φίλτρα Butterworth Φίλτρα διάμεσης τιμής (median filters). 7/7

18 Βαθυπερατά φίλτρα - Κατηγορίες βαθυπερατών φίλτρων Φίλτρα μέσης τιμής (averager) Απόκριση συχνότητας ( διαστάσεων) γιατοφίλτρομέσηςτιμής. Στις χαμηλές συχνότητες - γύρωαποτοσημείο(0,0) το πλάτος είναι μεγάλο. Οι συχνότητες - και αντιστοιχούν στο f s / 8/7

19 Θόλωση (blurring) Αρχική εικόνα Εφαρμογή 3x3 averager Εφαρμογή 7x7 averager 9/7

20 Ελάττωση θορύβου επίδραση μήκους παραθύρου Αρχική εικόνα Εικόνα με θόρυβο Ν(0,0.05) Εφαρμογή averager 3x3 0/7

21 Ένα φίλτρο μέσης τιμής με προσαρμογή των συντελεστών Χρησιμοποιείται η αντίστροφη βάθμωση -inverse gradient δ(i,j,m,m)=/ g(m,n)-g(i,j) Εάν g(m,n)=g(ι,j) ορίζουμε δ= (και όχι ) h ij h( i, j) = 0.5 δ ( i, j, m, n) δ ( i, j, m, n) m, n /7

22 Μέση τιμή με περιστρεφόμενη μάσκα Με την διαδικασία αυτή αποφεύγεται η θόλωση Η έξοδος στο φίλτρο αυτό υπολογίζεται ως η μέση τιμή από τα pixel μίας περιστρεφόμενης μάσκας που έχουν την μεγαλύτερη ομογένεια Η ομογένεια υπολογίζεται από την τιμή της διακύμανσης /7

23 Μέση τιμή σε πολλά frames (averaging) Χαρακτηριστική εφαρμογή: μείωση θορύβου αρχική τελική s=imread('saturn.tif'); i=imnoise(s,'gaussian');i=double(i)/55; i=imnoise(s,'gaussian');i=double(i)/55; i3=imnoise(s,'gaussian');i3=double(i3)/55; i4=imnoise(s,'gaussian');i4=double(i4)/55; i=(i+i+i3+i4)/4; figure(); imshow(s) figure(); imshow(i) 3/7

24 Gaussian φίλτρα Οι συντελεστές των Gaussian φίλτρων δίνονται από τη μορφή της Gaussian συνάρτησης: g(x)=exp(-x /σ ) σε μία διάσταση g(i, j)=exp(-(i +j )/σ ) σε δύο διαστάσεις 4/7

25 Ιδιότητες Gaussian συνάρτησης. Είναι ανεξάρτητη της διεύθυνσης.. Έχει μόνο έναν λοβό, δηλαδή οι συντελεστές του αντίστοιχου φίλτρου ελαττώνονται μονότονα με την απόσταση. 3. Ο μετασχηματισμός Fourier της Gaussian συνάρτησης είναι επίσης Gaussian, με αποτέλεσμα οι ανεπιθύμητες υψηλές συχνότητες να μην ενισχύονται. g(i, j)=exp(-(i +j )/σ G(u, v)=exp(-(u +v ) σ / 5/7

26 Ιδιότητες Gaussian συνάρτησης (συνέχεια) 5. Η παράμετρος σ δίνει τη δυνατότητα ελέγχου του βαθμού φιλτραρίσματος. 6. Είναι διαχωρίσιμη σε οριζόντια και κάθετη διαδικασία. λεπτομέρειες 7. Διαδοχικό φιλτράρισμα με Gaussian φίλτρο διακύμανσης σ είναι ισοδύναμο με ένα φιλτράρισμα από Gaussian διακύμανσης / σ. 6/7

27 7/7

28 ΔΠΜΣ Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ 8/7 Σχεδιασμός Gaussian φίλτρων Μία προσέγγιση δίνεται από τους συντελεστές δυωνυμικής κατανομής: π.χ. Για 5 σημεία οι συντελεστές είναι: Προφανώς η άμεση προσέγγιση γίνεται από τησχέσηορισμού: ) g( ), g( e e j) g(i, j i ρ = θ ρ = = = σ ρ σ + n n x n n... x n x n 0 n x) ( = +

29 Για n=7 και σ =, η σχέση () δίνει: Παρατηρούμε πως οι συντελεστές είναι συμμετρικοί και φθίνουν μονότονα με την απόσταση από τοpixel (i, j)= (0, 0) 9/7

30 Gaussian φίλτρα παράδειγμα Αρχική σ= σ= σ=4 30/7

31 Gaussian φίλτρα παράδειγμα 3/7

32 Ιδανικά φίλτρα -IIR φίλτρα Ένα ιδανικό βαθυπερατό φίλτρο θα είχε μία απόκριση συχνότητας που θα ήταν μηδενική για συχνότητες μεγαλύτερες από μία δοθείσα «ακτινική» ήτετραγωνική συχνότητα ω C H(ω,ω ) =, 0 έαν ω + ω διαφορετικά ω C H 0.5 H(ω,ω, ) = έαν ω ω C 0 διαφορετικά,ω Απόκριση : h(m,n)=aω C ω C sinc(ω C m)sinc(ω C n) ω C 0 00 ω 0-00 ω C -50 ω /7

33 H(ω Butterworth φίλτρα Μία προσέγγιση της ιδανικής συνάρτησης γίνεται με συναρτήσεις Butterworth:,ω ) = ω + + ω C Σε μία διάσταση η απόκρισή τους έχει την παρακάτω μορφή: ω k Μέτρο Butterworh 5 ης τάξεως ω C = Συχνότητα x π 33/7

34 Butterworth φίλτρα H ( u, v ) = + [ D ( u, v ) / D ] n 0 34/7

35 Butterworth φίλτρα Παράδειγμα Υλοποίηση στο πεδίο των συχνοτήτων Αρχική εικόνα (α) (β) (γ) Φιλτράρισμα με τρία διαφορετικά φίλτρα Butterworth α) ω C =4 β )ω C =6, και γ)ω C =8 35/7

36 ΜΗ ΓΡΑΜΜΙΚΑ Φίλτρα διάμεσης τιμής (Median filters) Διάταξη σύμφωνα με την τιμή του pixel διάμεση 5 τιμή Η υλοποίησή τους γίνεται με καθορισμό ενός παραθύρου (μάσκας) που διατρέχει όλη την εικόνα και επιλέγεται ως έξοδος η μεσαία (median) τιμή. 36/7

37 Φίλτρα διάμεσης τιμής (median) Ιδιότητες Είναι ΜΗ ΓΡΑΜΜΙΚΑ median {x,x,x3} +median{y,y,y3} median{x+y,x+y,x3+y3} Επανειλημμένη εφαρμογή του median φίλτρου καταλήγει σε εικόνες που δεν μεταβάλλονται. Αυτά είναι τα Σήματα - ρίζες 37/7

38 Σημεία στα άκρα της εικόνας Είναι ουσιώδης η διαδικασία στα σημεία που βρίσκονται στο άκρο της εικόνας. 38/7

39 Σήματα Ρίζες (μία διάσταση) Αρχικό σήμα ο φιλτράρισμα (Ν=3) ο 3 ο Μετά το δεύτερο φιλτράρισμα το σήμα ΔΕΝ αλλάζει τιμή 39/7

40 Φίλτρα διάμεσης τιμής (median) Απόκριση σε ακμή α διάσταση: φίλτρο μέσης τιμής median (n=3) και διαστάσεις -εικόνα Η αρχική εικόνα ακμή μένει αμετάβλητη στην εφαρμογή median ενώ «λειαίνεται» από φίλτρο μέσης τιμής 40/7

41 Φίλτρα διάμεσης τιμής (median) Aπόκριση σε παλμό (salt & pepper, impulsive) Εικόνα με ένα παλμό Εξοδος Median φίλτρου (3x3) Εξοδος averager (3x3) Eίναι εμφανής η εξάπλωση του παλμού. 4/7

42 Φίλτρα διάμεσης τιμής παράδειγμα Aρχική εικόνα Εικόνα με κρουστικό θόρυβο 0% median φίλτρο φίλτρο μέσης τιμής Έξοδος median φίλτρου. Ο κρουστικός θόρυβος είναι 0% και εξαλείφεται εντελώς. Αντίστοιχα το φίλτρο μέσης τιμής έχει πολύ φτωχή συμπεριφορά. 4/7

43 Median filtering Συμπερασματικά : Τι θα γίνει στην ακμή και τι γύρω από το λευκό pixel?? 43/7

44 Αλγόριθμος υλοποίησης median φίλτρων Γενίκευση: φίλτρα σωρού (stack filters) 44/7

45 Φίλτρα σωρού (stack filters) Φίλτρα σωρού stack filters. Στην είσοδο το σήμα αποσυντίθεται με κατωφλιοποίηση και προστίθενται οι έξοδοι. Εάν κάθε γραμμή πραγματοποιεί median πράξη το άθροισμα των δυαδικών εξόδων θα είναι το median φιλτρο 45/7

46 Θετική συνάρτηση Boole Positive boolean function PBF για median φιλτρο 3 σημείων med{x,x,x3 } η ισοδύναμη δυαδική Boolean συνάρτηση: f(x; x; x3) = xx + xx3 +xx3 Γενικά: f(x, x, x3, x4 x5) = xx + xx3x4 + x4x5 Max-min 46/7

47 ΔΠΜΣ Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ 47/7 Β. Υψιπερατά φίλτρα Ιδιότητες: Εξασθενούν τις χαμηλές συχνότητες σε μία εικόνα και τονίζουν τις υψηλές. Τονίζουν τις μεταβολές της εικόνας (contrast). Δίνουν έμφαση στις λεπτομέρειες. Ενισχύουν τον θόρυβο. 4 υψιπερατές μάσκες 3x3 : (4) (3) 5 () 9 ()

48 Παράδειγμα Αρχική εικόνα (α) (β) (γ) Ηεικόνα(α) έχει προέλθει με εφαρμογή του υψιπερατού φίλτρου (4) στην αρχική εικόνα. Επίσης έχει γίνει κλιμάκωση ώστε και οι αρνητικές τιμές να μετατοπισθούν στο διάστημα 0-. Η (β) έχει προέλθει με εφαρμογή αντίστοιχα του φίλτρου (3) χωρίς καμία κλιμάκωση των τιμών, ενώ στο (γ) έχει γίνει κλιμάκωση. 48/7

49 Α πλάτος Βαθυπερατό φίλτρο Υψιπερατό φίλτρο Γενικά: 0 Συχνότητα H hp (ω,ω )=-Η lp (ω,ω ) 49/7

50 Unsharp masking Από ένα κλάσμα α της αρχικής εικόνας f(k, k ) αφαιρείται το αποτέλεσμα εξόδου βαθυπερατού φίλτρου f L (k, k ). Η έξοδος g(k, k ) είναι: g(k, k ) = αf(k, k ) - f L (k, k ) Αν α=, το αποτέλεσμα είναι υψιπερατό φίλτρο. Αν α>, τότε ένα βαθυπερατό τμήμα της εικόνας προστίθεται στο αποτέλεσμα (high boost filter) Μία υλοποίηση: -/9 -/9 -/9 -/9 w/9 -/9 -/9 -/9 -/9 Όπου w = 9α - 50/7

51 Unsharp masking = αφαίρεση της «θολωμένης» εικόνας Παράδειγμα ο Εικόνα εισόδου Εικόνα εξόδου Unsharp masking με α> 5/7

52 Παράδειγμα ο RGB εικόνα Εφαρμογή στην συνιστώσα της έντασης 5/7

53 Διανυσματικές και βαθμωτές επεξεργασίες Στις βαθμωτές διαδικασίες επεξεργασίας εφαρμόζονται οι μέθοδοι για γκρίζες (gray scale) εικόνες με δύο τρόπους: α) ξεχωριστά σε κάθε κανάλι της εικόνας β) στη συνιστώσα φωτεινότητας (Υ) Στις διανυσματικές διαδικασίες οι τρεις τιμές R,G,B θεωρούνται συνιστώσες ενός διανύσματος και οι μέθοδοι που χρησιμοποιούνται είναι βέβαια μέθοδοι διανυσματικής ανάλυσης. Μία κλασσική τέτοια μέθοδος είναι η διαδικασία του διανυσματικού διάμεσου. 53/7

54 Διανυσματικός διάμεσος Vector median Πώς διατάσσονται N διανύσματα?. Υπολογίζονται οι αποστάσεις d(x i x j ) κάθε διανύσματος x i από όλα τα υπόλοιπα. Υπολογίζεται η συνολική απόσταση: d i = n j= d(x i,x j ) d(x 4 x 3 ) Ο διανυσματικός διάμεσος - Vector Median Filter VMFαντιστοιχεί στο μικρότερο d i 54/7

55 Median και διεκθετική κατανομή Σ x-x i =min e x x e x x e x x 3...e x x Ν = e i x x ι = max Εκτιμητής μέγιστης πιθανοφάνειας Maximum likelihood estimator 55/7

56 Vector Directional Filters - VDF α i = όπου n j= A(x A(x i i,x,x j j ) ) = cos x x i i x t j x j A 3, Ο VD διανυσματικός διάμεσος αντιστοιχεί στο μικρότερο a i 56/7

57 Vector median filters παράδειγμα (a) Η εικόνα Peppers, 56x56, 4-bit per pixel, (b)noisy Image, (c) Η έξοδος του VMF. Ο Θόρυβος στην αρχική εικόνα είναι gaussian(0,5 ) και κρουστικός(%) σε κάθε κανάλι. 57/7

58 Ομομορφική επεξεργασία i(n,n ) i(n,n ) f(n,n )=i(n,n ) r(n,n ) f(n,n )=i(n,n ) r(n,n ) r(n,n ) r(n,n ) 58/7

59 Ομομορφική επεξεργασία α< βαθυπερατό φίλτρο log i(n,n ) f(n,n ) log exp p(n,n ) Υψιπερατό φίλτρο log r(n,n ) β> 59/7

60 παράδειγμα H ( u, v) = ( γ L = 0.5, ( γ γ H H γ L =.0) [ ] c( D ( u, v)/ D ) e ) 0 + γ, L Αρχική και επεξεργασμένη εικόνα 60/7

61 μ = σ ΝΜ = ΝΜ n, n Wiener φίλτρα Βασίζονται στον τοπικό (παράθυρο η) υπολογισμό της μέσης τιμής μ και διακύμανσης σ. Δίνεται και η διακύμανση ν του θορύβου α( n η n, n [ α η, n ( n ), n ) μ ] Η «έξοδος» του φίλτρου b δίνεται από την σχέση: σ ν (n,n ) = μ + [α(n,n ) μ] σ b Σε περιοχές όπου σ>>ν προστίθεται στη μέση τιμή μ το τοπικό contrast α-μ 6/7

62 Wiener φίλτρα -παράδειγμα Η αρχική εικόνα Η εικόνα με θόρυβο-'speckle' Ηέξοδος του φίλτρου wiener για παράθυρο 7x7. 6/7

63 Φίλτρα ανισοτροπικής διάχυσης Αναφέρονται σε γκρίζες (gray scale) εικόνες Προσομοιάζουν την ανισοτροπική διάχυση της θερμότητας Σχετίζονται με τα Gaussian φίλτρα αλλά, Η θόλωση της εικόνας ΔΕΝ είναι σε όλες τις κατευθύνσεις ίδια (ανισοτροπική). Προσαρμόζεται στα τοπικά χαρακτηριστικά της εικόνας (όρια αντικειμένων). 63/7

64 Τι είναι διάχυση Διάχυση /7

65 εξίσωση διάχυσης: t I(x, y, t) = ( c(x, y, t) I) = c(x, y, t) I + c I συνάρτηση διάχυσης c(x,y,t)=g( I(x,y,t) ) g I K ( I) = e g g g ( I) = α > + α I + Κ 0 65/7

66 συνάρτηση ροής Φ = c(x, y, t) I(x, y, t) = I K e Ι ή Ι + α I + Κ 66/7

67 t I(x, y,t) = ( c(x, y,t) I) Διακριτή (ψηφιακή) υλοποίηση. Στο διακριτό χώρο η βάθμωση μπορεί να προσεγγισθεί σαν διαφορά στην ένταση μεταξύ γειτονικών pixels. Η συνάρτηση ροής μπορεί να υπολογισθεί ανεξάρτητα για κάθε γειτονικό pixel. 3. Το φίλτρο είναι επαναληπτικό. Το δεξιό μέρος της εξίσωσης περιγράφει την μεταβολή στην ένταση που παράγεται σε μία επανάληψη του φίλτρου 67/7

68 I Βασική επαναληπτική σχέση t+ t t i,j = I i,j + λ[c N Δ ΝI + cs ΔSI + ce ΔΕI + c W Δ WI] i,j 0 λ /4 Δ Ν I i,j Ii,j Ii,j Δ S I i,j I i+,j I i, j Δ E I i,j Ii,j+ Ii,j ΔWIi,j Ii,j Ii, j t t c = g ( I ) t t c = g ( I ) t t c = g ( I ) t c = g ( I ) Ni,j i+,j Si,j i,j Ei,j i,j+ Wi,j t i,j 68/7

69 (α) (β) (γ) (δ) (ε) α) Αρχική εικόνα β) μετά από N=0, K=0 (ανισοτροπική θόλωση) γ) μετά από N=0, K=0 ( «) δ) μετά από N=0, K=30 ( «) ε)εικόνα μετά από N=0, (Gaussian θόλωση) Ν=αριθμός επαναλήψεων 69/7

70 Λογικές πράξεις AND ΟR -XOR x AND y = εάν x και y είναι =0 διαφορετικά x ΟR y = εάν x ή y είναι =0 διαφορετικά x y x XOR y AND εφαρμογή για εντοπισμό ενός τμήματος εικόνας 70/7

71 Διαδικασία «απόκρυψης» encryption Βασίζεται στην ταυτότητα: (a XOR b) XOR b=α Step Boolean Expression Binary Comments. ASCII "A" a Original "message:. "Random" Bits b 0 00 Pseudo-random value from "random" number generator 3. XOR to encrypt 4. "Random" Bits 5. XOR to decrypt a XOR b 00 0 Encrypted "message" b 0 00 (a XOR b) XOR b Same "Random bits" as above Decrypted "message" (same as original) 7/7

72 ασκήσεις 3. Να υλοποιηθεί συνέλιξη με διαδικασία Μετασχ. Fourier 3. Να υλοποιηθεί ο Διανυσματικός διάμεσος - εφαρμογή σε έγχρωμη εικόνα 3.3 Να υλοποιηθεί vector directional filter - εφαρμογή σε έγχρωμη εικόνα 3.4 Να υλοποιηθεί η ομομορφική επεξεργασία- εφαρμογή σε έγχρωμη εικόνα 3.5 Unsharp masking υλοποίηση εφαρμογή σε gray scale εικόνα 3.6 Φιλτράρισμα με Butterworth φίλτρα - εφαρμογή σε gray scale εικόνα 3.7 Anisotropic diffusion (Perona Malic) υλοποίηση 3.8 Να υλοποιηθεί η διαδικασία encryption σε μία εικόνα 7/7

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.- Σ. Φωτόπουλος ΔΠΜΣ Ποιός είναι ο DTFT της u(n)?? u(n) e πδ(ω πk) j ω k ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.-

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Ανακατασκευή εικόνας από προβολές

Ανακατασκευή εικόνας από προβολές Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος 2005 2006, Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος 2005 2006, Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 5: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 5 6 Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Ένας πυκνωτής με μία αντίσταση σε σειρά αποτελούν ένα RC κύκλωμα. Τα RC κυκλώματα χαρακτηρίζονται για την απόκρισή τους ως προς τη συχνότητα και ως

Διαβάστε περισσότερα

Σχήμα Χαμηλοδιαβατά φίλτρα:

Σχήμα Χαμηλοδιαβατά φίλτρα: ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας

Διαβάστε περισσότερα

Προηγμένες εφαρμογές των μαθηματικών στην ψηφιακή επεξεργασία σήματος με χρήση της Matlab

Προηγμένες εφαρμογές των μαθηματικών στην ψηφιακή επεξεργασία σήματος με χρήση της Matlab ATEI Κρήτης Παράρτημα Χανίων τμ. Ηλεκτρονικής Προηγμένες εφαρμογές των μαθηματικών στην ψηφιακή επεξεργασία σήματος με χρήση της Matlab Iterative Shadowgraphic Method (ISM) Παναγιώτης Αργυρέας 5/12/2010

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας Ψηφιακή Επεξεργασία Εικόνας Τι είναι η ψηφιακή εικόνα 1/67 Το μοντέλο της εικόνας ΜίαεικόναπαριστάνεταιαπόέναπίνακαU που κάθε στοιχείο του u(i,j) ονομάζεται εικονοστοιχείο pixel (picture element). Η ανάλυση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΚΕΦΑΛΑΙΟ 3 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ- ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΕΝΟΤΗΤΑ 3.. Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z...4 3... ΟΡΙΣΜΌΣ...4 3... ΎΠΑΡΞΗ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z...5 3..3. ΙΔΙΌΤΗΤΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z... ΕΝΟΤΗΤΑ 3..

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Red. Color. Green. Blue

Red. Color. Green. Blue Red Color Green Blue Γιατί μονόχρωμη Κάμερα ; Oι μονόχρωμες κάμερες εκμεταλλεύονται όλα τα pixel του ccd, έχουν μεγαλύτερη ανάλυση, μεγαλύτερη ευαισθησία & δυναμικό εύρος. H έγχρωμη εικόνα παράγεται με

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1 Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία

Διαβάστε περισσότερα

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation)

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Σκοπός της άσκησης Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine

Διαβάστε περισσότερα

2.1 ΕΙΣΑΓΩΓΗ 2.1 2.2 ΤΟ ΦΩΣ 2.2 2.3 ΘΕΜΕΛΙΩΔΗ ΣΤΟΙΧΕΙΑ ΧΡΩΜΑΤΟΣ 2.5

2.1 ΕΙΣΑΓΩΓΗ 2.1 2.2 ΤΟ ΦΩΣ 2.2 2.3 ΘΕΜΕΛΙΩΔΗ ΣΤΟΙΧΕΙΑ ΧΡΩΜΑΤΟΣ 2.5 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕΔΑ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 ΣΥΣΤΗΜΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΤΙΣ

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Όπως θα δούμε και παρακάτω το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων, δηλαδή «κόβουν» κάποιες ανεπιθύμητες

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Αλγόριθμοι Επεξεργασίας Εικόνας Ανάπτυξη Λογισμικού Αναγνώρισης Προσώπου

Αλγόριθμοι Επεξεργασίας Εικόνας Ανάπτυξη Λογισμικού Αναγνώρισης Προσώπου Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Των Κολλήγα Χρυσούλα Α.Ε.Μ. 173 & Κακαγιάννη Μαρία Α.Ε.Μ. 252 Αλγόριθμοι Επεξεργασίας Εικόνας

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

3. ΗΧΗΤΙΚΑ ΣΗΜΑΤΑ. 3.1 Τι είναι ήχος;

3. ΗΧΗΤΙΚΑ ΣΗΜΑΤΑ. 3.1 Τι είναι ήχος; 3. ΗΧΗΤΙΚΑ ΣΗΜΑΤΑ 3.1 Τι είναι ήχος; Από φυσική άποψη ένας ήχος παράγεται από µεταβολές της πίεσης που µεταδίδονται σε ένα µέσο που µπορεί να συµπιεστεί. Παρόλο που ο ακριβής µηχανισµός διαφέρει από περίπτωση

Διαβάστε περισσότερα

Πρόσκληση 10: Προηγμένες Τηλεματικές Υπηρεσίες Τ.Ε.Ι. Ηπείρου Δίκτυο Τ.Ε.Ι. Ηπείρου ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ MODEM

Πρόσκληση 10: Προηγμένες Τηλεματικές Υπηρεσίες Τ.Ε.Ι. Ηπείρου Δίκτυο Τ.Ε.Ι. Ηπείρου ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ MODEM ΕΙΣΑΓΩΓΗ ΣΤΑ MODEM To Modem (Modulator-Demodulator) είναι μια συσκευή που επιτρέπει σε υπολογιστές να επικοινωνούν μεταξύ τους μέσω τηλεφωνικών γραμμών, δίνοντας έτσι την ευκαιρία στους χρήστες να έχουν

Διαβάστε περισσότερα

ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Ραδιοδίαυλοι Ιδανικός Ραδιοδίαυλος Το λαµβανόµενο σήµα αποτελείται από ένα απευθείας λαµβανόµενο σήµα, από το οποίο ανακατασκευάζεται πλήρως το εκπεµπόµενο

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Εισαγωγή στο Equalizing

Εισαγωγή στο Equalizing Επιμέλεια: Νίκος Σκιαδάς ΠΕ 17.13 Μουσικής Τεχνολογίας Με τον όρο equalizing εννοούμε την εξισορρόπηση των συχνοτήτων που ενυπάρχουν σε ένα σήμα. Πρακτικά, το equalizing λαμβάνει χώρα για να «χρωματίσουμε»

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

Αυτόματο σύστημα Πρώιμης Διάγνωσης κατά την διάρκεια Υστεροσκοπικής Εξέτασης για Γυναικολογικό Καρκίνο. Δρ Μάριος Νεοφύτου

Αυτόματο σύστημα Πρώιμης Διάγνωσης κατά την διάρκεια Υστεροσκοπικής Εξέτασης για Γυναικολογικό Καρκίνο. Δρ Μάριος Νεοφύτου Αυτόματο σύστημα Πρώιμης Διάγνωσης κατά την διάρκεια Υστεροσκοπικής Εξέτασης για Γυναικολογικό Καρκίνο Δρ Μάριος Νεοφύτου Περιεχόμενα Σκοπός της έρευνας Γυναικολογικός Καρκίνος Ενδοσκόπηση / Υστεροσκόπηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης - - Ενότητα 4 η (Συστηματική μελέτη και ανάλυση κυκλωμάτων με τις μεθόδους των βρόχων και κόμβων. Θεωρήματα κυκλωμάτωνthevenin, Norton, επαλληλίας, μέγιστης μεταφοράς ισχύος) Στην παρούσα ενότητα παρουσιάζονται

Διαβάστε περισσότερα

Αναπαράσταση Μη Αριθμητικών Δεδομένων

Αναπαράσταση Μη Αριθμητικών Δεδομένων Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή

Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή Αριθμός bit δίαυλου δεδομένων (Data Bus) Αριθμός bit δίαυλου διευθύνσεων (Address Bus) Μέγιστη συχνότητα λειτουργίας (Clock Frequency) Τύποι εντολών Αριθμητική

Διαβάστε περισσότερα

Κεφάλαιο T3. Ηχητικά κύµατα

Κεφάλαιο T3. Ηχητικά κύµατα Κεφάλαιο T3 Ηχητικά κύµατα Εισαγωγή στα ηχητικά κύµατα Τα κύµατα µπορούν να διαδίδονται σε µέσα τριών διαστάσεων. Τα ηχητικά κύµατα είναι διαµήκη κύµατα. Διαδίδονται σε οποιοδήποτε υλικό. Είναι µηχανικά

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Βασικά στοιχεία εικονοστοιχείου (pixel) Φυσική λειτουργία όρασης Χηµική και ψηφιακή σύλληψη (Κλασσικές και ψηφιακές φωτογραφικές µηχανές)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ 2 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007 Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας Ακαδημαϊκό Έτος 2006-2007 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος Διδάσκων: Φλώρος Ανδρέας Περιεχόμενα 1 Περιγραφή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7

1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7 1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 1-5 1.1 Εισαγωγή 1-5 1.2 Σειρές Fourier 1-5 1.3 Το πεδίο της συχνότητας 1-7 1.4 Φάσμα μιας σειράς δυαδικών δεδομένων βασικής ζώνης 1-10 1.5 Ο μετασχηματισμός Fourier 1-11 1.6 Η διαδικασία

Διαβάστε περισσότερα

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση ΒΕΣ 4 Συμπίεση και Μετάδοση Πολυμέσων Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση Τι είναι Σήμα; Βασικές έννοιες επεξεργασίας σημάτων Πληροφορίες που αντιλαμβανόμαστε μέσω

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Τ Ε Ι Κ Ρ Η Τ Η Σ Π Α Ρ Α Ρ Τ Η Μ Α Ρ Ε Θ Υ Μ Ν Ο Υ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΚΟΥΣΤΙΚΗΣ ΙΟΥΛΙΟΣ 2013

Τ Ε Ι Κ Ρ Η Τ Η Σ Π Α Ρ Α Ρ Τ Η Μ Α Ρ Ε Θ Υ Μ Ν Ο Υ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΚΟΥΣΤΙΚΗΣ ΙΟΥΛΙΟΣ 2013 Τ Ε Ι Κ Ρ Η Τ Η Σ Π Α Ρ Α Ρ Τ Η Μ Α Ρ Ε Θ Υ Μ Ν Ο Υ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΚΟΥΣΤΙΚΗΣ ΗΧΟΛΗΨΙΑ ΙΙ ΞΕΝΙΚΑΚΗΣ ΔΗΜΗΤΡΗΣ ΙΟΥΛΙΟΣ 2013 79 5 ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ I 5.1 EQUALIZATION (ΙΣΟΣΤΑΘΜΙΣΗ) 5.1.1

Διαβάστε περισσότερα

25/3/2009. Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου. Φλώρος Ανδρέας Επίκ. Καθηγητής Παράμετροι ελέγχου

25/3/2009. Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου. Φλώρος Ανδρέας Επίκ. Καθηγητής Παράμετροι ελέγχου Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 4 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής (Mέρος έ ΙΙ)» Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Α.Τ.Ε.Ι. Ηρακλείου ιδάσκων: Βασίλειος Γαργανουράκης 1 Περιγραφή Μαθήµατος ΘΕΩΡΙΑ Fast Fourier Transform Συνελίξεις Μη Γραµµικοί Μετασχηµατισµοί Ψηφιακή Επεξεργασία Εικόνας ΕΜΕΙΣ

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Αρχές συµπίεσης δεδοµένων Ήδη συµπίεσης Συµπίεση εικόνων Αλγόριθµος JPEG Γιατί χρειαζόµαστε συµπίεση; Τα σηµερινά αποθηκευτικά µέσα αδυνατούν

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ100 Εισαγωγή στην Τεχνολογία Εργαστήριο: Εισαγωγή στην Μέτρηση Βασικών Σηµάτων Συνοπτική Περιγραφή Εξοπλισµού και Στοιχείων

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ 4 ο ΕΞΑΜΗΝΟ Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM. TEΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ με θέμα Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό

Διαβάστε περισσότερα

Υπερηχογραφία Αγγείων Βασικές αρχές

Υπερηχογραφία Αγγείων Βασικές αρχές Υπερηχογραφία Αγγείων Βασικές αρχές Δημ. Καρδούλας M.Sc, Ph.D Ιατρικό Τμήμα Πανεπιστημίου Κρήτης Ευρωκλινική Αθηνών Σάββατο 15 Φεβρουαρίου 2014 Βασικές Αρχές Φυσικής Οργανολογία των Υπερήχων Αιμοδυναμική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα