Βελτίωση - Φιλτράρισμα εικόνας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Βελτίωση - Φιλτράρισμα εικόνας"

Transcript

1 Βελτίωση - Φιλτράρισμα εικόνας /7

2 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται παράθυρο ή μάσκα. Τα παράθυρα αυτά είναι συνήθως τετραγωνικά και οι συντελεστές συμμετρικοί. /7

3 Φιλτράρισμα - Συνέλιξη h(n,n ) x(n,n y(n, n ) = M N k = 0k = 0 x(k, k ) h(n -k, n -k ) y(n, n )= x(n, n )* *h(n, n ) 3/7

4 Η διδιάστατη συνέλιξη - γραφικά 4/7

5 Συνέλιξη υλοποίηση A B C To αποτέλεσμα της συνέλιξης για την τιμή της εικόνας στη θέση n,n δηλ. στο p 5 είναι: D E F G H I p p p 3 p 4 p 5 p 6 p 7 p 8 p 9 y(n,n )=Ap +Bp +Cp 3 +Dp 4 +Ep 5 +Fp 6 Gp 7 +Hp 8 +Ip 9 5/7

6 Συνέλιξη υλοποίηση A B C D E F G H I p p p 3 p 4 p 5 p 6 p 7 p 8 p 9 Το παράθυρο (A,B,C,D,E,F,G,H,I) διατρέχει την εικόνα και κάθε φορά υπολογίζεται το γινόμενο του παραθύρου με τα αντίστοιχα pixel της εικόνας. Στην εικόνα εξόδου το αποτέλεσμα της συνέλιξης αποδίδεται στο κεντρικό pixel του παραθύρου. 6/7

7 Συνέλιξη στο πεδίο της συχνότητας 7/7

8 Μετασχηματισμός Fourier Μετασχηματισμός Fourier DFT-FFT 8/7

9 -D DFT και IDFT Γιά N image : M f ( x, y) O DFT ορίζεται: F ( u, v ) for = u MN = 0, M N x = 0 y = 0 f ( x,,, L, M y ) e j π ( ux / M + vy / N ) v = 0,,, L, N Και ο IDFT: f ( x, y ) = M N u = 0 v = 0 F ( u, v ) e j π ( ux / M + vy / N ) for x = 0,,, L, M y = 0,,, L, N 9/7

10 Μετασχηματισμός Fourier Διαχωρίσιμη πράξη Μιγαδικός αριθμός (μέτρο φάση) Oι τιμέςu,v κοντά στο 0,0 αντιστοιχούν σε χαμηλές συχνότητες. F( 0, 0) MN M N = x= 0 y = 0 f (x, y) = μέση τιμ ή του f(x, y) 0/7

11 Τι είναι πιο σημαντικό? Μέτρο ή φάση α β Πρόσθεση: φάσμα πλάτους της εικόνας (α) και φάσμα φάσης της εικόνας (β) /7

12 Μετασχηματισμός Fourier Παράδειγμα 0 0 /7

13 Filtering στο πεδίο της συχνότητας Βασικές έννοιες: low frequency : μικρές μεταβολές στα χαρακτηριστικά της εικόνας high frequency : απότομες μεταβολές όπως θόρυβος ή περιγράμματα αντικειμένων F( u, v) high frequency low frequency F(0,0) 3/7

14 Συνέλιξη μέσω FFT Βασική ιδιότητα: η πράξη του πολλαπλασιασμού στο πεδίο της συχνότητας ισούται με την συνέλιξη στο χρόνο και αντιστρόφως f(x, y)**h(x,y) F(u, v)h(u, v) ΠΡΟΣΟΧΗ ΣΤΙΣ ΔΙΑΣΤΑΣΕΙΣ 4/7

15 Συνέλιξη μέσω FFT Αρχική εικόνα Filter Mask FFT FFT «φιλτραρισμένη» εικόνα Πολλαπλασιασμός αντίστοιχων pixels Inverse FFT Το «φιλτραρισμένο» φάσμα 5/7

16 Α. Βαθυπερατά φίλτρα Ιδιότητες Φιλτράρουν τις υψηλές συχνότητες (σήματα θορύβου). Λειαίνουν απότομες μεταβολές στην ένταση Θολώνουν την εικόνα (blurring). Απόκριση συχνότητας 6/7

17 Βασικές Κατηγορίες βαθυπερατών φίλτρων Φίλτρα μέσης τιμής (mean filters). Φίλτρα Gaussian μορφής (Gaussian filters). Φίλτρα Butterworth Φίλτρα διάμεσης τιμής (median filters). 7/7

18 Βαθυπερατά φίλτρα - Κατηγορίες βαθυπερατών φίλτρων Φίλτρα μέσης τιμής (averager) Απόκριση συχνότητας ( διαστάσεων) γιατοφίλτρομέσηςτιμής. Στις χαμηλές συχνότητες - γύρωαποτοσημείο(0,0) το πλάτος είναι μεγάλο. Οι συχνότητες - και αντιστοιχούν στο f s / 8/7

19 Θόλωση (blurring) Αρχική εικόνα Εφαρμογή 3x3 averager Εφαρμογή 7x7 averager 9/7

20 Ελάττωση θορύβου επίδραση μήκους παραθύρου Αρχική εικόνα Εικόνα με θόρυβο Ν(0,0.05) Εφαρμογή averager 3x3 0/7

21 Ένα φίλτρο μέσης τιμής με προσαρμογή των συντελεστών Χρησιμοποιείται η αντίστροφη βάθμωση -inverse gradient δ(i,j,m,m)=/ g(m,n)-g(i,j) Εάν g(m,n)=g(ι,j) ορίζουμε δ= (και όχι ) h ij h( i, j) = 0.5 δ ( i, j, m, n) δ ( i, j, m, n) m, n /7

22 Μέση τιμή με περιστρεφόμενη μάσκα Με την διαδικασία αυτή αποφεύγεται η θόλωση Η έξοδος στο φίλτρο αυτό υπολογίζεται ως η μέση τιμή από τα pixel μίας περιστρεφόμενης μάσκας που έχουν την μεγαλύτερη ομογένεια Η ομογένεια υπολογίζεται από την τιμή της διακύμανσης /7

23 Μέση τιμή σε πολλά frames (averaging) Χαρακτηριστική εφαρμογή: μείωση θορύβου αρχική τελική s=imread('saturn.tif'); i=imnoise(s,'gaussian');i=double(i)/55; i=imnoise(s,'gaussian');i=double(i)/55; i3=imnoise(s,'gaussian');i3=double(i3)/55; i4=imnoise(s,'gaussian');i4=double(i4)/55; i=(i+i+i3+i4)/4; figure(); imshow(s) figure(); imshow(i) 3/7

24 Gaussian φίλτρα Οι συντελεστές των Gaussian φίλτρων δίνονται από τη μορφή της Gaussian συνάρτησης: g(x)=exp(-x /σ ) σε μία διάσταση g(i, j)=exp(-(i +j )/σ ) σε δύο διαστάσεις 4/7

25 Ιδιότητες Gaussian συνάρτησης. Είναι ανεξάρτητη της διεύθυνσης.. Έχει μόνο έναν λοβό, δηλαδή οι συντελεστές του αντίστοιχου φίλτρου ελαττώνονται μονότονα με την απόσταση. 3. Ο μετασχηματισμός Fourier της Gaussian συνάρτησης είναι επίσης Gaussian, με αποτέλεσμα οι ανεπιθύμητες υψηλές συχνότητες να μην ενισχύονται. g(i, j)=exp(-(i +j )/σ G(u, v)=exp(-(u +v ) σ / 5/7

26 Ιδιότητες Gaussian συνάρτησης (συνέχεια) 5. Η παράμετρος σ δίνει τη δυνατότητα ελέγχου του βαθμού φιλτραρίσματος. 6. Είναι διαχωρίσιμη σε οριζόντια και κάθετη διαδικασία. λεπτομέρειες 7. Διαδοχικό φιλτράρισμα με Gaussian φίλτρο διακύμανσης σ είναι ισοδύναμο με ένα φιλτράρισμα από Gaussian διακύμανσης / σ. 6/7

27 7/7

28 ΔΠΜΣ Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ 8/7 Σχεδιασμός Gaussian φίλτρων Μία προσέγγιση δίνεται από τους συντελεστές δυωνυμικής κατανομής: π.χ. Για 5 σημεία οι συντελεστές είναι: Προφανώς η άμεση προσέγγιση γίνεται από τησχέσηορισμού: ) g( ), g( e e j) g(i, j i ρ = θ ρ = = = σ ρ σ + n n x n n... x n x n 0 n x) ( = +

29 Για n=7 και σ =, η σχέση () δίνει: Παρατηρούμε πως οι συντελεστές είναι συμμετρικοί και φθίνουν μονότονα με την απόσταση από τοpixel (i, j)= (0, 0) 9/7

30 Gaussian φίλτρα παράδειγμα Αρχική σ= σ= σ=4 30/7

31 Gaussian φίλτρα παράδειγμα 3/7

32 Ιδανικά φίλτρα -IIR φίλτρα Ένα ιδανικό βαθυπερατό φίλτρο θα είχε μία απόκριση συχνότητας που θα ήταν μηδενική για συχνότητες μεγαλύτερες από μία δοθείσα «ακτινική» ήτετραγωνική συχνότητα ω C H(ω,ω ) =, 0 έαν ω + ω διαφορετικά ω C H 0.5 H(ω,ω, ) = έαν ω ω C 0 διαφορετικά,ω Απόκριση : h(m,n)=aω C ω C sinc(ω C m)sinc(ω C n) ω C 0 00 ω 0-00 ω C -50 ω /7

33 H(ω Butterworth φίλτρα Μία προσέγγιση της ιδανικής συνάρτησης γίνεται με συναρτήσεις Butterworth:,ω ) = ω + + ω C Σε μία διάσταση η απόκρισή τους έχει την παρακάτω μορφή: ω k Μέτρο Butterworh 5 ης τάξεως ω C = Συχνότητα x π 33/7

34 Butterworth φίλτρα H ( u, v ) = + [ D ( u, v ) / D ] n 0 34/7

35 Butterworth φίλτρα Παράδειγμα Υλοποίηση στο πεδίο των συχνοτήτων Αρχική εικόνα (α) (β) (γ) Φιλτράρισμα με τρία διαφορετικά φίλτρα Butterworth α) ω C =4 β )ω C =6, και γ)ω C =8 35/7

36 ΜΗ ΓΡΑΜΜΙΚΑ Φίλτρα διάμεσης τιμής (Median filters) Διάταξη σύμφωνα με την τιμή του pixel διάμεση 5 τιμή Η υλοποίησή τους γίνεται με καθορισμό ενός παραθύρου (μάσκας) που διατρέχει όλη την εικόνα και επιλέγεται ως έξοδος η μεσαία (median) τιμή. 36/7

37 Φίλτρα διάμεσης τιμής (median) Ιδιότητες Είναι ΜΗ ΓΡΑΜΜΙΚΑ median {x,x,x3} +median{y,y,y3} median{x+y,x+y,x3+y3} Επανειλημμένη εφαρμογή του median φίλτρου καταλήγει σε εικόνες που δεν μεταβάλλονται. Αυτά είναι τα Σήματα - ρίζες 37/7

38 Σημεία στα άκρα της εικόνας Είναι ουσιώδης η διαδικασία στα σημεία που βρίσκονται στο άκρο της εικόνας. 38/7

39 Σήματα Ρίζες (μία διάσταση) Αρχικό σήμα ο φιλτράρισμα (Ν=3) ο 3 ο Μετά το δεύτερο φιλτράρισμα το σήμα ΔΕΝ αλλάζει τιμή 39/7

40 Φίλτρα διάμεσης τιμής (median) Απόκριση σε ακμή α διάσταση: φίλτρο μέσης τιμής median (n=3) και διαστάσεις -εικόνα Η αρχική εικόνα ακμή μένει αμετάβλητη στην εφαρμογή median ενώ «λειαίνεται» από φίλτρο μέσης τιμής 40/7

41 Φίλτρα διάμεσης τιμής (median) Aπόκριση σε παλμό (salt & pepper, impulsive) Εικόνα με ένα παλμό Εξοδος Median φίλτρου (3x3) Εξοδος averager (3x3) Eίναι εμφανής η εξάπλωση του παλμού. 4/7

42 Φίλτρα διάμεσης τιμής παράδειγμα Aρχική εικόνα Εικόνα με κρουστικό θόρυβο 0% median φίλτρο φίλτρο μέσης τιμής Έξοδος median φίλτρου. Ο κρουστικός θόρυβος είναι 0% και εξαλείφεται εντελώς. Αντίστοιχα το φίλτρο μέσης τιμής έχει πολύ φτωχή συμπεριφορά. 4/7

43 Median filtering Συμπερασματικά : Τι θα γίνει στην ακμή και τι γύρω από το λευκό pixel?? 43/7

44 Αλγόριθμος υλοποίησης median φίλτρων Γενίκευση: φίλτρα σωρού (stack filters) 44/7

45 Φίλτρα σωρού (stack filters) Φίλτρα σωρού stack filters. Στην είσοδο το σήμα αποσυντίθεται με κατωφλιοποίηση και προστίθενται οι έξοδοι. Εάν κάθε γραμμή πραγματοποιεί median πράξη το άθροισμα των δυαδικών εξόδων θα είναι το median φιλτρο 45/7

46 Θετική συνάρτηση Boole Positive boolean function PBF για median φιλτρο 3 σημείων med{x,x,x3 } η ισοδύναμη δυαδική Boolean συνάρτηση: f(x; x; x3) = xx + xx3 +xx3 Γενικά: f(x, x, x3, x4 x5) = xx + xx3x4 + x4x5 Max-min 46/7

47 ΔΠΜΣ Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ 47/7 Β. Υψιπερατά φίλτρα Ιδιότητες: Εξασθενούν τις χαμηλές συχνότητες σε μία εικόνα και τονίζουν τις υψηλές. Τονίζουν τις μεταβολές της εικόνας (contrast). Δίνουν έμφαση στις λεπτομέρειες. Ενισχύουν τον θόρυβο. 4 υψιπερατές μάσκες 3x3 : (4) (3) 5 () 9 ()

48 Παράδειγμα Αρχική εικόνα (α) (β) (γ) Ηεικόνα(α) έχει προέλθει με εφαρμογή του υψιπερατού φίλτρου (4) στην αρχική εικόνα. Επίσης έχει γίνει κλιμάκωση ώστε και οι αρνητικές τιμές να μετατοπισθούν στο διάστημα 0-. Η (β) έχει προέλθει με εφαρμογή αντίστοιχα του φίλτρου (3) χωρίς καμία κλιμάκωση των τιμών, ενώ στο (γ) έχει γίνει κλιμάκωση. 48/7

49 Α πλάτος Βαθυπερατό φίλτρο Υψιπερατό φίλτρο Γενικά: 0 Συχνότητα H hp (ω,ω )=-Η lp (ω,ω ) 49/7

50 Unsharp masking Από ένα κλάσμα α της αρχικής εικόνας f(k, k ) αφαιρείται το αποτέλεσμα εξόδου βαθυπερατού φίλτρου f L (k, k ). Η έξοδος g(k, k ) είναι: g(k, k ) = αf(k, k ) - f L (k, k ) Αν α=, το αποτέλεσμα είναι υψιπερατό φίλτρο. Αν α>, τότε ένα βαθυπερατό τμήμα της εικόνας προστίθεται στο αποτέλεσμα (high boost filter) Μία υλοποίηση: -/9 -/9 -/9 -/9 w/9 -/9 -/9 -/9 -/9 Όπου w = 9α - 50/7

51 Unsharp masking = αφαίρεση της «θολωμένης» εικόνας Παράδειγμα ο Εικόνα εισόδου Εικόνα εξόδου Unsharp masking με α> 5/7

52 Παράδειγμα ο RGB εικόνα Εφαρμογή στην συνιστώσα της έντασης 5/7

53 Διανυσματικές και βαθμωτές επεξεργασίες Στις βαθμωτές διαδικασίες επεξεργασίας εφαρμόζονται οι μέθοδοι για γκρίζες (gray scale) εικόνες με δύο τρόπους: α) ξεχωριστά σε κάθε κανάλι της εικόνας β) στη συνιστώσα φωτεινότητας (Υ) Στις διανυσματικές διαδικασίες οι τρεις τιμές R,G,B θεωρούνται συνιστώσες ενός διανύσματος και οι μέθοδοι που χρησιμοποιούνται είναι βέβαια μέθοδοι διανυσματικής ανάλυσης. Μία κλασσική τέτοια μέθοδος είναι η διαδικασία του διανυσματικού διάμεσου. 53/7

54 Διανυσματικός διάμεσος Vector median Πώς διατάσσονται N διανύσματα?. Υπολογίζονται οι αποστάσεις d(x i x j ) κάθε διανύσματος x i από όλα τα υπόλοιπα. Υπολογίζεται η συνολική απόσταση: d i = n j= d(x i,x j ) d(x 4 x 3 ) Ο διανυσματικός διάμεσος - Vector Median Filter VMFαντιστοιχεί στο μικρότερο d i 54/7

55 Median και διεκθετική κατανομή Σ x-x i =min e x x e x x e x x 3...e x x Ν = e i x x ι = max Εκτιμητής μέγιστης πιθανοφάνειας Maximum likelihood estimator 55/7

56 Vector Directional Filters - VDF α i = όπου n j= A(x A(x i i,x,x j j ) ) = cos x x i i x t j x j A 3, Ο VD διανυσματικός διάμεσος αντιστοιχεί στο μικρότερο a i 56/7

57 Vector median filters παράδειγμα (a) Η εικόνα Peppers, 56x56, 4-bit per pixel, (b)noisy Image, (c) Η έξοδος του VMF. Ο Θόρυβος στην αρχική εικόνα είναι gaussian(0,5 ) και κρουστικός(%) σε κάθε κανάλι. 57/7

58 Ομομορφική επεξεργασία i(n,n ) i(n,n ) f(n,n )=i(n,n ) r(n,n ) f(n,n )=i(n,n ) r(n,n ) r(n,n ) r(n,n ) 58/7

59 Ομομορφική επεξεργασία α< βαθυπερατό φίλτρο log i(n,n ) f(n,n ) log exp p(n,n ) Υψιπερατό φίλτρο log r(n,n ) β> 59/7

60 παράδειγμα H ( u, v) = ( γ L = 0.5, ( γ γ H H γ L =.0) [ ] c( D ( u, v)/ D ) e ) 0 + γ, L Αρχική και επεξεργασμένη εικόνα 60/7

61 μ = σ ΝΜ = ΝΜ n, n Wiener φίλτρα Βασίζονται στον τοπικό (παράθυρο η) υπολογισμό της μέσης τιμής μ και διακύμανσης σ. Δίνεται και η διακύμανση ν του θορύβου α( n η n, n [ α η, n ( n ), n ) μ ] Η «έξοδος» του φίλτρου b δίνεται από την σχέση: σ ν (n,n ) = μ + [α(n,n ) μ] σ b Σε περιοχές όπου σ>>ν προστίθεται στη μέση τιμή μ το τοπικό contrast α-μ 6/7

62 Wiener φίλτρα -παράδειγμα Η αρχική εικόνα Η εικόνα με θόρυβο-'speckle' Ηέξοδος του φίλτρου wiener για παράθυρο 7x7. 6/7

63 Φίλτρα ανισοτροπικής διάχυσης Αναφέρονται σε γκρίζες (gray scale) εικόνες Προσομοιάζουν την ανισοτροπική διάχυση της θερμότητας Σχετίζονται με τα Gaussian φίλτρα αλλά, Η θόλωση της εικόνας ΔΕΝ είναι σε όλες τις κατευθύνσεις ίδια (ανισοτροπική). Προσαρμόζεται στα τοπικά χαρακτηριστικά της εικόνας (όρια αντικειμένων). 63/7

64 Τι είναι διάχυση Διάχυση /7

65 εξίσωση διάχυσης: t I(x, y, t) = ( c(x, y, t) I) = c(x, y, t) I + c I συνάρτηση διάχυσης c(x,y,t)=g( I(x,y,t) ) g I K ( I) = e g g g ( I) = α > + α I + Κ 0 65/7

66 συνάρτηση ροής Φ = c(x, y, t) I(x, y, t) = I K e Ι ή Ι + α I + Κ 66/7

67 t I(x, y,t) = ( c(x, y,t) I) Διακριτή (ψηφιακή) υλοποίηση. Στο διακριτό χώρο η βάθμωση μπορεί να προσεγγισθεί σαν διαφορά στην ένταση μεταξύ γειτονικών pixels. Η συνάρτηση ροής μπορεί να υπολογισθεί ανεξάρτητα για κάθε γειτονικό pixel. 3. Το φίλτρο είναι επαναληπτικό. Το δεξιό μέρος της εξίσωσης περιγράφει την μεταβολή στην ένταση που παράγεται σε μία επανάληψη του φίλτρου 67/7

68 I Βασική επαναληπτική σχέση t+ t t i,j = I i,j + λ[c N Δ ΝI + cs ΔSI + ce ΔΕI + c W Δ WI] i,j 0 λ /4 Δ Ν I i,j Ii,j Ii,j Δ S I i,j I i+,j I i, j Δ E I i,j Ii,j+ Ii,j ΔWIi,j Ii,j Ii, j t t c = g ( I ) t t c = g ( I ) t t c = g ( I ) t c = g ( I ) Ni,j i+,j Si,j i,j Ei,j i,j+ Wi,j t i,j 68/7

69 (α) (β) (γ) (δ) (ε) α) Αρχική εικόνα β) μετά από N=0, K=0 (ανισοτροπική θόλωση) γ) μετά από N=0, K=0 ( «) δ) μετά από N=0, K=30 ( «) ε)εικόνα μετά από N=0, (Gaussian θόλωση) Ν=αριθμός επαναλήψεων 69/7

70 Λογικές πράξεις AND ΟR -XOR x AND y = εάν x και y είναι =0 διαφορετικά x ΟR y = εάν x ή y είναι =0 διαφορετικά x y x XOR y AND εφαρμογή για εντοπισμό ενός τμήματος εικόνας 70/7

71 Διαδικασία «απόκρυψης» encryption Βασίζεται στην ταυτότητα: (a XOR b) XOR b=α Step Boolean Expression Binary Comments. ASCII "A" a Original "message:. "Random" Bits b 0 00 Pseudo-random value from "random" number generator 3. XOR to encrypt 4. "Random" Bits 5. XOR to decrypt a XOR b 00 0 Encrypted "message" b 0 00 (a XOR b) XOR b Same "Random bits" as above Decrypted "message" (same as original) 7/7

72 ασκήσεις 3. Να υλοποιηθεί συνέλιξη με διαδικασία Μετασχ. Fourier 3. Να υλοποιηθεί ο Διανυσματικός διάμεσος - εφαρμογή σε έγχρωμη εικόνα 3.3 Να υλοποιηθεί vector directional filter - εφαρμογή σε έγχρωμη εικόνα 3.4 Να υλοποιηθεί η ομομορφική επεξεργασία- εφαρμογή σε έγχρωμη εικόνα 3.5 Unsharp masking υλοποίηση εφαρμογή σε gray scale εικόνα 3.6 Φιλτράρισμα με Butterworth φίλτρα - εφαρμογή σε gray scale εικόνα 3.7 Anisotropic diffusion (Perona Malic) υλοποίηση 3.8 Να υλοποιηθεί η διαδικασία encryption σε μία εικόνα 7/7

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ)

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ) -- ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ) 3. Εισαγωγή Η βελτίωση εικόνας είναι συνήθως διαδικασία φιλτραρίσµατος δηλ. συνέλιξης µε συγκεκριµµένη διδιάσταση µάσκα και στοχεύει στην ανάδειξη χαρακτηριστικών ή ελάττωση

Διαβάστε περισσότερα

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50 Μη γραμμικά Φίλτρα Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ /50 Φίλτρα διάμεσης τιμής (median,order statistic) Μη γραμμικά φίλτρα μέσης τιμής Μορφολογικά φίλτρα Ομομορφικά φίλτρα Πολυωνυμικά φίλτρα Σ. Φωτόπουλος

Διαβάστε περισσότερα

Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων

Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μαρία Δ. Πελώνη Μαρία Α. Τσεμεντζή Α.Τ.Ε.Ι. Καβάλας Διαχείριση Πληροφοριών Επιβλέπων: Δρ. Γκούμας Στέφανος Επίκουρος

Διαβάστε περισσότερα

Παρουσίαση του μαθήματος

Παρουσίαση του μαθήματος Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Επεξεργασία Εικόνας Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 06-7 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x t, t,

Διαβάστε περισσότερα

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Εκτίµηση Απόκρισης Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53

Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53 Νοέμβριος 5 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /53 Ακμή ή περίγραμμα (edge) σεμιαεικόναχ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ ΚΑΒΑΛΑ 2009 Περίληψη Η παρακάτω πτυχιακή εργασία περιλαμβάνει

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)

Διαβάστε περισσότερα

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση

Διαβάστε περισσότερα

FFT. εκέµβριος 2005 ΨΕΣ 1

FFT. εκέµβριος 2005 ΨΕΣ 1 FFT εκέµβριος 5 ΨΕΣ Ορισµοί O διακριτός µετασχηµατισµός Fourier DFT, αναφέρεται σε µία πεπερασµένου µήκους ακολουθία σηµείων και ορίζεται ως εξής: και ο αντίστροφος µετασχηµατισµός (inverse DFT) : όπου:

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση

Διαβάστε περισσότερα

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57 Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57 Ακμή ή περίγραμμα (edge) σε μια εικόνα Χ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας

Διαβάστε περισσότερα

Ανάλυση ΓΧΑ Συστημάτων

Ανάλυση ΓΧΑ Συστημάτων University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. 1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

2. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ

2. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ . ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ . Αναπαράσταση ψηφιακής εικόνας y Μονόχρωµη εικόνα ή απλά εικόνα : διδιάστατη συνάρτηση φωτεινότητας f (x, y, όπου x, y είναι οι συντεταγµένες στο επίπεδο και η τιµή

Διαβάστε περισσότερα

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform Νοέµβριος 5 ΨΕΣ Ορισµοί O διακριτός µετασχηµατισµός Fourier DFT, αναφέρεται σε µία πεπερασµένου µήκους ακολουθία σηµείων και ορίζεται ως εξής: X(

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διακριτού Χρόνου Σειρές Fourier Περιοδική Επέκταση Σήµατος Πεπερασµένης Χρονικής Διάρκειας.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το

Διαβάστε περισσότερα

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 22: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 7: Σχεδιασμός Φίλτρων!"#!"#! "#$% Σημειώσεις διαλέξεων στο: http://www.eg.ucy.ac.cy/chadcha/

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εισαγωγή Σχηματισμός Εικόνας

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73

Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73 Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73 Σχήμα 6.61 Μορφή της συνάρτησης για διάφορες τιμές του a. (α) (β) Σήμα 6.6 Παράδειγμα εφαρμογής: (α) Αρχική εικόνα. (β) Τελική εικόνα για a 0.0. 6.74 N. ΠΑΠΑΜΑΡΚΟΣ:

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Παρουσίαση Νο. 5 Βελτίωση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα

Διαβάστε περισσότερα

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT. Σ.

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT. Σ. Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRASFORM x x x IDFT X X X x 3 x 4 DFT X 3 X 4 x 5 X 5 x 6 X 6 x 7 X 7 DFT - Ορισμοί αναφέρεται σε μία πεπερασμένου μήκους ακολουθία

Διαβάστε περισσότερα

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT Σ. Φωτόπουλος ΨΕΣ Κεφάλαιο 3 ο DTFT -7- Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT (discrete time Fourier transform) 3.. Εισαγωγικά. 3.. Είδη µετασχηµατισµών Fourier Με την ονοµασία Μετασχηµατισµοί Fourier

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία Θ.Ε. ΠΛΗ 0-3 η Γραπτή Εργασία Στόχος: Η η ΑΠΑΝΤΗΣΕΙΣ εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος

Διαβάστε περισσότερα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα -Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n]

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n] 1. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση y[] = x[]+x[-1]+2 για το σύστημα ισχύει η αρχή της: Α) Ομογένειας Β) Επαλληλίας Γ) Γραμμικότητας. Δ) Χρονικής αμεταβλητότητας. 2. Δίνεται ψηφιακό

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σήματος

Ψηφιακή Επεξεργασία Σήματος Ψηφιακή Επεξεργασία Σήματος Εργαστήριο 3 Εισαγωγή στα Σήματα Αλέξανδρος Μανουσάκης Τι είναι σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011

Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011 Εισαγωγή στα Σήματα Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Τι είναι ένα σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #3: Φίλτρα Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές ΗΜΥ 429 9. Γρήγορος Μετασχηματισμός Fourier Εφαρμογές 1 Ζεύγη σημάτων Συνάρτηση δέλτα: ΔΜΦ δ[ n] u[ n] u[ n 0.5] (συχνότητα 0-0.5) Figure από Scientist s and engineer s guide to DSP. 2 Figure από Scientist

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011

Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011 Ψηφιακά Φίλτρα Κυριακίδης Ιωάννης 2011 Συνέλιξη Convolution) Με το άθροισμα της συνέλιξης μπορούμε να βρούμε την απόκριση ενός συστήματος διακριτού χρόνου για είσοδο xn), αν γνωρίζουμε την κρουστική του

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 5 και Ανάλυση με (Κεφ. 9.0-9.5, 10.0-10.2) ΟΔΜΦ Ο αντίστροφος ΔΜΦ Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον αντίστροφο ΔΜΦ

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας

Διαβάστε περισσότερα

Εργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017

Εργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017 Εργαστήριο ADICV3 Image filtering, Point Processing and Histogram Equalisation Κώστας Μαριάς 20/3/2017 Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.- Σ. Φωτόπουλος ΔΠΜΣ Ποιός είναι ο DTFT της u(n)?? u(n) e πδ(ω πk) j ω k ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.-

Διαβάστε περισσότερα

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit.

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit. Α ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: A ΧΕΙΜΕΡΙΝΟ 2011-2012 ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ ΚΑΙ ΗΧΟΣ (7-2-2012) Διάρκεια εξέτασης: 2.0 ώρες (08:00 10:30)

Διαβάστε περισσότερα

Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017

Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017 Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε

Διαβάστε περισσότερα

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ Εργαστήριο Ηλεκτρακουστικής Ι Άσκηση 1 - Σελίδα 1 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1. ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ/ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αρχικά, για την καλύτερη κατανόηση

Διαβάστε περισσότερα

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση

Διαβάστε περισσότερα

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Επεξεργασία και φιλτράρισμα Λέκτορας Ε.Μ.Π 1 Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Η εικόνα αποτελεί μία πηγή πληροφορίας. Τη συναντάμε ως : εικόνα ακίνητη (φωτογραφία) κινούμενη(τηλεόραση) Επίσης : ασπρόμαυρη

Διαβάστε περισσότερα

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 3 Δισδιάστατα σήματα και συστήματα #2 Πληροφορία πλάτους-φάσης (1/4) Ο μετασχηματισμός Fourier διακριτού χρόνου είναι μιγαδική

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές αποκατάστασης

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Στοιχεία Επεξεργασίας Σήματος Δρ. Ν. Π. Σγούρος 2 Εργοδικές Διαδικασίες Η μέση τιμή διαφόρων στιγμιότυπων της διαδικασίας (στατιστική μέση τιμή) ταυτίζεται με τη χρονική μέση

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2013-2014 Κωδικοποίηση ζωνών συχνοτήτων Δρ. Ν. Π. Σγούρος 2 Φαινόμενο Μπλόκ (Blocking Artifact) Η χρήση παραθύρων για την εφαρμογή των μετασχηματισμών δημιουργεί το φαινόμενο μπλόκ Μειώνεται

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και

Διαβάστε περισσότερα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασίας Σήματος σε Πραγματικό Χρόνο 2009 10 ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασία Σήματος σε Πραγματικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων

Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε

Διαβάστε περισσότερα

Σήµατα και συστήµατα διακριτού χρόνου

Σήµατα και συστήµατα διακριτού χρόνου Σήµατα και συστήµατα διακριτού χρόνου Βασικές ψηφιακές πράξεις Πρόσθεση {x 1 (n)}+{x 2 (n)}={x 1 (n)+x 2 (n)} Πολλαπλασιασµός Κλιµάκωση Μετατόπιση Αναδίπλωση {x 1 (n)}.{x 2 (n)}={x 1 (n).x 2 (n)} a{x(n)}

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 6: Απόκριση Συχνότητας-Φίλτρα Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας,

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 8 παράδειγμα (εισαγωγικό) y(n) = 9 k = x(n k ) 2 / 8 Βασικές κατηγορίες

Διαβάστε περισσότερα

Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα