Λύση α) Μετά από την σχετική διαλογή ο πίνακας των συχνοτήτων και σχετικών συχνοτήτων είναι ο παρακάτω. Aθρ. Συχν N. συχν

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύση α) Μετά από την σχετική διαλογή ο πίνακας των συχνοτήτων και σχετικών συχνοτήτων είναι ο παρακάτω. Aθρ. Συχν N. συχν"

Transcript

1 1 2.2 Ασκήσεις σχ. βιβλίου σελίδας Α ΟΜΑ ΑΣ 1. Η βαθµολογία 5 φοιτητών στις εξετάσεις ενός µαθήµατος είναι: α) Να κατασκευάσετε των πίνακα κατανοµής συχνοτήτων και σχετικών συχνοτήτων (απολύτων και αθροιστικών ) β) Από τον πίνακα να εκτιµήσετε το ποσοστό των φοιτητών που πήραν βαθµό ) Κάτω από την βάση (µικρότερο του 5) ) Άριστα ( 9 ή 1) ) Τουλάχιστον 7 αλλά το πολύ 9. α) Μετά από την σχετική διαλογή ο πίνακας των συχνοτήτων και σχετικών συχνοτήτων είναι ο παρακάτω Βαθµός x Συχν. ν Σχ. συχν. Σχ. συχν % Aθρ. Συχν N β) ) Από τον πίνακα διαπιστώνουµε ότι, το ποσοστό των φοιτητών που πήραν κάτω από την βάση είναι όπως βλέπουµε στη στήλη (4), ίσο µε : = 26% ) Άριστα ( 9 ή 1) πήρε το : = 14% ) Τουλάχιστον 7 αλλά το πολύ 9 πήρε το : =38% Σχ.Αθρ. συχν F Σχ. αθρ.συχν F % 1 3,6 6 3, ,4 4 5, ,1 1 1, ,6 6 13, , , , , , , , , ,1 1 48, , Σύνολο

2 2 2. Οι παραπάνω φοιτητές ήταν αντίστοιχα αγόρια (Α) ή κορίτσια (Κ) Α Α Κ Α Κ Α Α Α Κ Κ Κ Κ Α Α Α Κ Α Κ Α Α Α Α Α Α Κ Κ Α Κ Α Κ Κ Κ Κ Α Κ Κ Α Α Α Α Α Α Κ Α Κ Κ Α Α Α Κ Να συµπληρώσετε τον παρακάτω πίνακα χρησιµοποιώντας απόλυτες συχνότητες Φύλλο Βαθµοί Σύνολο Α Κ Σύνολο 5 > 5 Εύκολα βρίσκουµε ότι αγόρια µε βαθµό 5 είναι 11, ενώ µε βαθµό > 5 είναι 18. Επίσης κορίτσια µε βαθµό 5 είναι 9, ενώ µε βαθµό > 5 είναι 12. Οπότε ο πίνακας συµπληρωµένος γίνεται Φύλλο Βαθµοί Σύνολο 5 > 5 Α Κ Σύνολο 2 3 5

3 3 3. Να µετατρέψετε τον προηγούµενο πίνακα συχνοτήτων της άσκησης 2 σε πίνακα σχετικών συχνοτήτων επί τοις εκατό: α) Ως προς το σύνολο των φοιτητών β) Ως προς το φύλλο (γραµµές) γ) Ως προς τον βαθµό (στήλες ) και να ερµηνεύσετε τα αποτελέσµατα α) Για να µετατρέψουµε τον προηγούµενο πίνακα σε πίνακα σχετικών συχνοτήτων ως προς το σύνολο των φοιτητών επί %, διαιρούµε τις συχνότητες του πίνακα µε το σύνολο των φοιτητών δηλαδή µε το 5 και πολλαπλασιάζουµε µε 1. Οπότε έχουµε Φύλλο Βαθµοί 5 > 5 Σύνολο Α 22% 36% 58% Κ 18% 24% 42% Σύνολο 4% 6% 1% Από τον πίνακα αυτόν καταλαβαίνουµε ότι το 22% των φοιτητών είναι αγόρια µε βαθµό 5, ενώ το 36% είναι αγόρια µε βαθµό > 5. Για τα κορίτσια, το 18% πήρε βαθµό 5, ενώ το 24% πήρε βαθµό > 5. Ακόµα βλέπουµε ότι, το 4% των φοιτητών πήραν βαθµό 5, ενώ το 6% πήραν βαθµό > 5. Επίσης ότι, το 58% των φοιτητών είναι αγόρια, ενώ το 42% κορίτσια β ) Για να µετατρέψουµε τον ίδιο πίνακα σε πίνακα σχετικών %συχνοτήτων ως προς το φύλλο, διαιρούµε τις συχνότητες των γραµµών µε το σύνολο της κάθε γραµµής και πολλαπλασιάζουµε µε 1. Οπότε έχουµε Φύλλο Βαθµοί 5 > 5 Σύνολο Α 37,93% 62,7% 1% Κ 42,86% 57,14% 1% Σύνολο..... Από τον πίνακα αυτόν βλέπουµε ότι, το 37,93% των αγοριών πήρε βαθµό 5 ενώ το 62,7% > 5. Επίσης το 42,86% των κοριτσιών πήρε βαθµό 5 ενώ το 57,14% των κοριτσιών πήρε βαθµό > 5.

4 4 γ) Για να µετατρέψουµε τον ίδιο πίνακα σε πίνακα σχετικών % συχνοτήτων ως προς τον βαθµό, διαιρούµε την συχνότητα κάθε στήλης µε το σύνολο της αντίστοιχης στήλης και πολλαπλασιάζουµε µε 1. Οπότε έχουµε Φύλλο Βαθµοί 5 > 5 Σύνολο Α 55% 6%. Κ 45% 4% Σύνολο 1% 1% Από τον πίνακα αυτόν βλέπουµε ότι το 55% των φοιτητών είναι αγόρια µε βαθµό 5 και το 45% είναι κορίτσια µε βαθµό 5, ενώ το 6% των φοιτητών είναι αγόρια µε βαθµό > 5 και το 4% των φοιτητών ήταν κορίτσια µε βαθµό > Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων, που δίνει την κατανοµή του αριθµού των ηµερών απουσίας από την εργασία τους λόγω ασθενείας 5 εργατών, να βρεθεί ο αριθµός και το ποσοστό των εργατών που απουσίασαν α) τουλάχιστον 1 ηµέρα β) πάνω από 5 ηµέρες γ) από 3 έως 5 ηµέρες δ) το πολύ 5 ηµέρες ε) ακριβώς 5 ηµέρες α) Τουλάχιστον 1 ηµέρα : 5 12 = 38 (από το σύνολο αφαιρούµε τους 12 που απουσίασαν ηµέρες) β) Πάνω από 5 ηµέρες απουσίασαν : = 8 εργάτες. Το ποσοστό αυτών είναι 8 =, 16 = 16% 5 γ) Από 3 έως 5 ηµέρες απουσίασαν : = 17 εργάτες. 17 Το ποσοστό αυτών είναι =,34 = 34% 5 δ) Το πολύ 5 ηµέρες σηµαίνει από 5 ηµέρες και κάτω. Το πλήθος αυτό είναι = και το ποσοστό : =,84 = 84% 5 Αριθµός Συχνότητα ηµερών

5 5 ε) Ακριβώς 5 ηµέρες απουσίασαν 8 εργάτες 8 και το ποσοστό τους είναι =,16 =16% 5 5. Να συµπληρωθεί ο πίνακας x ν N F % F % ,2 6 3, Σύνολο 1 η γραµµή Επειδή το F 1 % = 1 θα είναι και τo 1 % =1. 1 F1 = =,1 άρα και 1 =,1. 1 Επειδή Ν 2 = 6 και ν 2 = 4, από την σχέση Ν 2 = ν 1 + ν 2 6 = 4 + ν 1 ν 1 = 2, οπότε και Ν 1 = 2. 2 η γραµµή ν1 1=,1 = 2 ν= 2 ν ν F 2 = =,1 +,2 =,3 άρα F 2 % = 3 3 η γραµµή F 3 =,6 F 3 % = 6 F 3 = ,6 =,1 +, =,3 άρα 3 % = 3 ν3 ν3 =,3 = ν 3 = 6 ν η γραµµή 4 % = 25 4 =,25 επίσης έχουµε και αφού 2 =,2 θα είναι 2 % = 2. άρα Ν 3 = Ν 2 + ν 3 = = 12 F 4 = F =,6 +,25 =,85 άρα και F 4 % = 85. ν4 ν4 4 =,25 = ν ν 4 = 5 2

6 6 Οπότε Ν 4 = Ν 3 + ν 4 = = 17 5 η γραµµή N 5 = N 4 + ν 5 = = 19 ν5 5 = 2 ν 5 = οπότε 5 % = 1, 2 6 η γραµµή ν 6 = ν Ν 5 ν 6 = 2 19 = 1 και F 5 = F =,85 +,1 =,95 άρα F 5 % = 95 N 6 = N 5 + ν 6 = = 2 ν6 1 6 = 6 = =,5 άρα 6 % = 5 ν 2 F 6 = F =,95 +,5 = 1 x ν F 6 % = 1 N F % F % 1 2,1 2, ,2 6, ,3 12, ,25 17, ,1 19, ,5 2 1, 5 1 Σύνολο 2 1,

7 7 6. Να κατασκευάσετε το διάγραµµα συχνοτήτων του βαθµού των Μαθηµατικών για τα αγόρια και τα κορίτσια (χωριστά) του πίνακα 4 της σελίδας 64. Πρώτα φτιάχνουµε πίνακα κατανοµής συχνοτήτων. Μετά την σχετική διαλογή βρίσκουµε ότι ο πίνακας συχνοτήτων είναι ο παρακάτω Βαθµός Αγόρια Κορίτσια ν α ν κ Σύνολο Το διάγραµµα συχνοτήτων είναι το παρακάτω ν αγόρια κορίτσια βαθµός

8 8 7. Τα δηµοφιλέστερα ξένα µουσικά συγκροτήµατα των 18 αγοριών του πίνακα 4 της σελίδας 64 ήσαν : Metallka, Iron Maden, Άλλο, Scorpons, Oass, Άλλο, Άλλο, Rollng Stones, Metallca, Metallca, Rollng Stones, Metallca, Iron Maden, Iron Maden, Scorpons, Scorpons, Scorpons, Metallca. Να κατασκευάσετε α) το ραβδόγραµµα και β) το κυκλικό διάγραµµα σχετικών συχνοτήτων. Πρώτα κατασκευάζουµε πίνακα συχνοτήτων Συγκρότηµα x ν % Metallca 5,278 27,8 Iron Maden 3,167 16,7 Scorpons 4,222 22,2 Oass 1,55 5,5 Rolng Stones 2,111 11,1 Άλλο 3,167 16,7 Σύνολο Το ραβδόγραµµα σχετικών συχνοτήτων είναι το παρακάτω % Metall Iron Scorp Oass Rollng Άλλο Κυκλικό διάγραµµα 17% 11% 27% Met. Iron Scor 6% 22% 17% Oass Ro.St Άλλο

9 9 8. Σ ένα κυκλικό διάγραµµα παριστάνεται η βαθµολογία των 45 µαθητών ενός γυµνασίου σε τέσσερις κατηγορίες «Άριστα», «Λίαν καλώς», «Καλώς» και «Σχεδόν καλώς». Το 3% των µαθητών έχουν επίδοση «Λίαν καλώς». Η γωνία του κυκλικού τοµέα για την επίδοση «Καλώς» είναι 144 ο. Οι µαθητές µε βαθµό «Σχεδόν Καλώς» είναι διπλάσιοι των µαθητών µε επίδοση «Άριστα». Να µετατρέψετε το κυκλικό διάγραµµα σε ραβδόγραµµα σχετικών συχνοτήτων. Πόσοι µαθητές έχουν επίδοση τουλάχιστον «Λίαν καλώς»; Από τον τύπο α = 36 ο, για την γωνία του κυκλικού τοµέα της τιµής «Καλώς» έχουµε : 144 ο =36 ο 144 κ άρα κ = =,4. 36 Aπό υπόθεση, η σχετική συχνότητα της τιµής «Λίαν Καλώς» είναι 3%, άρα λ.κ =,3. Επειδή οι µαθητές µε τιµή «Σχεδόν καλώς» είναι διπλάσιοι από τους µαθητές µε τιµή «Άριστα», η σχετική συχνότητα της τιµής «Σχεδόν καλώς» θα είναι διπλάσια από την σχετική συχνότητα της τιµής «Άριστα» : σχκ = 2 α, όµως σχ.κ + κ + λ.κ + α = 1 2 α +,4 +,3 + α = 1 3 α =,3 α =,1 οπότε σχ. κ =,2 Μετά από αυτά το ραβδόγραµµα των σχετικών συχνοτήτων είναι το παρακάτω,5,4,3,2,1 σχ καλώς καλώς λίαν καλώς άριστα x Επειδή το 3% + 4% + 2% = 9% των µαθητών έχει βαθµό τουλάχιστον Λίαν καλώς το πλήθος αυτών θα είναι ίσο µε = µαθητές

10 1 9. Από το 196 έως το 1998, ο Παναθηναϊκός έχει κατακτήσει 15 τίτλους, ο Ολυµπιακός 12, η ΑΕΚ 9, ο ΠΑΟΚ 2 και η Λάρισα 1. Να γίνει το ραβδόγραµµα και το κυκλικό διάγραµµα σχετικών συχνοτήτων Πρώτα κατασκευάζουµε πίνακα συχνοτήτων και σχετικών συχνοτήτων Οµάδα ν % ΠΑΟ 15,384 38,4 ΟΣΦΠ 12,38 3,8 ΑΕΚ 9,231 23,1 ΠΑΟΚ 2,51 5,1 Λάρισα 1,26 2,6 Σύνολο Mε βάση τον παραπάνω πίνακα το ραβδόγραµµα και το κυκλικό διάγραµµα των σχετικών συχνοτήτων είναι τα παρακάτω Ραβδόγραµµα x ΠΑΟ 38,4% ΟΣΦΠ 3,8% ΑΕΚ 23,1% ΠΑΟΚ 5,1% ΛΑΡΙΣΑ 2,6% % Κυκλικό διάγραµµα 23,1 5,1 2,6 ΠΑΟ 38,4 ΟΣΦΠ ΑΕΚ ΠΑΟΚ ΛΑΡΙΣΑ 3,8

11 11 1. Παρακάτω δίνονται τα µετάλλια που πήραν µερικές χώρες στο Ευρωπαϊκό πρωτάθληµα στίβου το Να παρασταθούν τα δεδοµένα αυτά σε ένα ραβδόγραµµα Μ. Βρετανία Γερµανία Ρωσία Πολωνία Ρουµανία Χώρα Χρυσά Ασηµένια Χάλκινα Μ Βρετανία Γερµανία Ρωσία Πολωνία Ρουµανία Ουκρανία Ιταλία Πορτογαλία Ισπανία Γαλλία Ελλάδα 1 2 Ουκρανία Ιταλία Πορτογαλία Ισπανία Γαλλία Ελλάδα Αριθµ. µεταλλίων Χρυσά Ασηµένια Χάλκινα.

12 Τα κρούσµατα δύο λοιµοδών νόσων από το 1987 έως το 1997 δίνονται στον παρακάτω πίνακα. Να κατασκευάσετε τα αντοίστοιχα χρονογράµµατα και να τα σχολιάσετε. Πλήθος κρουσµάτων Έτος Έρπης Ηπατίτιδα Α Έρπης Ηπατίτιδα Παρατηρούµε ότι για τον έρπητα υπάρχει ανοδική τάση µέχρι το 1995 και µετά παρατηρούµε µία µικρή πτώση. Για την ηπατίτιδα έχουµε καθοδική τάση µέχρι το 1993, σηµαντική αύξηση τα έτη 1994 και 1995 και µετά πτώση στα επίπεδα των ετών

13 13 12 Τα παρακάτω δεδοµένα αντιπροσωπεύουν την επίδοση 5 υποψηφίων για την πρόσληψη τους σε µία ιδιωτική σχολή (κλίµακα -1) α) Να παραστήσετε τα δεδοµένα σε έναν πίνακα συχνοτήτων. β) Να κατασκευάσετε το διάγραµµα σχετικών και αθροιστικών σχετικών συχνοτήτων γ) Αν η σχολή θελήσει να πάρει όσους έχουν επίδοση µεγαλύτερη ή ίση του 8, πόσους θα πάρει; δ) Αν η σχολή πάρει µόνο το 36% των υποψηφίων, τι επίδοση θα πρέπει να έχει κάποιος για να επιλεγεί; α) Πίνακας συχνοτήτων Βαθµός x Συχνότ. ν Σχτ. συχ Σχτ.συχ % Αθρ συχ F Aθρ.σχ.συχ F% 2,4 4, ,8 8, ,8 8, ,1 1, ,1 1, ,1 1, ,14 14, ,14 14, ,12 12, ,1 1 1, 1 Σύνολο 5 1, β) ιαγράµµατα σχετικών και των σχετικών αθροιστικών συχνοτήτων % F% Βαθµός x Βαθµός x

14 14 γ) Η συχνότητα του βαθµού 8 είναι 6 και η συχνότητα του βαθµού 9 είναι 5, εποµένως η σχολή θα πάρει = 11 υποψηφίους δ) Είναι προφανές ότι θα επιλέξει η σχολή το 36% των υποψηφίων µε την µεγαλύτερη βαθµολογία. Από την στήλη των % παρατηρούµε ότι το 36% των υποψηφίων έχει βαθµό Ένας µαθητής έκανε το παρακάτω πολύγωνο σχετικών συχνοτήτων για το ύψος των αγοριών της τάξης του και ο καθηγητής το διέγραψε σαν λάθος. Είχε δίκιο ο καθηγητής ; % ύψος σε cm Το εµβαδόν της περιοχής που περικλείεται από τον οριζόντιο άξονα και το πολύγωνο των σχετικών % συχνοτήτων πρέπει να είναι ίσο µε 1. Στο παραπάνω σχήµα αυτή η περιοχή πλησιάζει σε τρίγωνο µε βάση = 4cm και ύψος 1cm. Άρα το εµβαδόν της είναι Ε = β υ/2 = 4 1/2 = 2. Οπότε το πολύγωνο είναι λάθος, συνεπώς είχε δίκιο ο καθηγητής.

15 15 Β ΟΜΑ ΑΣ 1. Να κατασκευάσετε τα αντίστοιχα χρονογράµµατα για τον πληθυσµό των νησιών Λέσβου, Θάσου και Σαλαµίνας µε βάση τον πίνακα 2 της σελίδας 63 και να σχολιάσετε το αποτέλεσµα. Απόσπασµα του πίνακα 2 Στον παρακάτω πίνακα φαίνεται ο πληθυσµός των νησιών Λέσβος, Θάσος και Σαλαµίνα κατά τις απογραφές των ετών 1917, 1981 και Έτος Νήσος Λέσβος Θάσος Σαλαµίνα Κάτοικοι σε Χιλιάδες 1 8 Λέσβος 6 Σαλαµίνα 4 Θάσος Παρατηρούµε ότι για την νήσο Λέσβο η τάση είναι πτωτική, για την Σαλαµίνα σαφώς ανοδική, ενώ για την Θάσο η κατάσταση µένει περίπου σταθερή

16 16 2. Οι βεβαιωθέντες θάνατοι από την χρήση ναρκωτικών ουσιών κατά τα έτη , σύµφωνα µε τον ΟΚΑΝΑ, ήταν 62, 72, 66, 79, 79, 78, 146, 176, 222, 222, 65 αντίστοιχα. Από αυτούς είχαµε 7, 4, 2, 2, 1, 4, 8, 7, 14, 22, 6 µέχρι και 2 ετών, 43, 51, 34, 44, 47, 49, 71, 9, 98, 99, 33 από 21 έως 3 ετών και οι υπόλοιποι ήταν πάνω από 3 ετών. Να παρασταθούν τα δεδοµένα αυτά µε έναν πίνακα. Έτος Ηλικία Σύνολο Να παρασταθούν τα παραπάνω δεδοµένα της άσκησης 2 σε µορφή πίνακα αναφορικά µε το έτος και το φύλλο των ατόµων, αν γνωρίζουµε ότι από τους βεβαιωθέντες θανάτους κατά τα έτη οι 8, 1, 7, 5, 9, 8, 11, 14, 2, 2, 9 αντίστοιχα ήταν γυναίκες. Έτος Φύλλο Σύνολο Άνδρες Γυναίκες

17 17 5. Να δοθεί και να ερµηνευτεί το χρονόγραµµα των δεδοµένων του παρακάτω πίνακα για κάθε οµάδα ηλικιών. (Ο πληθυσµός δίνεται σε εκατοµµύρια κατοίκους) Ηλικία Απογραφή Απογραφή Απογραφή Εκτίµηση Εκτίµηση Σε έτη ,22 2,31 1,97 1,85 1, ,58 6,19 6,88 6,99 7,4 65,96 1,24 1,4 1,54 1,58 Στον παραπάνω πίνακα φαίνεται ο πληθυσµός της Ελλάδας κατά οµάδες ηλικιών Κάτοικοι σε Εκατοµµύρια έτος Ηλικίες Ηλικίες -14 Ηλικίες 65 Παρατηρούµε ότι στις ηλικίες -14, από το 1981 και µετά έχουµε πτωτική τάση, ενώ στις υπόλοιπες ηλικίες η τάση είναι αυξητική

18 18 6. Στον παρακάτω πίνακα δίνεται η κατανοµή συχνοτήτων της συστολικής πίεσης 15 γυναικών ηλικίας ετών που χρησιµοποιούν το φάρµακο Α για κάποια πάθηση και 2 γυναικών, ανάλογης ηλικίας που χρησιµοποιούν το φάρµακο Β. α) Να συγκρίνετε τα ποσοστά γυναικών που παίρνουν τα φάρµακα Α και Β και έχουν συστολική πίεση µεγαλύτερη ή ίση των 13mmHg β) Να κατασκευάσετε τα πολύγωνα αθροιστικών σχετικών συχνοτήτων στο ίδιο σύστηµα Συστολική Πίεση σε mmhg Φάρµακο Α Φάρµακο Β ν ν Σύνολο 15 2 α) Πίεση µεγαλύτερη ή ίση από 13 mm Hg που παίρνουν το φάρµακο Α έχουν όπως φαίνεται από τον πίνακα = 26 γυναίκες. Οπότε το ποσοστό αυτών είναι 26 =, 173 = 17,3% περίπου 15 Επίσης οι γυναίκες που χρησιµοποιούν το φάρµακο Β και έχουν πίεση µεγαλύτερη ή ίση των 13 mm Hg είναι = 52 Οπότε το ποσοστό αυτών είναι 52 =, 26 = 26%. 2 Παρατηρούµε ότι το ποσοστό των γυναικών που χρησιµοποιούν το φάρµακο Α και έχουν συστολική πίεση µεγαλύτερη ή ίση των 13 mm Hg είναι µικρότερο από το αντίστοιχο ποσοστό των γυναικών που χρησιµοποιούν το φάρµακο Β β) Όπως ξέρουµε, όταν κάνουµε οµαδοποίηση τιµών, οι κλάσεις που φτιάχνουµε είναι της µορφής [, ). Αν λοιπόν πάρουµε τις οµάδες τιµών όπως αυτές δίνονται στον πίνακα, τότε οι δεξιά τιµές δεν θα ανήκουν σε καµία κλάση.

19 19 Επειδή ακόµα η µεταβλητή συστολική πίεση είναι συνεχής, κάνουµε οµαδοποίηση των τιµών παίρνοντας σαν ελάχιστη τιµή την 94,5 και πλάτος της κάθε κλάσης ίσο µε 5, οπότε έχουµε τον παρακάτω πίνακα Πίεση Φάρµακο Α Φάρµακο Β α % β % F α % F β % [, ) ν α ν β 94,5-99, ,5-14, ,5-19, ,7 9 24, ,5-114, , , ,5-119, , ,5-124, , , ,5-129, , ,5-134, , ,5-139, , ,5-144, , ,5-149, Σύνολο Το πολύγωνο των σχετικών αθροιστικών συχνοτήτων είναι το παρακάτω Fι% ,5 99,5 14,5 19,5 114,5 119,5 124,5 129,5 134,5 139,5 144,5 149,5 Φάρµακο Β Φάρµακο Α

20 2 7. Οι χρόνοι (σε λεπτά ) που χρειάστηκαν 55 µαθητές να λύσουν ένα πρόβληµα δίνονται παρακάτω 3,4 13,2 6,7 1,4 1,3 3,8 3,9 2,9 13,8 3,9 2,7 4,4 3,6 1,4 2,4 3,6 3,1 7,5 6,9 7,8 12,7 3,9 3,3 9,7 2, 4,4 3,3 8,7 3,9 11,6 5,6 9, 3,4 1,4 3,5 2,8 1,4 11,9 12,3 2,9 2,8 1,5 4,1 5,9 3,1 8,7 2,8 3,8 13, 3, 6,4 3,2 5,9 7, 8,2 α) Να οµαδοποιήσετε τα δεδοµένα σε κατάλληλο αριθµό κλάσεων β) Να κατασκευάσετε τον πίνακα µε τις συχνότητες ν, %, N, γ) Να κατασκευάσετε το πολύγωνο σχετικών και σχετικών αθροιστικών συχνοτήτων F% α) Επειδή το µέγεθος του δείγµατος είναι ν = 55, θα κάνουµε οµαδοποίηση σε κ = 7 κλάσεις του ιδίου πλάτος. Η µέγιστη παρατήρηση, όπως προκύπτει από τα δεδοµένα είναι 13,8 και η ελάχιστη 1,3. Άρα το εύρος του δείγµατος είναι R = 13,8 1,3 = 12,5. 12,5 Το πλάτος λοιπόν κάθε κλάσης θα είναι c = R = = 1,785 το οποίο κ 7 στρογκυλοποιούµε σε 1,8 για λόγους απλούστευσης των πράξεων. β) κατασκευάζουµε τον παρακάτω πίνακα Κλάσεις [, ) Κεν τιµή x Συχνοτ ν Σχετ.συχ % Αθρ. συχν N Σχετ. αθρ. συχν F% 1,3-3,1 2, , ,5 3,1-4,9 4, 19 34,5 33 6, 4,9-6,7 5,8 4 7, ,3 6,7-8,5 7,6 6 1, ,2 8,5-1,3 9,4 4 7, ,5 1,3-12,1 11,2 3 5,4 5 9,9 12,1-13,9 13, 5 9, Σύνολο

21 21 Το ιστόγραµµα και το πολύγωνο των σχετικών συχνοτήτων είναι το παρακάτω % Πολύγωνο σχετικών συχνοτήτων 1,3 3,1 4,9 6,7 8,5 1,3 12,1 13,9 χρόνος σε λεπτά Το ιστόγραµµα και το πολύγωνο των σχετικών αθροιστικών συχνοτήτων είναι το παρακάτω F% ,3 3,1 4,9 6,7 8,5 1,3 12,1 13,9 χρόνος σε λεπτά Πολύγωνο σχετικών αθροιστικών συχνοτήτων

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i.

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i. Γ. ΛΥΚ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ (2014-15) Λ. Γρίλλιας Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι 1) Σε ένα σχολείο ρωτήθηκαν 70 μαθητές για την προτίμησή τους σε ποδοσφαιρικές ομάδες. Από της απαντήσεις

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική Επιμέλεια: ΑΝΔΡΕΑΣ ΓΚΟΥΡΤΖΟΥΝΗΣ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1) Να

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα .. ΕΝΟΤΗΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΜΑΘΗΜΑΤΟΣ 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα 9 3 1 7 5 3 6 5 7 5 7 3 6 1 5 1 3 5 α. Ποια είναι η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ»

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ» 1. Να αντιστοιχίσετε κάθε μεταβλητή της αριστερής στήλης του παρακάτω πίνακα με την κατηγορία που βρίσκεται στη δεξιά στήλη: ΜΕΤΑΒΛΗΤΗ ΚΑΤΗΓΟΡΙΑ 1. ΦΥΣΙΚΗ ΚΑΤΑΣΤΑΣΗ 2. ΜΙΣΘΟΣ 3.ΑΡΙΘΜΟΣ ΤΗΛΕΦΩΝΟΥ Α. ΠΟΙΟΤΙΚΗ

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 11. Δίνεται ο μηνιαίος μισθός (σε ευρώ) των 50 υψηλόμισθων υπαλλήλων μιας μεγάλης εταιρείας.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 11. Δίνεται ο μηνιαίος μισθός (σε ευρώ) των 50 υψηλόμισθων υπαλλήλων μιας μεγάλης εταιρείας. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ (κλάσεις ίσου πλάτους) ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ου 11. Δίνεται ο μηνιαίος μισθός (σε ευρώ) των 5 υψηλόμισθων υπαλλήλων μιας μεγάλης εταιρείας. 18 11 17 19 1 195 195 13 13 195 2 3 2 3 2

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 270727 222594 ΑΡΤΑΚΗΣ 12 Κ. ΤΟΥΜΠΑ THΛ : 919113 949422 www.syghrono.gr

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ. 1. Στον πιο κάτω πίνακα παρουσίαζονται οι μέρες της άδειας ασθενείας των υπαλλήλων μιας εταιρείας. Μέρες Άδειας Ασθενείας

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ. 1. Στον πιο κάτω πίνακα παρουσίαζονται οι μέρες της άδειας ασθενείας των υπαλλήλων μιας εταιρείας. Μέρες Άδειας Ασθενείας ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ 1. Στον πιο κάτω πίνακα παρουσίαζονται οι μέρες της άδειας ασθενείας των υπαλλήλων μιας εταιρείας. Μέρες Άδειας Ασθενείας 5 6 7 8 9 10 Υπάλληλοι 9 13 6 9 5 4 Α. Να βρεθεί πόσοι υπάλληλοι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. º π 4 Ô. Περιγραφική Στατιστική

ΜΕΡΟΣ Α. º π 4 Ô. Περιγραφική Στατιστική ΜΕΡΟΣ Α º π Ô Περιγραφική Στατιστική ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ Ù ÙÈÛÙÈÎ appleôùâïâ Ó applefiûapple ÛÙÔ ÎÔÌÌ ÙÈ ÙË ˆ Ì. Δ appleôùâï ÛÌ Ù ÙˆÓ ÂÎÏÔÁÒÓ, ÔÈ appleúôùèì ÛÂÈ ÙˆÓ Î Ù Ó ÏˆÙÒÓ, ÔÈ ÌÔÓ Â ÙËÏÂı ÛË appleôùâïô

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α.Τι λέγεται δειγµατικός χώρος ενός πειράµατος τύχης; Μονάδες. Πώς ορίζεται η διάµεσος ενός δείγµατος ν παρατηρήσεων; (ν θετικός ακέραιος) Μονάδες 4 B. Αν η

Διαβάστε περισσότερα

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι ΘΕΜΑ ο Α.. Βλέπε σχολικό βιβλίο σελίδα 9.. Βλέπε σχολικό βιβλίο σελίδα 87. Β. Βλέπε σχολικό βιβλίο σελίδα 0. Γ. Σ, Σ, Σ, 4 Σ, Λ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο α. Πρέπει x > 0,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου ΑΣΚΗΣΗ 1 Κεφάλαιο 4

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Γ ΛΥΚΕΙΟΥ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ:ΠΑΤΣΙΜΑΣ ΔΗΜΗΤΡΗΣ

ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Γ ΛΥΚΕΙΟΥ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ:ΠΑΤΣΙΜΑΣ ΔΗΜΗΤΡΗΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Γ ΛΥΚΕΙΟΥ Γ ΛΥΚΕΙΟΥ 3 4 ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μεταβλητές 1. Ποιες από τις παρακάτω μεταβλητές είναι ποιοτικές; Ποιες είναι ποσοτικές; Ποιες από τις ποσοτικές είναι διακριτές

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΝΑΛΥΣΗ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΑΠΟΦΟΙΤΩΝ Γ ΛΥΚΕΙΟΥ ΑΝΑ ΕΣΜΗ ΚΑΙ ΜΑΘΗΜΑ

ΚΕΦΑΛΑΙΟ 4 ΑΝΑΛΥΣΗ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΑΠΟΦΟΙΤΩΝ Γ ΛΥΚΕΙΟΥ ΑΝΑ ΕΣΜΗ ΚΑΙ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 4 ΑΝΑΛΥΣΗ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΑΠΟΦΟΙΤΩΝ Γ ΛΥΚΕΙΟΥ ΑΝΑ ΕΣΜΗ ΚΑΙ ΜΑΘΗΜΑ Εισαγωγή Στο κεφάλαιο αυτό εξετάζουµε µε περιγραφικά στατιστικά µέτρα τις βαθµολογικές επιδόσεις των αποφοίτων της Γ Λυκείου

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 ο Αχαρνών 97 Αγ Νικόλαος 086596 ο Αγγ Σικελιανού Περισσός 078688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 7 t t 5 Ο πληθυσµός µιας κοινωνίας βακτηριδίων δίνεται από τον τύπο P(t) = e e σε δεκάδες µικρόβια και t 0 Α Να αποδειχθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40 ΣΤΑΤΙΣΤΙΚΗ 1.Να συμπληρωθούν οι πίνακες x i v i f i f i % x 1 7 x 2 5 x 3 15 x 4 14 x 5 9 Άθροισμα 50 x i v i f i f i % 1 12 2 3 24 40 5 0,05 Σύνολο x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

Διαβάστε περισσότερα

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

(f(x)+g(x)) =f (x)+g (x), x R

(f(x)+g(x)) =f (x)+g (x), x R ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

(ΣΤΑΤΙΣΤΙΚΗ) ΥΠΟ ΕΙΓΜΑΤΙΚΗ ΛΥΣΗ. Οι ποιοτικές µεταβλητές που µπορεί να µας ενδιαφέρουν είναι: Ο συνολικός αριθµός πόντων στην περίοδο που έληξε.

(ΣΤΑΤΙΣΤΙΚΗ) ΥΠΟ ΕΙΓΜΑΤΙΚΗ ΛΥΣΗ. Οι ποιοτικές µεταβλητές που µπορεί να µας ενδιαφέρουν είναι: Ο συνολικός αριθµός πόντων στην περίοδο που έληξε. (ΣΤΑΤΙΣΤΙΚΗ) Εξετάζουµε τους παίκτες µιας οµάδας µπάσκετ στο τέλος της αγωνιστικής περιόδου. Ποιες µπορεί να είναι οι µεταβλητές που µας ενδιαφέρουν; Να γίνει διάκριση σε ποιοτικές και ποσοτικές. Οι ποσοτικές

Διαβάστε περισσότερα

ΘΕΜΑ 2ο (2000) Α. Να γράψετε στο τετράδιό σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑ 2ο (2000) Α. Να γράψετε στο τετράδιό σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ 2ο (2000) Α. Να γράψετε στο τετράδιό σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα Σχετική Συχνότητα Σχετική Συχνότητα Αθροιστική Συχνότητα x i ν i f i f

Διαβάστε περισσότερα

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο 1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Ι ΕΠΑ. Λ. ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΑΝΔΡΟΜΑΧΗ ΣΚΟΥΦΑ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Ι ΕΠΑ. Λ. ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΑΝΔΡΟΜΑΧΗ ΣΚΟΥΦΑ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Μαθηματικά Ι ΕΠΑ. Λ. Επιμέλεια: ΑΝΔΡΟΜΑΧΗ ΣΚΟΥΦΑ e-mail: info@iliaskos.gr www.iliaskos.gr Κεφάλαιο 1:Περιγραφική Στατιστική Εισαγωγικές

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Βασίλης Γατσινάρης ωρεάν υποστηρικτικό υλικό 1 Περί συναρτήσεων Έστω η ορισµένη στο διάστηµα D συνάρτηση f Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D Α Να αναφέρετε

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Θέμα Γραφικές παραστάσεις Ραβδόγραμμα - Ιστόγραμμα -Κυκλικό διάγραμμα Πίνακες-Σχετικές Συχνοτητες-Ποσοστα-Κλασματα Ενδεικτική πορεία διδασκαλίας Α. Δίνουμε στους εκπαιδευόμενους

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.).

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). ΛΥΜΕΝΕΣ ΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). a. Τι μπορεί να συνέβη όταν η διάμεσος αυξήθηκε; Το γεγονός ότι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

ΑΓΓΛΙΚΑ Σ Α Β Β Α Τ Ο 1 0 Μ Α Ϊ Ο Υ 2 0 1 4

ΑΓΓΛΙΚΑ Σ Α Β Β Α Τ Ο 1 0 Μ Α Ϊ Ο Υ 2 0 1 4 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΓΓΛΙΚΑ ΑΓΓΛΙΚΑ Α (Α1 «στοιχειώδης γνώση» και Α2 «βασική γνώση») 0 10.15-10.40 Ενότητα 3: «Κατανόηση προφορικού λόγου» ΑΓΓΛΙΚΑ Γ (Γ1 «πολύ καλή γνώση», Γ2 «άριστη γνώση») 18.00-18.30

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 57-2278101 Φαξ: 57-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΠΡΟΞΕΝΕΙΟ THΣ EΛΛΑΔΟΣ ΣΤΟ ΝΤΥΣΣΕΛΝΤΟΡΦ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & ΕΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΓΕΝΙΚΟ ΠΡΟΞΕΝΕΙΟ THΣ EΛΛΑΔΟΣ ΣΤΟ ΝΤΥΣΣΕΛΝΤΟΡΦ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & ΕΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ ΓΕΝΙΚΟ ΠΡΟΞΕΝΕΙΟ THΣ EΛΛΑΔΟΣ ΣΤΟ ΝΤΥΣΣΕΛΝΤΟΡΦ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & ΕΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Ντύσσελντορφ, 27 Σεπτεμβρίου 11 Δημογραφικά στοιχεία για τη Γερμανία Βασικές τάσεις Οι βασικές τάσεις που παρατηρούνται

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 1. ο παρακάτω διάγραµµα παρουσιάζει την κατανοµή των οικογενειών ενός χωριού σε σχέση µε τον αριθµό των παιδιών τους. 40 35 Αριθµός οικογενειών 30 25 20 15 10 5 0 0 1

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: α) Δεν επιτρέπεται η χρήση υπολογιστικής μηχανής. β) Δεν επιτρέπεται η χρήση διορθωτικού. γ) Να γράφετε μόνο με μπλε μελάνι. (Για τα σχήματα μπορείτε να χρησιμοποιήσετε

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

Έρευνα Περιφερειακής Κατανοµής της Ετήσιας Τουριστικής απάνης

Έρευνα Περιφερειακής Κατανοµής της Ετήσιας Τουριστικής απάνης Έρευνα Περιφερειακής Κατανοµής της Ετήσιας Τουριστικής απάνης Πίνακας 1:Πλήθος αποκρινόμενων ανά περιφέρεια - Σεπτέμβριος 2013 Περιφέρεια Αποκρινόμενοι Παρατηρήσεις - Θράκη >100 - Κεντρική >100 -

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις Ασφάλεια Πληροφοριακών Συστηµάτων Επαναληπτικές Ασκήσεις ιάγραµµα Pareto Τα προβλήματα ασφάλειας σε δύο εξυπηρετητές μίας εταιρείας απεικονίζονται στο παρακάτω πίνακα: α/α Κωδικός Προβλήματος Συχνότητα

Διαβάστε περισσότερα

Οι εξαγωγικές επιχειρήσεις της Β. Ελλάδος

Οι εξαγωγικές επιχειρήσεις της Β. Ελλάδος Οι εξαγωγικές επιχειρήσεις της Β. Ελλάδος Ο Σύνδεσµος Εξαγωγέων Βορείου Ελλάδος επεξεργάζεται και εκδίδει κάθε δύο χρόνια τον Κατάλογο Εξαγωγέων Βορείου Ελλάδος, έναν πλήρη οδηγό των παραγωγικών, µεταποιητικών

Διαβάστε περισσότερα

1, αν κ το πλήθος των παρατηρήσεων ενός δείγματος. β)τι εκφράζουν η αθροιστική συχνότητα (

1, αν κ το πλήθος των παρατηρήσεων ενός δείγματος. β)τι εκφράζουν η αθροιστική συχνότητα ( ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ: ΣΤΑΤΙΣΤΙΚΗ ΔΙΑΓΩΝΙΣΜΑ 09-11-14 ΘΕΜΑ Α Α1. Να αναφέρετε ποιες μεταβλητές ονομάζονται ποσοτικές και σε ποιες κατηγορίες διακρίνονται. μονάδες 4 Α2.Τι ονομάζουμε

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΕΙΑΣ ΘΕΜΑ Ο : Α. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω να αποδειχθεί ότι: Ρ(Α-Β)=Ρ(Α)-

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυµάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούµε ή να µετατρέψουµε διάφορες περιεκτικότητες.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f είναι f, για κάθε. Μονάδες 7 Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α.

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ Εισαγωγή Στο κεφάλαιο 4 υπολογίζονται τα κυριότερα στατιστικά µέτρα θέσης και µεταβλητότητας, κατασκευάζονται ιστογράµµατα συχνοτήτων και θηκογράµµατα για

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

Παρουσίαση Στατιστικών εδομένων

Παρουσίαση Στατιστικών εδομένων κ ε φάλαιο 3 Παρουσίαση Στατιστικών εδομένων 3.1 Στατιστικοί Πίνακες 3.2 Πίνακες Κατανομής Συχνοτήτων 3.3 Στατιστικά ιαγράμματα 3.4 Συνοπτικές Εκθέσεις ή Αναφορές Αφού συγκεντρώσουμε και επεξεργαστούμε

Διαβάστε περισσότερα

Μέσος αριθμός ξένων γλωσσών που κατέχονται ανά μαθητή

Μέσος αριθμός ξένων γλωσσών που κατέχονται ανά μαθητή γλωσσών που κατέχονται ανά μαθητή Αυστρία 1998 0 0 1999 1.1 1.7 2000 1.1 1.7 2001 0 0 2002 1.1 1.7 2003 0 0 2004 0 0 Βέλγιο 1998 0 0 1999 0 0 2000 1.2 2.2 2001 1.3 2.2 2002 1.3 2.2 2003 1.2 2.2 2004 1.3

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΛΥΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 01 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία και ώρα εξέτασης: Παρασκευή 1/5/01 8:00

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση

Διαβάστε περισσότερα