ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ"

Transcript

1 ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ 1. GAZZILLI OVER 1-1 AND 1 / -1NT A. 1-1 Συνέχεια αγοράς: 1ΧΑ= 11-14π, ομαλή κατανομή 2 = trf for 2 (all the invitational hands) 2 =GF relay 2NT=trf for 3 2 =Gazzilli, φόρσιγκ, υπόσχεται ή 11-15π με τουλάχιστον 4 ή 16+π με οποιαδήποτε κατανομή 2 =11-15π, τουλάχιστον 4 2 =11-15π, τουλάχιστον 6 2 =11-14π, 4 2ΧΑ= 19+ hcp, 6c one suited hand, or with 4 c side suit or a very powerfull hand <19 3 =18+π, τουλάχιστον 5, φόρσιγκ μανς, σπάνια <18 όταν έχει μεγάλη παικτική αξία 3 =18+π, τουλάχιστον 5, φόρσιγκ μανς, σπάνια <18 όταν έχει μεγάλη παικτική αξία 3 =12-15π, τουλάχιστον 6, καλό παικτικό χέρι 3 =13-15π, καλό παικτικό χέρι 3ΝΤ 4 =σπλίντερ 4 = σπλίντερ 4 = hope to make it Συνέχεια αγοράς: =8+π 2 =5-7π, μπορεί και σόλο 2 =5-7π, τουλάχιστον 5 2ΧΑ=5-7π, 0-1, όχι 6 φυλο μινέρ (4-0/1-4-4) 3 =5-7π, =5-7π, = 3 = Συνέχεια αγοράς: =11-15π, =16π+, 5 +4 ή ΧΑ=15+, ομαλή κατανομή/ φορσιγκ 3 =16π+, τουλάχιστον =16π+, τουλάχιστον =16-18π, τουλάχιστον 6 3 =17-19 hcp, με 3φ, bal 3ΧΑ=17-19 hcp, με 2, bal Β. 1-1ΧΑ Συνέχεια αγοράς: 2 =Gazzilli, όχι φόρσιγκ, υπόσχεται ή 11-15π με τουλάχιστον 3 ή 16π+ με οποιαδήποτε κατανομή 2 =11-15π, τουλάχιστον 3

2 2 =11-15π, τουλάχιστον 6 2 =11-14π, ΧΑ=19+ hcp, 6c one suited hand, or with 4 c side suitor a very powerfull hand <19 3 =18+π, τουλάχιστον 5, φόρσιγκ μανς, σπάνια <18 όταν έχει μεγάλη παικτική αξία 3 =19+π, τουλάχιστον 5, φόρσιγκ μανς, σπάνια <18 όταν έχει μεγάλη παικτική αξία 3 =12-15π, καλό παικτικό χέρι 3 = Συνέχεια αγοράς: 1-1ΧΑ 2 2 =8-12π, οποιαδήποτε κατανομή 2 =5-7π, μπορεί και σόλο 2ΧΑ=5-7π, με τα μινέρ 3 =5-7π, =5-7π, 6 + Συνέχεια αγοράς: 1-1ΧΑ =11-15π, 5 min (maybe with ) 2 =16π+, 2ΧΑ=15+π, ομαλή κατανομή 3 =16+π, τουλάχιστον =16+π, τουλάχιστον =16+π, τουλάχιστον 6 3 = 3NT=17-19hcp Γ. 1-1ΧΑ Συνέχεια αγοράς: 2 =Gazzilli, φόρσιγκ, υπόσχεται ή 11-15π με τουλάχιστον 3 ή 16-18π με οποιαδήποτε κατανομή 2 =11-15π, τουλάχιστον 3 2 =11-15π, τουλάχιστον 4 2 =11-14π, 6 2ΧΑ=19+ hcp, 6c one suited hand, or with 4 c side suitor a very powerfull hand <19 3 =19+π, τουλάχιστον 5, φόρσιγκ μανς, σπάνια <18 όταν έχει μεγάλη παικτική αξία 3 =19+π, τουλάχιστον 5, φόρσιγκ μανς, σπάνια <18 όταν έχει μεγάλη παικτική αξία 3 =19+π, 5 +, φόρσιγκ μανς, σπάνια <18 όταν έχει μεγάλη παικτική αξία 3 =13-15 hcp good hand Συνέχεια αγοράς: 1-1ΧΑ 2 2 =8-12π, οποιαδήποτε κατανομή 2 =5-7π, 5+ 2 =5-7π, μπορεί και σόλο 2ΧΑ=5-7π, με τα μινέρ 3 =5-7π, =5-7π, = Συνέχεια αγοράς: 1-1ΧΑ = 3 cards in 11-15π 2 =11-15π, without 3c in 2ΧΑ=15+π, ομαλή κατανομή

3 3 =16+π, τουλάχιστον =16+π 1M-1NT-2NT=GF, artificial 1-1NT 2NT 3 = natural, 5c+ 3 = natural, 5c+ 3 = 3-card support, limit 3 = 2, tending to suggest NT= 5-5 in the minors 1-1NT 2NT 3 = unknown 5+ card minor (στη συνέχεια 3 ρωτάει ποιο: 3 =,3 = ) 3 = 4 card heart suit ( ) 3 = 5 card + 3 = 2, tending to suggest NT= 5-5 in the minors 2. CAPP OVER MAJOR OPENING DOUBLED 1 -X- 1 : natural 4+ card, forcing 1NT: 6-9 HCP, 6card or HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 6-9 HCP, 6card or HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 8-10 HCP, 3 card support 2 : 5-7 HCP, 3 card support 2 : 7-9 HCP, 4 card support 2NT: HCP, 4 card support 3 / : invitational with good 6 card suit 3 : 0-6 HCP, 4 card support 3XA: 13+ HCP with 3 card support and balanced 3,4 / : splinter 1 -X-1NT: 6-9 HCP, 6card or HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 6-9 HCP, 6card or HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 6-9 HCP, 6 card or HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 8-10 HCP, 3 card support 2 : 5-7 HCP, 3 card support 2NT: HCP, 4 card support 3 / : invitational with good 6 card suit 3 : 7-9 HCP, 4 card support 3 : 0-6 HCP, 4 card support 3NT: 13+, 3c sp, balanced 4 / / : splinter SPECIAL SEQUENCE 1M Dbl 2 P 2 P 2M= 10-11HCP with 5, unbalanced, 3 card support in M

4 3. CHECK BACK STAYMAN When opener rebids 1nt even over interference we use two conventional rebids 2 and 2. 2 is a puppet to 2 in order to play 2 or it initiates an invitational sequence. 2 is always a GF RELAY that asks distribution. 1m 1M 1nt 2 = PUPPET to 2 2 = RELAY GF 2M = 5+M (7)-(10) HCP 2OM = a) if M is no game b) if M is /12 HCP 2nt = 2ntT See continuations 3m = 4M-5+m GI 3om = 4M-5+om GI 3M = 6+M GF 3OM = a) if M is 5-5 GF not SI b) if M is 6-5 GF not SI 3nt = Natural 4 = GERBER CONTINUATIONS AFTER 2 1m 1M 1nt 2 2 P= 4M-5+ 5/9 HCP 2M = 5M 10/11 HCP 2OM = a) if M is 5-4/5 9/11 HCP b) if M is /11 HCP 2nt = 10/11 HCP BAL 3m = 5M-4+m 9/11 HCP 3om = 5M-5om 9/11 HCP 3M = 6+M 9/11 HCP 3OM = if OM is 5-5 9/11 HCP GI stronger than previous CONTINUATIONS AFTER 2 1m 1M 1nt 2 Priority: a) Bid other major b) Raise with 3 cards in responder's suit c) Rebid a bad six-card suit d) Show 5-4 e) Bid 2nt Particular sequences: 1m 1M 1nt 2 2x 2M = weak 5+M useful hand for NT 2nt = Asking for further info ( e.g. : Do you have 4? )

5 4y 3M = 6M with SGL y SI if a jump = 6+M if the bid is not available at the 2 level '2NT' STRUCTURE This convention forces opener to bid 3 over which responder can : a) Pass with 4x-6+ b) Bid a new suit at 3 level showing 5-5 GF c) Repeat one's own suit with 5x-5 GF d) Bid 3nt showing 4Μ+5+c in opening minor light SI 4. DRURY Σε άνοιγμα σε 3η και 4η θέση ένα σε μαζέρ η αγορά 2 σπαθιά υπόσχεται 10-11π και φιτ. 1 / -2 2 / =for pass 1 / -2 4 / =sign off 1 / -2 3 / / = at least game try with at least 3c 1 / -2 4 / / = splinter 1 / -2 2 =minimum opening bid---2 / : 3c with 10-11hcp ---3 / : 4c with 10-11hcp ---3 / /other major=splinter 1 / -2 2NT= invitation with balanced hand =at least 4c in hearts, at least min opening bid 5. PUPPET STAYMAN 2NT- 3C: Stayman 3D: Transfer to hearts 3H: Transfer to spades 3S: a hand with minor(s) with interesting in slam 3NT: 5 spades+4hearts 4C=Gerber 4D/H: Transfer 4S: Transfer for 5 clubs 4NT: Invitational. 5C: Transfer for 5 diamonds 2NT-3C 3D : Have at least one 4 card major suit. 3H : 5 Hearts. 3S : 5 Spades. 3NT : Denies 4/5 card major.

6 2NT-3C 3D - 3H: 4 Spades not 4 Hearts. 3S: 4 Hearts not 4 Spades. 3NT: To play. 4C: 4-4 in major. Slam invitational. 4D: 4-4 in major. 4H: (singl H), slam try 8hcp+ 4S= asks for aces (6) (1st: 0-3, 2nd: 1-4, 3rd: 2 & 0 Q, 4th: 2 & 1 Q, 5th: 2 & 2 Q), 4NT= no interesting 4S: (singl S), slam try 8hcp+ 4NT=no interesting, 5C=for aces 2NT-3C 3D-3H 3S : Slam invitational. 3NT : To play 4C/4D : Cue-bid. 4S : To play. 2NT-3C 3D- 3S 3NT : To play. 4C/4D : Cue-bid. 4H : To play. 2NT-3C 3D-4C 4D : Slam invitational in Hearts. 4H : To play. 4S : To play. 4NT : RKCB with Spades as trump. 2NT-3C 3H - 3S: Slam invitational in Hearts. 4C: 5C+ slam try 4NT: To play / other=cue-bid 4D: 5D+ slam try ---> 4NT: To play. 4H: to play 4S/5C/5D: exclusion blackwood 4NT: invitational 2NT-3C 3S - 4C: 5C+, Slam invitational. ---> 4NT: To play. 4D: 5D+S, Slam invitational. ---> 4NT: To play. 4H: Slam invitational in Spades. 4S: to play 4NT: invitational 2NT-3C 3NT-4C: at least 5c, slam try, 4NT: not interesting, other=cue-bid 4D: the same as above 4H: singleton H, 5-4 the minors 4NT: to stop, 4S: aces 4S: singleton S, 5-4 the minors 4NT: invitational (when we accept we bid our first 4c in the 5 level, 5c in the 6 level) 2NT-3D= trf, new suit is slam try with 4c at least 3H- 4H=slam try 2NT-3D 3S(=5cSP+2cH)

7 2NT-3D 3NT=3cH, 21-22hcp, desire to play NT 2NT-3S=trf for 3NT with 2-2-5(4)-4(5) or 6c in minor or 5-5 minors 3NT= obligatory 4C/D: with maximum and fit in both minors 2NT-3S 3NT-4C/D= 6c slam try next bid asks for aces, 4NT: stop, 4H/S: cue-bid 4H/S= singleton H/S, with 5-5 the minors 4NT= slam try with 5-4 in minors and 2-2 in majors (5NT from the opener asks to bid the 5c minor) 5CL=weak two suiter in minor, ask for p/c 5D= strong two suiter in minor 6. WOOLSEY 1NT-2 -P-2 =asks p to bid his longer M 1NT-2 -Dbl P=club length 2 =diamond length 2 / =to play Rdbl= asks p to bid his longer M 3 / = usuaally weak Anything else=to play 1NT-2 -P-2NT=ASKING-P 3 =medium strength, 4-5 or =maximum strength, 4-5 or =asks to bid with transfer the 5cM, and 4 =to bid the 5cM 3 =5-5 rag 3 =5-5 medium strength 3NT=5-5 maximum strength 1NT-2 -P-2NT P- 3 -P-3 =asks for 5M αγοράζουμε το 5φυλλο 1NT Dbl=4cM+5cm or strong one-suited 2 =6cM or strong two suited (5M+4m) 2 / =p/c 2NT 3 / =weak /, 3 / =strong [αν κονράρουν τα 2 pass=έχω, rdbl=clubs, 2 / = for pass] 2-2 / -2ΝΤ=5 +m 2-2 / -3 = / -3 =5 + 2 / =5c M +4+c m 2NT=trf for 3 and new suit else for pass 3M=invit/3NT=invit form 4M=slam try 3 / =pass or correct 3NT=to play 4 / =pass or correct 2NT=5-5 m

8 1NT Dbl P 2 =preference for m 2 = preference for M 2 / =6c (for pass) 2NT=asks for m (strong bid) 7. After 2 opening (weak with majors) 2 =strong one-suited with 2 =strong one-suited with 3 / =strong / Dbl=13-15 hcp balanced 2NT=16-18 hcp balanced 8. GENERAL PRINCIPLES FOR THE COMPETITIVE AUCTION DOUBLE Our doubles are generally all TO at all levels at least when doubler has not shown length in the suit. We use the PD at low levels only when one of us has shown given a penalty pass. In penalty situations when we know we have balanced hands and we hold a certain majority of the points we utilize the double to suggest partner pass with length in the suit. One doesn't make a double if one doesn't want partner to convert to penalty. PENALTY DOUBLE ( PD ) Despite the many TO doubles there are standard situations in which doubles are penalty : a) Partner has opened a preempt b) We have made a Penalty Pass over a TO double of a suit or NT bid higher than 1NT c) The double of a suit in which the doubler has shown 5+ cards d) We have already made a PD DOUBLE WHEN WE HAVE FOUND A FIT When we are in a forcing situation the double of an enemy suit shows a SGL in that suit. If this happens beyond the 3-level of our suit then double is invitation to slam. When the opponents bid their suit under the level of our cheapest competitive raise then the double shows extra strength or good defensive cards. After two PASSES the double can be necessary with many types of special hands if one want to give partner the chance to convert to penalty. * 1ΧΑ (οι αντίπαλοι)-π-2 (τράνσφερ)-2 = διχρωμία + μινέρ * Άνοιγμα 3ΧΑ=διχρωμία σε μινέρ * Μετά από απάντηση 5ΧΑ (2Α+σικάν) αγορά στο επίπεδο 6 ζητάει να αγορασθεί το μεγάλο σλεμ εφόσον είναι αυτό το σικάν, σε αντίθετη περίπτωση αγοράζουμε το σικάν εφόσον είναι δυνατόν ή το χρώμα των ατού. (αν η αγορά χρώματος είναι άνω του επιπέδου 6 στα ατού, το χρώμα των ατού αντικαθίστανται από 6ΧΑ) 9. SEQUENCE = 5332 MIN; 5 +4 /4 MIN; 5 +4 MIN/MAX 2 = 6+ ; Denies 4 2 = MAX 2NT = BAL MAX = 5 +4 MAX or 5 +5 /6 +4 MIN

9 3 = 5 +5 MIN/MAX (3 asks strenght 3 =MIN, 3NT= MAX; 3 shows support to the major) 3 = Solid suit, = Solid suit, less than previous 3 = 6 +5 MAX 3NT = BAL with xx in = Asks 2 = 4 MIN 2NT = 5332 MIN 3 = 4 MIN 3 = 4 MIN/MAX (3 asks strength 3 =min, 3NT=max; 3 shows support to the major) 3 = 5332 MIN; Very good suit 3 = NT=14-15, 5=3=3= NT = Asks 3 = Hxx 3 = 6 +4 MIN/MAX 3 = One-suited 3 = 6 +4 MIN 3NT = 6 MIN 10.SEQUENCE = 5332 MIN; 5 +4 MIN; 5 +4 MIN/MAX 2 = 4 ; If 6 +4 = MAX 2 = 6+ ; If 6 +4 = MIN 2NT = BAL MAX 3 = 5 +4 MAX or 5 +5 /6 +4 MIN 3 = 5 +5 MIN/MAX (3 asks strenght; 3 shows support to the major) 3 = 5 +5 MAX 3 = Solid suit 3NT = BAL with xx in = Asks 2 = 5332 MIN (usually good suit) 2NT = 5332 MIN 3 = 4 MIN 3 = 4 MIN/MAX (3 asks strength; 3 shows support to the major) 3 = = 5332 MIN; Very good suit NT = Asks 3 = Hxx 3 = 6 +4 MIN/MAX

10 3 = 6 +4 MIN 3 = One-suited 3NT = 6 MIN 11.MODIFIED JACOBY 2NT After our 1-MAJ opening and 2NT response (Game-Forcing 4+-card raise): 4 of our MAJOR = the absolute worst dreck imaginable (always ) 3 = any other minimum (could be , but at least some redeeming feature) 3 = non-minimum, with a side singleton or void somewhere 3 =non-minimum, any distribution 3 = non-minimum, 6+ trumps (no singletons or voids) 3NT= non-min., (you can use this to show a HCP range such as 18-19) 4 new suit = decent 5-card side suit (nat.--should have ace or king) Follow-ups: If responder ever jumps to game in the major, it is a sign-off--no further interest. If responder still has slam interest, he can ask further as follows: AFTER opener's 3 : Responder bids 3 to ask, then (note the similarity to the original responses by opener): 4 of our MAJOR = min., but not total dreck (maybe nice controls) 3 = minimum, with a side singleton or void somewhere 3 = minimum, any distribution 3NT= minimum, 6+ trumps (no singletons or voids) 4 new suit = min., decent 5-card side suit (natural--should have ace or king) (After opener's 3 or 3 answer to 3, next step asks, using same schedule as below) AFTER opener's 3 : Responder bids 3 to ask, then: Step1=A VOID somewhere Step2= singleton in lowest side suit ( ) Step3 = singleton in next side suit ( ) Step4 = singleton in highest side suit (other major) After Step 1 (VOID) Next bid asks where and S1=, S2=, S3=other major AFTER opener's 3 : Responder bids 3 to ask, then: Step 1= 4 cards in lowest side suit ( ) Step 2 = 4 cards in next side suit ( ) Step 3 = 4 cards in highest side suit (other major) This looks a bit complex, but there isn't too much memory. The first set of answers to 2NT must be memorized. After that, the same principle covers all the memory: Next step asks, and answers are "up-the-line." INTERFERENCE: As stated above, this convention is never on if they interfere after our 1MAJ opening. However, we do need to cope if they interfere after the 2NT response: Opener's double = Shortness in suit doubled Opener's new suits = natural or a control 3NT = Balanced Maximum (Ace or King in their suit) Opener's Pass = Nothing special--flat hand, could be 5x3x2 awful after which, responder's X=penalty Opener's jump to 4M = dead minimum, but 6x3x2 If they double Asks or re-asks : XX = business, Pass=S1, etc. If they bid after Ask or re-ask:x=penalty, Pass=S1, etc.(except when double=short as above)

11 12.2D = 5 or 6 c Major very weak (<8hcp), with any distribution 2D 2H/P = pass or correct 3CL/D=natural forcing 3H/SP= 2NT=ASK 3CL= min, with 3D= min, with 3H= max, with 3SP= max, with 2 -Dbl pass= Rdbl bid your major 2M= to play 3M=p/c 2 -(2M)-Dbl=p/c NT=OGUST ( 3 =bad suit, min, 3 =bad suit, max, 3 =good suit, min, 3 =gs, max) NT-3m is for pass NT-3m is for pass 13.2H/SP=2, 2 : 8/9/10-13, 6+ in M. If 9 HCP and only six in M, AKQ in suit or KQ in suit & an outside ace.otherwise if 8/9 HCP, 7+ in M and some defensive values. After 2M: 2 /3 : 5+ s, Forcing. 3 or 3 rebid by responder GI. 2NT: Asks, 3, 3 : Either natural, GF, 6+ in suit or mild GI in M and values/length in m. With hand that would not accept mild GI, opener bids 3M or below, descriptively if possible; now a bid of 3M by responder shows the mild GI hand type and all other bids are the GF with 6+ in m. Opener bids 4m if would accept mild GI in M and has at least two cards in m. Bids above 3M not including 4m show a hand that would accept a mild GI, but is short in m. Over opener s rebid above 3M, responder s 4M is to play regardless of what opener has, 3NT is also to play, and other bids are cuebids with GF and length in m. Example: is to play, responder perhaps having a mild GI for s with values/length in s. 3M: Mild GI (use 2NT if good GI), but use 3m if concentrated values in a minor. 3 : Forcing with 6+ s. If opener bids 3 it shows a singleton/void in s and a minimum (3NT would show a maximum and short s). 4 / by opener over 3 are cuebids for s; even with second suit opener should bid 3 or 3NT if short in s. The only non-game forcing sequence is Pass. 3 : 6+ s, GF, asks opener to bid 3NT if singleton/void in s, and otherwise cuebid or bid 4. 4 : Roman Keycard Blackwood (1430) for M, and after replies, and queen ask if necessary, new suit bids are control asks. 4 : Singleton/void, slam interest in M. Games: To play. 4NT: RKCB. After 2M-2NT: 3 : 6+ in M, singleton/void in a suit, no 4 card or longer suit 3 re-asks for singleton: 3 : Singleton in 3 : Singleton in s, 6 in M. 6=3=1=3/3=6=1=3. 3NT: 6=1=3=3/1=6=3=3. 4 : 7cM, short club

12 4 : 7cM, short diamond 4 : 7c M, short OM 3M: Asks opener to pass if minimum, bid 3NT if maximum. 3OM: Asks opener to bid OM with 3 in OM & minimum, cuebid with 3 in OM & maximum, or otherwise bid 3NT. 3NT, 4M: To play. 3 : 6 in M, no singleton/void and just 6 in M. 3OM asks range/shape. After 2-2NT 3-3OM: 3NT: without fit 4m: cue-bid,max,with 3c fit 4OM=3c fit, min 3 : 6 in M, 4 s. 3 asks: 3 : 6 in M, 4 3NT: 6 in M, 4 in OM. 4X: 6-5+, two suiter with 6+ in M and 5+ in X. 4M: shape Μ 4Μ=απλή βοήθεια χωρίς Α,Κ, ή σίγκλετον, ΕΚΤΟΣ αν έχουμε 2 φυλλο φιτ 3ΝΤ=αρνείται Α, βεβαιώνει τουλάχιστον 1Κ και/ή σίγκλετον σε πλάγιο χρώμα με τουλάχιστον 3 ατού. Αν τώρα ο ανοίξας αγοράσει νέο χρώμα ρωτά για δεύτερο κοντρόλ στο χρώμα αυτό και οι απαντήσεις είναι: - 4 στο χρώμα των ατού=αρνείται 2ο κοντρόλ - 5 στο ερωτ ηθέν χρώμα=ο Κ του χρώματος χωρίς άλλο Κ - 5 στο χρώμα ατού=σίγκλετον στο ερωτηθέν χρώματον - Νέο χρώμα=ο Κ αυτού του χρώματος + του ερωτηθέντος χρώματος - Πήδημα σε νέο χρώμα=ο Κ του ερωτηθέντος χρώματος + σίγκλετον στο χρώμα του πηδήματος. 4ΧΑ=2 Α Νέο χρώμα=ο Α στο αγορασθέν χρώμα. Τώρα η αγορά νέου χρώματος από τον τον ανοίξαντα ζητά από τον απαντητή να δείξει αν έχει 2ο κοντρόλ στο χρώμα αυτό. Οι απαντήσεις είναι όπως ανωτέρω. ΑΝ ο ανοίξας σε κάποιο στάδιο ξαναγοράσει χρώμα στο οποίο δεν του έδειξαν κοντρόλ δεδομένου βαθμού, τότε ζητά κοντρόλ κατώτερου βαθμού (έτσι αν η αγορά πήγε 2ΣΠ-2Κ/3Π-3ΧΑ/4Κ-4Π/5Κ αυτή ρωτά για 3ο κοντρόλ στα καρώ). ΑΝ ρωτάει σε χρώμα που δεν του αρνηθήκανε, τότε ρωτάει για κοντρόλ του ίδιου γύρου (έτσι στη σειρά του πιο πάνω παραδείγματος, αν η τελευταία επαναγορά του ανοίξαντος είναι 5 Κούπες, αυτό ρωτάει για 2ο κοντρόλ στις κούπες.

13 14.1NT-P-2 -Dbl RD=4 or 5c Pass= no stopper 2 / / =with stopper 1NT-P-2 -Dbl- P -P RD= bid what you have 2 = 0-7 (I would say pass in what you bid) 2 = 0-7 (garbage stayman) 2 = 6-7hcp, NT-P-2 -Dbl- P -P -RD 2 =4 no 4 2 =4 no 4 2 =no 4c M 2NT=both M min 3 = both M max 14.2NT-P-3 -Dbl RD=4 or 5c P =no stopper 3 / / =with stopper 2NT-P-3 -Dbl- P RD= bid normally 2NT-P-3 -Dbl- 3 : bid your major 15.3x-3NT-P 4 =5 (if 3x= the 4 asks for suits) 4 =5 (if 3x= the 4 asks for suits) 4 =5 (if 3x= the 4 asks for suits) 4 =5 (if 3x= the 4 asks for suits) 4NT= Blackwood 5m=long suit, weak 5M=good suit, invitational 5NT=very invitational after 4x one step =extra values, 19+ hcp + Kxx or 22+ after 4x two steps= without the values to bid one step after 4x new suit bid= naturall, long suit, stronger than 4NT 4NT= negative, misfit, prefering to play 4NT 3-3NT-4 4 =Qxxx+ 4 =Qxxx+, denies 4 =Qxxx+, denies minor 4NT= min hcp, suggests no bidable suit 3-3NT-P-4 P-4 4 =4c, forcing 4NT= not forcing 5 = agrees clubs, invitational 5 =5 c, forcing 5 = agrees clubs, grand slam try, doesn't promise a heart contro

14 16. ΕΠΕΚΤΑΣΗ ΤΟΥ STAYMAN α) 1ΝΤ =ρωτάει 3 =1 4φυλο μινέρ 3 =asks 3 =5φυλο 3 =5φυλο 3ΝΤ=4+4 μινέρ β) 1ΝΤ =ρωτάει 3 =1 4φυλο μινέρ 3 =asks 3 =5φυλο μινέρ 3 =4φυλο 3ΝΤ=4Μ γ) 1ΝΤ =ρωτάει 3 =1 4φυλο μινέρ 3 =asks 3 =5φυλο 3 =5φυλο 3ΝΤ=4Μ δ) 1ΝΤ- 2-2Μ-3 = 5φυλο μινέρ με σόλο το άλλο μινέρ ή 6φυλο μινέρ με όχι δύναμη για σλεμ 3 =asks NT=5+ ε) 1ΝΤ puppet for 2NT 3 : : : : NT: m: στ) 1ΝΤ asks για 2ή 3φυλο 3 =3φυλο, 3ΝΤ=2φυλο, 4 σε χρώμα 5φυλο με 2φυλο 17. Short club and trannsfer responses 1C= all the weak no-trump and balanced 1D= 5+ unbalanced 1C 1D=4+H 1H=4+S 1S=denies a4c M, except for a GF hans with 4cM+5+D 1NT=GF with 5+c 2C=GF+5+D 2D=5-9 +6c in one M 2H=5-9, 5+S, 4+H 2S=9+-12, 5-5 minors 2NT=11-12, balanced invitational 3any=pre-emptive 18. THE 1D RESPONSE 1C-1D---1H=2-3c, S=4+c, F1 1NT=18-19 bal 2C= natural 2D=nat reverse

15 2H= H or 3H if a shortage somewhere 2S=GF, nat 2NT=16+ 6+C with 3cH or 5/6C with 4cH 3C=nat and invitational 3D=4cH with balanced or a splinter raise 3H= unbalanced raise to 3H 3S/4D= void with 4 or more H 1C-1D-1H--- 1S= puppet to 1NT, denies 4c S 1NT=4c S, NF 2C= puppet to 2D, to play or any invitational hand 2D= inquiry, any GF hand 2C & 2D are two-way checkback, as usually seen opposite a 1NT rebid 2C followed by 3NT offers a choice of games, showing 5 H but a hand suitable to play NT 1C-1D-1S=4+ S, F1 1C-1D-1NT= balanced (with two-way checkback) 1C-1D-2H=11-14 with 4cH or 3cH with a shortage ---2S= RELAY, invitational inqiry---4h=max, 3NT=4-3-3,3X=descreptive --- 3NT=slam try with spades ---any suit slam try 1C-1D-2NT---3C=4H, NF 3D=4H, GF 3H=5H, NF 3S=5H, GF 1C-1D-3C=nat 1C-1D-3D=4cH, either bal or a splinter raise 1C-1D-3D-3H= to play (responder may over-rule and go on to game), 3S=inquiry 1C-1D-3D-3S-3NT=18-19 bal, 4C=max, singl D, 4D=min, short D,4H= singls after 1C-1D-3H, bidding proceeds on standard lines 19. THE 1 H RESPONSE 1C-1H---1S=2-3c, NT=18-19 bal 2C= natural 2D= nat reverse 2H= nat reverse 2S= S or 3S if a shortage somewhere 2NT=16+ 6+C with 3cS or 5/6C with 4c S 3C=nat and invitational 3D=4cS with balanced or a splinter raise 3H= mini-splinter, invitational with 4S and short H 3S= unbalanced raise to 3S 4D/H= void with 4 or more S 1C-1H-1S--- 1NT= to play 2C= puppet to 2D, to play or any invitational hand 2D= inquiry, any GF hand 2C & 2D are two-way checkback, as usually seen opposite a 1NT rebid

16 2C followed by 3NT offers a choice of games, showing 5 S but a hand suitable to play NT 1C-1H-1NT=18-19 bal 1C-1H-2S= S or 3S if a shortage somewhere---2nt=invitational inquiry 3NT= , 4S=max, 3any=descreptive bid any = slam try 1C-1D-2NT---3C=4S, NF 3D=4S, GF 3H=5S, NF 3S=5S, GF 1C-1D-3C=nat 1C-1D-3D=4cS, either bal or a splinter raise---3h=re-transfer, 3S=inquiry 1C-1D-3D-3S----3NT=18-19 bal 4C=singl H 4D=singl D 4H=H void 4S=D void 1C-1H-3S=nat 20. THE 1 S RESPONSE= no major or 4M/5D FG 1C-1S-1NT=11-14 bal----2c/d=nat, NF ----2H/S= GF 4M/5D h ----3C/D= nat and invitational 1C-1S-2C=nat 1C-1S-2D=18-19 bal----2h invit to 3NT ----2S puppet to 2NT---3C/D=F1, 3H/S=weakness, looking for3nt, 3NT=to play ----2NT puppet to 3C, one minor, very weak hand (Qxxxxx or worse) C/D=A/Kxxxxx, nothing else H/S=4M+5D, GF 1C-1S-2H/S= nat reverse 1C-1S-2NT=D reverse-----3c/d=nf, 3H=forcing with C, 3S=forcing with D 21. OTHER RESPONSES TO 1C 1C-1NT=GF 5+C----2C=min bal no club fit ----2SUIT=nat with real clubs NT=16+, any distribution C= min with a club fit SUIT= splinter, real clubs NT= bal, would accept a game invitational 1C-2C=GF 5+D----2D=min bal no diamond fit SUIT=nat NT=16+ any distribution C=nat D= min with a diamond fit H/S=splinter with real diamonds NT= bal, would accept a game invitational 1C-2D=5-9 +6c in one M

17 1C- 2H=5-9, 5+S, 4+H ---2S=to play ---2NT=shape inquiry----3c/d=fragment,3h/s=extra shape, 3NT= C-1H-1S-2H: mildly invitational 1C-2S=9+-12, 5-5 minors ---2NT=major-suit stops and invites 3NT ---3C/D=to play ---3H=F with C ---3S=F with D ---3NT=to play ---4C/D=RKCB for the bid suit 22. OTHER AGREEMENTS After a major-showing transfer response, Support Doubles apply. 1C-(Pass)-1D-1S/2C/D-Dbl=11-14 with 3H Pass=weak NT with only 2H Other bids are as in an uncontested action. 1C-(Pass)-1D-(Dbl)-Pass=weak NT, only 2H -1H= weak NT, 3H -Rdbl=18-19, 2H -1NT= H After the redouble, double from either player is for penalties and forcing passes apply. 1C-(Pass)-1S-(Dbl)-Rdbl=18-19 bal -1NT=max and suitable weak NT -C/D=nat NF -Pass=min or unsuitable weak NT 1C-(Pass)-1D-(Pass)-2H-(Pass)-Pass-(2S)-Dbl=PENALTY 1C-(Pass)-1NT-(Dbl)-Pass=weak NT, 2C -2C=weak NT, 3C -Rdbl=18-19 bal OPENING FOLLOWED BY A 1 NATURAL OVERCALL Dbl= trf to hearts 1 =trf to spades 1 =trf to clubs or to no-trump 1NT=natural 2 =trf to the opponent s suit, game forcing, without 4 c M 2 =trf to hearts, 6+ weak or GF 2 =trf to spades, 6+ weak or GF 2 =trf to clubs, 6+ weak or GF 2NT=invitational 3 =invitational, 6+ diamonds 3 =invitational, 6+ hearts 3 = invitational, 6+ spades 3 =trf to no-trump, asking for a diamond stopper with 6+ clubs 1-1 -dbl-p-

18 1 = 11-14, 2+ 1NT=18-19 with stopper 2 =18-19 without stopper P system on P system on P P 1NT=even without stopper in diamonds 2 =to play 2 =asking for stopper 2 =club suit + heart values 2 = club suit + spade values 2NT=invitational 3 =invitational with very weak club suit 3 / / =auto splinter 2 =for pass if pd is weak 3 -invitational for a weak hand 2 =18+ hcp, reverse 3 =natural, NF 3 =waiting, without a stopper in the opponent s suit-strong hand with clubs 3NT=strong with clubs and stopper Development of the sequence after accepting a transfer P 2 -P- pass=6-9 hcp (if invitational then instant 3 ) 2 =waiting, showing the location of honours 2NT= natural 3 = waiting, showing the location of honours 3 =asking for a stopper 3 =no shortage-request for cue-bids 3 =auto splinter 3NT= strong encouragement to play a no-trump contract 4 / =auto splinter All bids indicate 13+ hcp and at least 6 hearts- auto splinter promise a solid trump suit P 2NT*-P- 3 =I want to discuss a slam option within the 7-9 hcp range 3 =no interest for slam 3 =6 hearts, 13+ hcp, suit oriented hand 3 =auto splinter 3NT= , 13 hcp, no trump oriented 4 / =auto splinter 2NT=forcing/as a rule this is 18+ HCPs (we need an economic waiting bid) P

19 2NT-P-3 -P 3 - P- 3NT= no shortage 4 / =shortage 4 =shortage spade without extra values 4 =shortage spade wit extra values 3 =waiting bid Extra values can be: a) 15+hcp, b) void, c) 7+ c P 2NT-P-3 / -P 3 -P- 3 =shortage 3NT=no shortage 4 / =shortage 4 =not interested P 3 -P P 3 - P- 3 - P 3 =7-9 hcp, nothing else 3 =waiting, it may comprise a strong version of the transfer 3NT=I have a stopper in diamonds 4 =fit 4 =cue bid, usually stopper 4 =to play 3NT=half stopper 4 =natural, forcing P P 2NT-P P 2 =to play if weak variant 2NT=waiting, asking for distribution and strength 3 =natural 3 =asking for a stopper, waiting 3 =18+ hcp reverse 4 hearts+5+clubs 3 =invitational 4 / / =splinters 3 =I want to discuss a slam option within the 7-9 hcp range 3 =13+hcp, 6+spades 3 = no interest for slam 3 = no shortage-request for cue-bids 3NT= , 13 hcp, no trump oriented 4 / / =auto splinter 2NT=waiting 3 =to play if the hand is weak 3 =18+hcp,balanced, asking for a stopper

20 P 2NT-P P 2NT-P-3 -P 3 -P- 3 =13+hcp, 6+ clubs 3 / / =shortage, 6-9 hcp 3NT=no shortage, 6-9hcp 3 / =shortage 3NT=no shortage, forcing 4 =singleton diamond 4 =void diamond P 3 -P- 3 =asking for a stopper 3 / =shortage 3NT=proposal of a final contract OPENING FOLLOWED BY A 1 NATURAL OVERCALL 1-1 dbl=trf to spades 1 =trf to clubs or to no-trump 1NT=natural 2 =trf to diamonds 2 =trf to the opponent s suit, game forcing, without 4 spades 2 =trf to spades, 6+ weak or GF 2 =trf to clubs, 6+ weak or GF 2NT=invitational 3 =invitational, 6+ clubs 3 =invitational, 6+ diamonds 3 = invitational, 6+ spades 3 =trf to no-trump, asking for a heart stopper with 6+ clubs solid suit P 1NT-P P 2 =T/P 2 =reverse 2 =ask for stopper 2 =reverse GF 2NT=invitational 3 =inv with bad suit 3 / / =splinter 2 =12-14 hcp, balanced 2 =waiting, GF 2 =reverse, 4spades, 5+clubs 2NT=18+hcp, balanced 3 =non forcing 3 =12-14hcp, balanced with diamond fit 3 / =splinter P

21 2 - P- 2 =waiting, GF 2 =5 +4, GF 2NT=invitational 3 =natural, GF 3 =invitational 3 / =autosplinter 3NT=to play P 2NT-P P 3 =natural 3 =6+diamonds 3 / =shortage 3 =13+, NT=nothing special 4 / =shortage + extra values in power 4NT=invitational 2 =NF 2NT=waiting 3 =natural 3 =reverse bid 4 diamonds+5 clubs 3 =waiting, asking for a stopper 3NT=invitational P 2 - P- 2NT=natural, invitational 3 / =values 3 = asking for a stopper 3 =call for cue bids 3NT=to play 4 / / =auto splinter P 2NT-P P 2NT-P- 3 =I want to discuss a slam option within the 7-9 hcp range,6+sp 3 =13+hcp, 6+spades 3 = no interest for slam 3 = no shortage-request for cue-bids, 13+hcp 3NT= , 13 hcp, no trump oriented 4 / / =auto splinter 3 =13+hcp, 6+ clubs 3 / / =shortage, 6-9 hcp 3NT=no shortage, 6-9hcp OPENING FOLLOWED BY A 1 NATURAL OVERCALL dbl=neg-promises 4 hearts 1NT=natural 2 =trf to diamonds 2 = trf to hearts

22 2 = trf to the opponent s suit, game forcing, without 4 hearts 2 =trf to clubs, 6+ weak or GF 2NT=invitational 3 =invitational, 5+ clubs 3 =invitational, 6+ diamonds 3 = invitational, 6+ hearts 3 =trf to no-trump, asking for a spade stopper with a solid minor suit P 2 =12-14 hcp, balanced 2 =reverse bid, 4hearts+5clubs 2 =waiting, GF, asking for stopper 2NT=18+hcp, balanced 3 =non forcing 3 =12-14hcp, balanced with diamond fit 3 / =splinter P 2 - P- 2 =values, forcing for one round, not 4 hearts 2 = waiting, GF, asking for stopper 2NT=invitational 3 =5+diamonds-4+clubs. GF 3 =invitational 3 / =autosplinter 3NT=to play P 2 -P P 2NT-P P P 2NT-P- pass=nothing special 2 =waiting, GF 2NT=invitational, hearts+a no-trump shape 3 / =natural, GF 3 =invitational 3 /4 / =auto splinter 3NT=proposal of a final contract 3 =retransfer 3 // =natural 3 =auto splinter 3NT= nothing special 4 / =auto splinter 2NT=18+hcp,waiting 3 =12-14hcp 3 =reverse bid, 4diamonds, 5+clubs, GF 3 =reverse bid, 4hearts, 5+clubs, GF 3 =asking for a stopper 4 =strong suit agreement, RKCB 3 =6+clubs 3 =5+clubs-4diamonds

23 3 / =shortage 3NT= nothing special OPENING FOLLOWED BY AN OPPONENT S TAKE OUT DOUBLE 1 -dbl- pass= nothing special rdbl=10+hcp 1 =trf to hearts 1 =trf to spades 1 =trf to no-trump or to clubs 1NT=natural 2 =trf to diamonds 2 = trf to hearts, 6+ weak or GF 2 = trf to spades, weak or strong 2 =trf to clubs, 6+ weak or GF 2NT=invitational 3 =trf to diamonds-invitational 3 =invitational,trf to hearts 3 = invitational, trf to spades 3 =bid 3NT 27. OPPENING BID 1 1 -P 1D-1H 1H=nat 1SP=nat 1NT=up to 12 hcp opener passes only with min , otherwise bids 2CL with 3c or 2D with 6c 2CL=5+ GF (may 4c M also) 2D=GF 2H=limit, 4+ 2SP= or NT=invit 3CL=to pass 3D=0-6hcp, 4+ 3M=splinter 1SP=F1, 4+SP 1NT=11-14, singleton H 2 =trf for 2 =GF 2CL=nat 2D=6+c 2H=nat (maybe 3c) 2SP=3c 16+hcp 2NT=4c 16+hcp 3CL=5-5, 16+hcp 3D=6+c, 16+hcp 3 =14-15hcp, 4c 3SP/4CL= void

24 1D-1SP 1NT=5D+4H or =trf for 2 =GF 2CL=5-4 2D=6+ 2H=reverse 2SP=nat (maybe 3c) 2NT=16+ with 4c fit in SP 3CL= H=splinter 3SP=14-15 hcp, 4c 1D-1H 2H-2NT (ask) 3CL=min, 3c fit 3D=min, 4c fit 3H=max, 3c fit 3SP=max, 4c fit almost the same with 1D-1SP-2SP-2NT... 1D-2CL 2D=5+ 2H= or SP=good hand with fit 2NT= c ( ) 3CL=weak hand with fit 3D=16+, 6c+ 3H/SP=splinter with fit 3NT= c 1D-2D (GF) 2H=min (11-14) 2SP=5+D + 4SP (15+) ( or with singl honor) 2NT=5+D + 4H (15+) ( or with singl honor) 3CL=5+D + 4CL (15+) 3D=6+D (rather , or with singl honor) 3H=0-1 H (15+) 3SP=0-1 SP (15+) 3NT=0-1 CL (15+) 1D-2D 2H 2SP=relay 2NT= CL=5-5 3D= , or H=0-1 H 3SP=0-1 SP 3NT=16-18hcp 2NT=13-15 bal (?) 3CL=0-1 CL 3D=6+

25 3H/SP=0-1 H/SP 3NT= ΝΤ-P-3NT-Dbl (for spade lead) P=1+ stopper Rdbl=no stopper 29. 1NT (weak)-dbl we continue the bidding as if we have opened 1NT 30. When we dbl splinter bid when we are in the first zone and the opponent s in the second is a proposal for sacrifice otherwise is for a lead to the lower colour 31. After an oppening bid in minor and intervention of 1NT we play FORMIN 32. ΜΕΤΑ ΑΠΟ ΔΙΧΡΩΜΙΑ ΤΩΝ ΑΝΤΙΠΑΛΩΝ α) double= τιμωρώ τουλάχιστον το ένα χρώμα τους β) cue-bid στο χαμηλότερο χρώμα τους έτσι όπως μας έρχεται από την αγορά= fit στο άνοιγμα με προτασιακό + χέρι γ) cue-bid στο ψηλότερο χρώμα τους έτσι όπως μας έρχεται από την αγορά= προτασιακό χέρι + με 5φυλο το τέταρτο χρώμα δ) αγορά του τέταρτου χρώματος δεν είναι φορσιγκ και δείχνει συνήθως 6φυλο με 6-9 π 33. 1CL-1SP 2CL 2D=3CL+10-12p 2H=5D+4H, GF 2SP=5D+4SP, GF 2NT=10-12p 3CL=8-10p 3D=6c, invitational 3H/SP=splinter 4CL=RCKB 5CL=sign off

ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ 1. GAZZILLI OVER 1-1 AND 1 / -1NT A. 1-1 Συνέχεια αγοράς: 1ΧΑ= 11-15π, ομαλή κατανομή 2 =Gazzilli, φόρσιγκ, υπόσχεται ή 11-15π με τουλάχιστον 3 ή 16+π με οποιαδήποτε κατανομή

Διαβάστε περισσότερα

ANGELOPOULOS KOUKOUSELIS

ANGELOPOULOS KOUKOUSELIS ANGELOPOULOS KOUKOUSELIS 1. CAPP OVER MAJOR OPENING DOUBLED (AND IN MAJOR OVERCALL) 1 -X-1 : 1NT: natural 4+ card, forcing 6-9 HCP, 6card or 10-11 HCP with 3 card support and values in (opener accepts

Διαβάστε περισσότερα

P.KANNAVOS L.ZOTOS BIDDING SYSTEM VERSION 1.2 (Jan 18)

P.KANNAVOS L.ZOTOS BIDDING SYSTEM VERSION 1.2 (Jan 18) P.KANNAVOS L.ZOTOS BIDDING SYSTEM VERSION 1.2 (Jan 18) General approach: Openings: 2card, 5card any other suit Transfer responses after 1 or 2 openings 2 response = GF relay, balanced or with clubs 1 Opening

Διαβάστε περισσότερα

SUPPLEMENTARY NOTES A. SAPOUNAKIS L. ZOTOS

SUPPLEMENTARY NOTES A. SAPOUNAKIS L. ZOTOS SUPPLEMENTARY NOTES A. SAPOUNAKIS L. ZOTOS 1) Η ΑΓΟΡΑ 1-1 Προδιαγραφές: α) 6-10 χωρίς 4φυλλο φιτ, χωρίς 5+ πίκες β) 6-11 με τετράφυλλο πίκα και μακρύ μινερ γ) 11+ μπαλανσέ, χωρίς 4φυλλο φιτ, χωρίς 5+ πίκες

Διαβάστε περισσότερα

Σύνοψη του συστήματος

Σύνοψη του συστήματος 1/8 ΣΥΝΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ Σε 4 η θέση reopening : X2 (8+ π.ο.), (11-14 π.ο.), Dbl=10+π. Άμεση παρεμβολή 1ΧΑ=15-18π και οι απαντήσεις όπως άνοιγμα, Παρεμβολή 4 η θέση 1ΧΑ=11-14π, απαντήσεις όπως σε άνοιγμα.

Διαβάστε περισσότερα

Σύνοψη του συστήματος

Σύνοψη του συστήματος ΓΙΩΡΓΟΣ ΠΑΠΑΠΕΤΡΟΣ ΔΗΜΗΤΡΗΣ ΚΑΛΥΒΑΣ 1/8 ΣΥΝΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ Σε 4 η θέση reopening : X2 (8+ π.ο.), (11-14 π.ο.), Dbl=10+π. Άμεση παρεμβολή 1ΧΑ=15-18π και οι απαντήσεις όπως σε άνοιγμα. Παρεμβολή 4 η θέση

Διαβάστε περισσότερα

2-2 : forcing, όχι καρά Συνέχειες όπως στο Cbs -2 : non forcing

2-2 : forcing, όχι καρά Συνέχειες όπως στο Cbs -2 : non forcing ΣΥΜΦΩΝΙΕΣ Long game tries. Με μπαλανσέ χέρι: 2ΧΑ (forcing, =17-18). 1M-2M-2N-3N= 3φ, οκ [νέο χρώμα = κράτημα] Bergen: όταν υπάρχει χώρος για 2 απαντήσεις κάτω από το Μ, η 1 η είναι γενικό gt και η 2 η

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

1 ο μέρος - Το Ρωμαϊκό Σπαθί (Romano)

1 ο μέρος - Το Ρωμαϊκό Σπαθί (Romano) 1 ο μέρος - Το Ρωμαϊκό Σπαθί (Romano) ΕΙΣΑΓΩΓΗ Μια δεκαετία μετά την έκδοση του Il Nuovissimo Fiori Romano αποφασίστηκε ότι ήρθε η στιγμή για την νέα έκδοση, με αλλαγή ακόμα και στον τίτλο, για δύο κυρίως

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

2nd Training Workshop of scientists- practitioners in the juvenile judicial system Volos, EVALUATION REPORT

2nd Training Workshop of scientists- practitioners in the juvenile judicial system Volos, EVALUATION REPORT 2nd Training Workshop of scientists- practitioners in the juvenile judicial system Volos, 26-6-2016 Can anyone hear me? The participation of juveniles in juvenile justice. EVALUATION REPORT 80 professionals

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

BRIDGE ÑÉÓÔÉÍÁ ÓÕÑÁÊÏÐÏÕËÏÕ

BRIDGE ÑÉÓÔÉÍÁ ÓÕÑÁÊÏÐÏÕËÏÕ BRIDGE ÃÍÙÑÉÌÉÁ ÌÅ ÔÏ ÁÈËÇÌÁ ÑÉÓÔÉÍÁ ÓÕÑÁÊÏÐÏÕËÏÕ Ξεκινώντας να παίζουμε μπριτζ Γνωριμία με το παιχνίδι Το μπριτζ παίζεται με 4 παίκτες: Τον Βορά, την Ανατολή, το Νότο και τη Δύση! Ο Βοράς είναι συμπαίκτης

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Παιδαγωγικά θέματα στη διδασκαλία του Μπριτζ. V. Σχέδια μαθημάτων για εκπόνηση μικροδιδασκαλιών από τους υποψηφίους εκπαιδευτές. Δημήτρης Παπασπύρου

Παιδαγωγικά θέματα στη διδασκαλία του Μπριτζ. V. Σχέδια μαθημάτων για εκπόνηση μικροδιδασκαλιών από τους υποψηφίους εκπαιδευτές. Δημήτρης Παπασπύρου Παιδαγωγικά θέματα στη διδασκαλία του Μπριτζ V. Σχέδια μαθημάτων για εκπόνηση μικροδιδασκαλιών από τους υποψηφίους εκπαιδευτές Δημήτρης Παπασπύρου Σεπτέμβριος 2015 2 Οδηγίες στους υποψήφιους που πρόκειται

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ΤΟ ΦΥΣΙΚΟ ΑΓΟΡΑΣΤΙΚΟ ΣΥΣΤΗΜΑ SUPER DJONI

ΤΟ ΦΥΣΙΚΟ ΑΓΟΡΑΣΤΙΚΟ ΣΥΣΤΗΜΑ SUPER DJONI ΤΟ ΦΥΣΙΚΟ ΑΓΟΡΑΣΤΙΚΟ ΣΥΣΤΗΜΑ SUPER DJONI Version 6.3a 10-5-2014 Σύντομο Ιστορικό Το σύστημα Djoni είναι βασισμένο πάνω στην αρχική ιδέα του μεγάλου Ιταλού θεωρητικού και προπονητή Carlo Mosca. Την αρχική

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial

Διαβάστε περισσότερα

ΣΟΡΟΠΤΙΜΙΣΤΡΙΕΣ ΕΛΛΗΝΙΔΕΣ

ΣΟΡΟΠΤΙΜΙΣΤΡΙΕΣ ΕΛΛΗΝΙΔΕΣ ΕΛΛΗΝΙΔΕΣ ΣΟΡΟΠΤΙΜΙΣΤΡΙΕΣ ΕΚΔΟΣΗ ΤΗΣ ΣΟΡΟΠΤΙΜΙΣΤΙΚΗΣ ΕΝΩΣΗΣ ΕΛΛΑΔΟΣ - ΤΕΥΧΟΣ Νο 110 - Δ ΤΡΙΜΗΝΟ 2014 Το πρώτο βραβείο κέρδισε η Ελλάδα για την φωτογραφία Blue + Yellow = Green στον διαγωνισμό 2014 του

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Τ Ο Φ Υ Σ Ι Κ Ο Α Γ Ο Ρ Α Σ Τ Ι Κ Ο Σ Υ Σ Τ Η Μ Α E A S Y D J O N I

Τ Ο Φ Υ Σ Ι Κ Ο Α Γ Ο Ρ Α Σ Τ Ι Κ Ο Σ Υ Σ Τ Η Μ Α E A S Y D J O N I Τ Ο Φ Υ Σ Ι Κ Ο Α Γ Ο Ρ Α Σ Τ Ι Κ Ο Σ Υ Σ Τ Η Μ Α E A S Y D J O N I Version 5.5a 10-5-2014 Σύντομο Ιστορικό Το σύστημα Djoni είναι βασισμένο πάνω στην αρχική ιδέα του μεγάλου Ιταλού θεωρητικού και προπονητή

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα