ΚΕΦΑΛΑΙΟ 2 ο : Εξομοίωση Ψηφιακή Υλοποίηση Αναλογικών Διαμορφώσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 2 ο : Εξομοίωση Ψηφιακή Υλοποίηση Αναλογικών Διαμορφώσεων"

Transcript

1 ΚΕΦΑΛΑΙΟ 2 ο : Εξομοίωση Ψηφιακή Υλοποίηση Αναλογικών Διαμορφώσεων

2 2 2 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο Περιεχόμενα Κεφαλαίου Εισαγωγή Απλή διαμόρφωση ΑΜ (DSB) - Πλέγμα δειγματοληψίας Σύντομη θεωρία Παράδειγμα 2.1 Διαμόρφωση ΑΜ (DSB) σήματος Ψηφιακή υλοποίηση διαμόρφωσης SSB Σύντομη θεωρία Παράδειγμα 2.2 Διαμόρφωση SSB σήματος διακριτών τόνων Ψηφιακή υλοποίηση διαμόρφωσης VSB Παράδειγμα 2.3 Φίλτρο VSB - Διαμόρφωση VSB Παράδειγμα 2.4 Σύγκριση SSB-VSB σε διαμόρφωση με σήμα συνεχούς φάσματος Ψηφιακή υλοποίηση διαμόρφωσης FM Σύντομη θεωρία των εκθετικών διαμορφώσεων (PM, FM) Διαμόρφωση PM και FM με σήμα διακριτών τόνων Παράδειγμα 2.5 Διαμόρφωση FM με σήμα διακριτών τόνων Παράδειγμα Διαμόρφωση FM με σήμα συνεχούς φάσματος

3 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων Εισαγωγή Όπως τονίστηκε και στο εισαγωγικό κεφάλαιο, η ψηφιακή τεχνολογία τείνει να εξοβελίσει τις αναλογικές τεχνικές από τα συστήματα των σύγχρονων τηλεπικοινωνιών. Ήδη και τα τελευταία «φρούρια» της αναλογικής τεχνολογίας, η τηλεόραση και το ραδιόφωνο, μεταβαίνουν στην εποχή της ψηφιακής εκπομπής. Ωστόσο, το τελευταίο μέρος ενός τηλεπικοινωνιακού συστήματος (RF up-converter και ενισχυτής εξόδου) είναι κατ ανάγκη αναλογικό, αφού τελικά ένα αναλογικό σήμα θα δημιουργηθεί προς εκπομπή στον διαθέσιμο τηλεπικοινωνιακό δίαυλο. Πέραν αυτού, τόσο το θεωρητικό υπόβαθρο, όσο και επι μέρους διαδικασίες της ψηφιακής διαμόρφωσης δανείζονται από τα κλασικά σχήματα της αναλογικής διαμόρφωσης (QAM, VSB, FM), ενώ και η ανάλυση θορύβου βασίζεται θεωρητικά στις στοχαστικές ανελίξεις συνεχούς χρόνου. Στο κεφάλαιο αυτό θα παρουσιαστούν ασκήσεις ψηφιακής υλοποίησης βασικών σχημάτων αναλογικής διαμόρφωσης, όπως SSB, VSB και FM, με στόχο τόσο την εμπέδωση της σχετικής θεωρίας, όσο και την εξοικείωση με τις τεχνικές ψηφιακής επεξεργασίας τηλεπικοινωνιακών σημάτων (φιλτράρισμα, μορφοποίηση φάσματος), δεξιότητες απαραίτητες για την υλοποίηση συστημάτων ψηφιακής επικοινωνίας. 2.2 Απλή διαμόρφωση ΑΜ (DSB) Πλέγμα δειγματοληψίας Σύντομη θεωρία Η απλούστερη διαμόρφωση είναι η Διαμόρφωση Πλάτους Διπλής Πλευρικής Ζώνης (ΑΜ Double Side Band DSB). Συνίσταται στον πολλαπλασιαμό ενός ημιτονικού σήματος (φέροντος) με το προς μετάδοση σήμα, υπό τη συνθήκη ότι η συχνότητα φέροντος, f c, είναι τουλάχιστον διπλάσια του εύρους ζώνης, W, του σήματος. Το αποτέλεσμα της διαμόρφωσης αυτής είναι η ολίσθηση του φάσματος του σήματος στην περιοχή της συχνότητας του φέροντος (σχ. 2.1). W f cos2πf c t -f c f c Σχήμα 2.1: Διαμόρφωση Είναι φανερό από το σχήμα 2.1 ότι για να έχουμε σωστή ψηφιακή αναπαράσταση του διαμορφωμένου σήματος (χωρίς σφάλματα επικάλυψης), θα πρέπει το πλέγμα δειγματοληψίας να είναι τόσο πυκνό όσο το διπλάσιο τουλάχιστον της υψηλότερης συχνότητας f c +W. Εάν λοιπόν το αρχικό πλέγμα δειγματοληψίας δεν είναι επαρκώς πυκνό (π.χ. είναι κοντά στη συχνότητα Nyquist του αρχικού σήματος βασικής ζώνης),

4 2 4 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο θα πρέπει να γίνει κατάλληλη πύκνωσή του, σύμφωνα με τη μέθοδο που περιγράφηκε στο Κεφ. 1. Στο παράδειγμα που ακολουθεί, σήμα βασικής ζώνης, εύρους περίπου 1 KHz (για την ακρίβεια, το σήμα έχει φιλτραριστεί με συχνότητα αποκοπής f 2 =1.23 KHz, βλ. σχετικό Παράδειγμα 1.2) διαμορφώνει κατά πλάτος φέρον συχνότητας f c =4f 2. Η αρχική συχνότητα δειγματοληψίας του σήματος είναι F s =8192 Hz. Επειδή 2(f c +f 2 )=12288 > F s, η συχνότητα δειγματοληψίας δεν επαρκεί για να παρασταθεί σωστά το διαμορφωμένο σήμα και, για το λόγο αυτό, γίνεται κατάλληλη πύκνωση πλέγματος Παράδειγμα 2.1 Διαμόρφωση ΑΜ (DSB) σήματος Σε περιβάλλον MATLAB, να διαβαστεί διάνυσμα σήματος από το σχετικό αρχείο (μαζί διαβάζονται η συχνότητα δειγματοληψίας, F s, καθώς και οι οριακές συχνότητες ζώνης μετάβασης και ζώνης αποκοπής, f c (1:2), του σήματος) και να γίνουν επ αυτού τα ακόλουθα: α) Πύκνωση πλέγματος κατά τον παράγοντα 4. β) Διαμόρφωση ΑΜ-DSB με συχνότητα φέροντος F c =4f c (2). γ) Αποδιαμόρφωση και σύγκριση (τμήματος) του τελικού σήματος με το αρχικό. Σε κάθε στάδιο (α,β,γ) να σχεδιαστεί το φάσμα του αντίστοιχου σήματος. Υλοποίηση - σχολιασμός κώδικα Ο Κώδικας 2.1 υλοποιεί τα ζητούμενα του παραδείγματος. Αφού φορτωθεί το σήμα και οι παράμετροι συχνότητας από το αρχείο sima_lp (γραμμή 6), σχεδιάζεται η φασματική πυκνότητα του σήματος (γραμμή 9). Στη συνέχεια γίνεται πύκνωση του πλέγματος δειγματοληψίας και υπολογίζονται οι ανηγμένες τιμές των συχνοτήτων στο νέο πλέγμα (γραμμές 1, 11). Η συνάρτηση upsample απλώς παρεμβάλλει μηδενικά δείγματα (τρία, ανά ένα δείγμα σήματος), ο δε συντελεστής <4> χρησιμοποιείται για να διατηρήσει τη φασματική πυκνότητα του σήματος στα αρχικά επίπεδα (όχι την ισχύ του, η οποία τετραπλασιάζεται). Έτσι, μετά και το βαθυπερατό φιλτράρισμα που γίνεται στη συνέχεια (υπολογισμός φίλτρου: γραμμή 14, φιλτράρισμα: γραμμή 2), η κλίμακα του σήματος παραμένει η ίδια (ας σχεδιαστούν και συγκριθούν για επιβεβαίωση αντίστοιχα τμήματα σήματος, πριν και μετά την πύκνωση του πλέγματος). Στα επόμενα τμήματα κώδικα ακολουθούν: η διαμόρφωση (γραμμή 27), η αποδιαμόρφωση (γραμμές 3-34) και η επαναφορά στο αρχικό πλέγμα (αραίωση κατά 4, γραμμή 37). Τέλος συγκρίνονται αντίστοιχα τμήματα του αρχικού και του τελικού σήματος. Σε καθένα από τα παραπάνω στάδια επεξεργασίας σχεδιάζεται το φάσμα του αντίστοιχου σήματος. Το σχήμα 2.2 συμπεριλαμβάνει τα αντίστοιχα γραφήματα.

5 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων clear all; close all; 2. %%%% Φόρτωση σήματος και πύκνωση του πλέγματος δειγματολήψίας 3. % Φορτώνεται το σήμα βασικής ζώνης, sima_lp, η συχνότητα 4. % δειγματοληψίας Fs και το διάνυσμα των συχνοτήτων της 5. % ζώνης μετάβασης fc=[f1 f2], ανηγμένων ως προς Fs 6. load sima_lp; 7. F1 = fc(1); % οριακή συχνότητα ζώνης διέλευσης 8. F2 = fc(2); % οριακή συχνότητα ζώνης αποκοπής 9. figure; pwelch(sima_lp, [], [], [], Fs); 1. s_dense=4*upsample(sima_lp,4); Fs=Fs*4; % πύκνωση πλεγματος 11. F1=F1/4; F2=F2/4; % οι συχνότητες αποκοπής στο νέο πλέγμα 12. figure; pwelch(s_dense, [], [], [], Fs); 13. % Βαθυπερατό φίλτρο PM 14. order=256; hpm=firpm(order, [ F1 F2.5]*2, [1 1 ]); 15. [H,F] = FREQZ(hpm,1,512,Fs); % απόκριση συχνότητας του φίλτρου 16. figure; subplot(2,1,1); plot(f,2*log(abs(h))); grid; 17. title('απόκριση συχνότητας βαθυπερατού φίλτρου'); 18. subplot(2,1,2); plot(f,phase(h)); grid; 19. % 2. s=conv(s_dense,hpm); s=s(order/2+(1:length(s_dense))); 21. clear s_dense; 22. figure; pwelch(s, [], [], [], Fs); 23. % add a dc component for conventional AM 24. % s=s+2*max(abs(s)); 25. %%%% Διαμόρφωση DSB 26. Fc=4*F2; % συχνότητα φέροντος 27. s_dsb=sqrt(2)*s.*cos(2*pi*fc*[1:length(s)]'); 28. figure; pwelch(s_dsb, [], [], [], Fs); 29. %%%% Αποδιαμόρφωση DSB 3. s_dsb_dm=sqrt(2)*s_dsb.*cos(2*pi*fc*[1:length(s_dsb)]'); 31. figure; pwelch(s_dsb_dm, [], [], [], Fs); 32. % 33. s_dsb_lp=conv(s_dsb_dm,hpm); 34. s_dsb_lp=s_dsb_lp(order/2+(1:length(s))); 35. figure; pwelch(s_dsb_lp, [], [], [], Fs); 36. %%%% Επαναφορά στο αρχικό πλέγμα 37. s_dsb_lp=downsample(s_dsb_lp,4); Fs=Fs/4; 38. figure; pwelch(s_dsb_lp, [], [], [], Fs); 39. %%%% Σύγκριση με το αρχικό σήμα 4. n=[2:4]; 41. t=[1:length(sima_lp)]'/fs; 42. figure; plot(t(n),sima_lp(n),t(n),s_dsb_lp(n),':'); grid; 43. axis([min(t(n)) max(t(n)) 1.2*min(sima_lp(n)) *max(sima_lp(n))]); 45. legend('αρχικό σήμα',' τελικό σήμα'); Κώδικας 2.1: Παράδειγμα διαμόρφωσης DSB

6 2 6 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο -6 Φάσμα αρχικού σήματος -6 Σήμα, μετά την παρεμβολή μηδενικών δειγμάτων στο πυκνό πλέγμα (x4) upsampling Φάσμα σήματος, μετά την πύκνωση του πλέγματος δειγματοληψίας LP 1 Απόκριση συχνότητας βαθυπερατού φίλτρου, order=256, F s =32768 Hz Φασματική πυκνότητα ισςχύος (db/hz) Ενίσχυση (db) Φάση modulation - DSB -7 Σήμα DSB, F c =4925 Hz, F s =32768 Hz -6 Σήμα κατά την αποδιαμόρφωση, πριν το φίλτρο LP demodulation Φάσμα τελικού σήματος (μετά mod-dem DSB) LP & downsampling x Αρχικό σήμα τελικό σήμα Πλάτος Χρόνος (sec) Σχήμα 2.2: Γραφήματα του παραδείγματος 2.1 (DSB)

7 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων Ψηφιακή υλοποίηση διαμόρφωσης SSB Σύντομη θεωρία Όπως διαπιστώθηκε και πειραματικά στην προηγούμενη παράγραφο, η διαμόρφωση ΑΜ στην απλή μορφή της Διπλής Πλευρικής Ζώνης (Double Side-Band DSB) παράγει φάσμα εύρους διπλάσιου αυτού του αρχικού (πραγματικού) σήματος, με δύο συμμετρικές συνιστώσες, πάνω και κάτω από τη συχνότητα φέροντος, f c. Είναι φανερό ότι γίνεται σπατάλη φάσματος, η οποία αίρεται με δύο εναλλακτικές διαμορφώσεις: (i) διαμόρφωση QAM, κατά την οποίαν εκπέμπονται στην ίδια ζώνη συχνοτήτων δύο ανεξάρτητα σήματα, ως το πραγματικό και φανταστικό μέρος ενός μιγαδικού σήματος (για το οποίο δεν υφίσταται πλέον συμμετρία φάσματος ως προς f c ). (ii) διαμόρφωση Μονής Πλευρικής Ζώνης (Single Side-Band SSB). H SSB διατηρεί και μεταδίδει τη μία μόνον πλευρική ζώνη φάσματος (πάνω ή κάτω από τη συχνότητα φέροντος). Δύο εναλλακτικές υλοποιήσεις SSB σε ψηφιακή μορφή δείχνονται στο σχήμα 2.3: (α) με παραγωγή σήματος DSB σε πρώτο στάδιο και φιλτράρισμα αυτού, στη συνέχεια, με βαθυπερατό ή υψιπερατό φίλτρο, συχνότητας αποκοπής f c. (β) ως QAM του σήματος και του Hilbert μετασχηματισμού αυτού (δομή διαμορφωτή Hartley). Υπενθυμίζεται ότι το φίλτρο Hilbert ορίζεται ως εξής: Αναλογική μορφή: Ψηφιακή μορφή: H H hilbert hilbert j, f > 1 ( f ) = j, f < hhilbert = πt, f = j, < f <.5, n = ή άρτιο D ( f D ) = hhilbert [ n] = 2 j,.5 < f < 1, n περιττό D πn W f -f c -f c f c f c cos2πf c t (α) -f c f c ΒΑΘΥΠΕΡΑΤΟ ΦΙΛΤΡΟ s(t) Μετ/σμός Hilbert cos2πf c t sˆ ( t) -sin2πf c t Σχήμα 2.3: Εναλλακτικές υλοποιήσεις SSB (α) DSB LP (ή ΗP) (β) τύπου Hartley (β)

8 2 8 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο Παράδειγμα 2.2 Διαμόρφωση SSB σήματος διακριτών τόνων Α. Να σχηματισθεί σήμα τριών τόνων, s( t) = a1 cos(2π f1t) + a2 cos(2πf 2t) + a3 cos(2πf 3t), και στη συνέχεια εκείνο της διαμόρφωσης SSB-LSB (Single Side-Band Lower Side Band) για δοσμένη συχνότητα φέροντος, f c, με τις εξής τεχνικές: α) QAM του σήματος s(t) και του μετασχηματισμού Hilbert, s ˆ( t), αυτού: ssb _ lsb = s( t)cos(2π f ct) + sˆ( t)sin(2πf ct) (διαμορφωτής SSB τύπου Hartley) β) Με βαθυπερατό φιλτράρισμα του σήματος DSB-SC με συχνότητα αποκοπής την f c. Β. Να γίνει η αποδιαμόρφωση και να συγκριθεί το λαμβανόμενο σήμα με το αρχικό (τμήμα αυτών). Γ. Σε κάθε στάδιο των Α και Β παραπάνω να σχεδιαστεί το αντίστοιχο φάσμα. Υλοποίηση Κώδικας 2.2, Σχήμα 2.4.

9 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων 2 9 %% Παραγωγή σήματος τριών τόνων και διαμόρφωση SSB % clear all; close all; %% σήμα βασικής ζώνης - τριών τόνων f1=1; f2=3; f3=12; Fs=18; % συχνότητα δειγματοληψίας order=256; % τάξη FIR φίλτρων Fc=3; % συχνότητα φέροντος t=[:1/fs:2]'; % πλέγμα δειγματοληψίας s=4*cos(2*pi*f1*t)+8*cos(2*pi*f2*t)+1*cos(2*pi*f3*t); % φάσμα σήματος βασικής ζώνης figure; pwelch(s,[],[],[],fs); %% Φίλτρο μετασχηματισμού Hilbert και αναλυτικό σήμα % κρουστική απόκριση φίλτρου (FIR) b=firpm(order,[.1.99], [1 1], 'Hilbert'); a=1; figure; stem(b(order/2-28:order/2+29)); grid; % απόκριση συχνότητας φίλτρου [H,F] = FREQZ(b,a,512,Fs); figure; subplot(2,1,1); plot(f,2*log(abs(h))); grid; title('απόκριση συχνότητας φίλτρου μετασχ. Hilbert'); subplot(2,1,2); plot(f,phase(h)); grid; % u=[zeros(1,order/2) 1 zeros(1,order/2)]; % φίλτρο καθυστέρησης s1=conv(s,u); % αρχικό σήμα, καθυστερημένο κατά order/2 s2=conv(s,b); % ο μετασχηματισμός Hilbert του σήματος s1 = s1(order/2+(1:length(s))); % περικοπή ουρών s2 = s2(order/2+(1:length(s))); % " % %% Εναλλακτική υλοποίηση φίλτρου Hilbert με τη μέθοδο παραθύρων % % order=4*64; % πρέπει να είναι πολλαπλάσιο του 4 % h(order/2+1)=; % for i=1:order/4 % h(order/2+1+2*i)=; h(order/2+1-2*i)=; % h(order/2+2*i)=2/pi/(2*i-1); % h(order/2-2*i)=2/pi/(2*i-1); % end % freqz(h); % παρατηρείστε τις κυματώσεις κοντά στις οριακές συχν % wk=kaiser(length(h),5); hw=h.*wk ; % freqz(hw); % τώρα είναι καλύτερα! % Κώδικας 2.2: Διαμόρφωση SSB με σήμα διακριτών τόνων (συνεχίζεται)

10 2 1 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο %% Διαμόρφωση SSB άνω πλευρικής ζώνης (τύπου Hartley) ssb=sqrt(2)*(s1.*cos(2*pi*fc*t)+s2.*sin(2*pi*fc*t)); % κάτω πλευρική SSB % ssb1=sqrt(2)*s1.*cos(2*pi*fc*t)-s2.*sin(2*pi*fc*t); figure; pwelch(ssb,[],[],[],fs); % φάσμα σήματος SSB %% Εναλλακτική παραγωγή σήματος ssb: dsb -->lp--> ssb dsb=sqrt(2)*s.*cos(2*pi*fc*t); % σήμα ΑΜ (DSB-SC) figure; pwelch(dsb,[],[],[],fs); % φάσμα σήματος DSB-SC fpts=[ Fc-.98*f1 Fc+.98*f1 Fs/2]*2/Fs; b = firpm(order,fpts,[1 1 ], [1 1]); ssb1=conv(dsb,b); ssb1=ssb1(order/2+(1:length(s))); figure; pwelch(ssb1,[],[],[],fs); % φάσμα σήματος ssb1 % clear z z1 z2; %% αποδιαμόρφωση -- z=sqrt(2)*ssb.*cos(2*pi*fc*t); figure; pwelch(z,[],[],[],fs); % Βαθυπερατό φίλτρο Parks-McClellan F1=1.1*f3/Fs; F2=1.5*F1; fpts=[ F1 F2.5]*2; mag=[1 1 ]; wt=[1 1]; b = firpm(order,fpts,mag,wt); a=1; % απόκριση βαθυπερατού φίλτρου % [H,F] = freqz(b,a,512,'whole',fs); figure; freqz(b,a,512,fs); % Βαθυπερατό φιλτράρισμα z_lp=conv(z,b); z_lp=z_lp(order/2+(1:length(s))); figure; pwelch(z_lp,[],[],[],fs); figure; n=[1:3]; t1=t(n)*1; subplot(2,1,1); plot(t1,s(n)); maxs=max(s); mins=min(s); axis([min(t1) max(t1) mins*1.1 maxs*1.1]); title('αρχικό σήμα '); grid; subplot(2,1,2); plot(t1, z_lp(n)); axis([min(t1) max(t1) mins*1.1 maxs*1.1]); xlabel('χρόνος (msec)'); title('σήμα μετά την αποδιαμόρφωση'); grid; Κώδικας 2.2 (συνέχεια): Διαμόρφωση SSB σήμα διακριτών τόνων

11 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων 2 11 Φάσμα σήματος βασικής ζώνης, τριών τόνων -- f 1 =1, f 2 =3, f 3 =12 Φάσμα DSB σήματος τριών τόνων, f 1 =1, f 2 =3, f 3 =12, F c =3, F s = DSB-SC Κρουστική απόκριση φίλτρου μετασχηματισμού Hilbert LP Φάσμα SSB-LSB σήματος τριών τόνων, f 1 =1, f 2 =3, f 3 =12, F c =3, F s =18 Πλάτος Φάση Απόκριση συχνότητας φίλτρου μετασχ. Hilbert, order=256, F s =18 SSB με διαμορφωτή τύπου Hartley demodulation Φάσμα, αποδιαμορφωμένου SSB, πριν το βαθυπερατό φιλτράρισμα 2 Πλάτος (db) Απόκριση συχνότητας βαθυπερατού φίλτρου Φάση (μοίρες) LP Φάσμα, αποδιαμορφωμένου SSB, μετά το βαθυπερατό φιλτράρισμα αρχικό σήμα σήμα μετά την αποδιαμόρφωση χρόνος (msec) Σχήμα 2.4: SSB σήματος 3 τόνων

12 2 12 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο 2.4 Ψηφιακή υλοποίηση διαμόρφωσης VSB Το πλεονέκτημα της SSB είναι η εξοικονόμηση εύρους ζώνης, αφού χρησιμοποιεί το ελάχιστο δυνατό (ίσο με αυτό του σήματος βασικής ζώνης). Ωστόσο, το φίλτρο που χρησιμοποιεί, είτε αυτό του σχ. 2.3(α) (μετά την DSB), είτε για το μετασχηματισμό Hilbert (υλοποίηση τύπου Hartley), θα είναι πάντα μια προσέγγιση του ιδανικού και, σε κάθε περίπτωση, θα παραποιεί (σε μικρότερο ή μεγαλύτερο βαθμό) το πλησίον της μηδενικής συχνότητας φάσμα του αρχικού σήματος. Όσο αυστηρότερες δε είναι οι προδιαγραφές του φίλτρου αυτού, τόσο «ακριβότερη» γίνεται και η υλοποίηση του διαμορφωτή. Δεν είναι, λοιπόν, η SSB η πλέον κατάλληλη διαμόρφωση για σήματα που έχουν σημαντικό ενεργειακό περιεχόμενο στις χαμηλές συχνότητες, όπως συμβαίνει π.χ. με το σήμα τηλεόρασης. Η διαμόρφωση υπολειπόμενης πλευρικής ζώνης (Vestigial Side-Band VSB) είναι ένας συμβιβασμός μεταξύ DSB και SSB. Στέλνει τη μια πλευρική ζώνη (άνω ή κάτω) με κατάλοιπο της άλλης. Το φίλτρο που χρησιμοποιεί παρουσιάζει μια αντισυμμετρία πλάτους ακριβώς στη συχνότητα φέροντος, με αποτέλεσμα, μετά την αποδιαμόρφωση, το φάσμα σήματος βασικής ζώνης να αποκαθίσταται χωρίς παραμορφώσεις (σχ. 2.5). W f DSB -f c f c LP (VSB) -f c f c cos2πf c t -f c f c ΒΑΘΥΠΕΡΑΤΟ VSB ΦΙΛΤΡΟ Σχήμα 2.5: Υλοποίηση VSB-LSB Παράδειγμα 2.3 Φίλτρο VSB Διαμόρφωση VSB A. Να γραφεί συνάρτηση MATLAB για τον υπολογισμό FIR φίλτρου VSB γραμμικής πτώσης, με τις εξής παραμέτρους εισόδου: συχνότητα φέροντος, συχνότητα δειγματοληψίας, συντελεστή εξάπλωσης (rolloff), καθυστέρηση ομάδας (εναλλακτικά, τάξη) του φίλτρου. Να επιστρέφει τη χρονική απόκριση (συντελεστές FIR) του φίλτρου. Να σχεδιαστεί η απόκριση χρόνου και συχνότητας του εν λόγω φίλτρου για τιμές παραμέτρων της επιλογής σας. B. Με χρήση του φίλτρου του ερωτήματος Α, να επαναληφθούν τα ερωτήματα του παραδείγματος 2.2, τώρα για διαμόρφωση VSB-LSB. Υλοποίηση σχολιασμός κώδικα

13 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων 2 13 Α. Ο υπολογισμός των συντελεστών του ζητούμενου FIR φίλτρου γίνεται από τη συνάρτηση vsb_lb_fltr() του κώδικα 2.3. Ξεκινάει με τη λήψη δειγμάτων της επιθυμητής απόκρισης πλάτους, μιας συνάρτησης σε μορφή ισοσκελούς τραπεζίου, με τα μέσα των μη παράλληλων πλευρών στις θέσεις -f c, f c (όπως δείχνει και το σχήμα 2.5) και κλίση πτώσης - από τη ζώνη διέλευσης στη ζώνη αποκοπής - προσδιοριζόμενη από το συντελεστή εξάπλωσης (rolloff). Στη συνέχεια, υπολογίζεται η κρουστική απόκριση του φίλτρου ως ο αντίστροφος μετασχηματισμός Fourier αυτών των δειγμάτων (με τη βοήθεια της σχετικής συνάρτησης ifft του MATLAB, και επιβολή συμμετρίας κατά την αντιστροφή). Η δειγματοληψία της απόκρισης συχνότητας γίνεται σε ένα πυκνό πλέγμα σημείων (2*delay*dense), για λόγους ακρίβειας. Η λαμβανόμενη κρουστική απόκριση περικόπτεται τελικά στο επιθυμητό μήκος (2*delay), πολλαπλασιάζεται με παράθυρο kaiser και κανονικοποιείται σε μοναδιαία ισχύ. % function vsb_lb_filter VSB-LSB filter % function vsb_lb_fltr=vsb_lb_filter(fc,fs,rolloff,delay) F = Fc/Fs; % υπερδειγμάτιση της απόκρισης συχνότητας, για ακρίβεια dense=32; a = rolloff; F1=F*(1-a); F2=F*(1+a); % ακραίες συχνότητες M = 2*delay*dense; % αριθμός δειγμάτων συχνότητας for k=1:m/2 f=(k-1)/m; if (f<f1) Ho(k)=1; elseif (f>f2) Ho(k)=; else Ho(k)=max(,1-(f-F1)/(F2-F1)); end Ho(M/2+1)=; Ho(M+2-k)=Ho(k); end H=Ho.*exp(j*pi*(M+2)/(M+1)*[:M]); % stem([:m], abs(ho)); h=ifft(h,'symmetric'); % περικοπή ουρών N=M/dense; for k=-n/2:n/2 vsb_lb(k+n/2+1)=h(m/2+1+k); end % παράθυρο Kaiser και κανονικοποίηση wk=kaiser(length(vsb_lb)); vsb_lb =vsb_lb.*wk'; vsb_lb_fltr=vsb_lb/sqrt(sum(vsb_lb.^2)); end Κώδικας 2.3: Φίλτρο VSB-LSB B. Η υλοποίηση του διαμορφωτή VSB (κώδικας 2.4) δεν παρουσιάζει κάποια ιδιαιτερότητα. Σχηματίζεται, κατ αρχήν, το σήμα βασικής ζώνης τριών τόνων (όπως και στο παράδειγμα 2.2, κώδικας 2.2), το οποίο διαμορφώνει κατά DSB φέρον συχνότητας f c και, στη συνέχεια, φιλτράρεται με φίλτρο VSB, όπως αυτό

14 2 14 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο υπολογίζεται με κλήση της συνάρτησης του κώδικα 2.3. Η αποδιαμόρφωση είναι όμοια με αυτήν των DSB και SSB. clear all; close all; f1=1; f2=3; f3=12; Fc=3; Fs=18; order=256; t=[:1/fs:2]; s=4*cos(2*pi*f1*t)+8*cos(2*pi*f2*t)+1*cos(2*pi*f3*t); figure; pwelch(s, [], [], [], Fs); dsb=sqrt(2)*s.*cos(2*pi*fc*t); figure; pwelch(dsb, [], [], [], Fs); delay=order/8; rolloff=.2; vsb_lb_fltr=vsb_lb_filter(fc, Fs, rolloff, delay); % % απόκριση συχνότητας & χρόνου του φίλτρου vsb [H,f]=freqz(vsb_lb_fltr,1,41); H=H/max(abs(H)); f=f*fs/2/pi; figure; subplot(2,1,1); stem(vsb_lb_fltr(delay-31:delay+32)); title('κρουστική απόκριση φίλτρου vsb '); subplot(2,1,2); plot(f, abs(h)); axis([ Fs/2 1.1]); grid; xlabel('συχνότητα (Hz)'); title('απόκριση συχνότητας (πλάτος) φίλτρου vsb '); hold off; %% Φιλτράρισμα με το φίλτρο VSB vsb_lb=conv(dsb,vsb_lb_fltr); % vsb_lb = awgn(vsb_lb,15,'measured'); % πρόσθεση θορύβου vsb_lb=vsb_lb(delay+(1:length(s))); figure; pwelch(vsb_lb, [], [], [], Fs); % %% demodulation s_dm=sqrt(2)*vsb_lb.*cos(2*pi*fc*t); figure; pwelch(s_dm, [], [], [], Fs); %% Βαθυπερατό φιλτράρισμα και γραφήματα τελικού σήματος hpm=firpm(order, [ f3*1.5/fs f3*2/fs.5]*2, [1 1 ]); s_pm=conv(s_dm,hpm); s_pm=s_pm(order/2+(1:length(s))); figure; pwelch(s_pm, [], [], [], Fs); figure; n=[1:3]; t1=t(n)*1; subplot(2,1,1); plot(t1,s(n)); maxs=max(s); mins=min(s); axis([min(t1) max(t1) mins*1.1 maxs*1.1]); title('αρχικό σήμα'); grid; subplot(2,1,2); plot(t1, s_pm(n)); axis([min(t1) max(t1) mins*1.1 maxs*1.1]); xlabel('χρόνος (msec)'); title(τελικό σήμα'); grid; Κώδικας 2.4: Υλοποίηση VSB σήμα 3 τόνων

15 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων DSB-SC κρουστική απόκριση φίλτρου vsb VSB filtering απόκριση συχνότητας (πλάτος) φίλτρου vsb συχνότητα (Hz) Φάσμα, VSB σήματος 3 τόνων, f 1 =1, f 2 =3, f 3 =12, F c =3, F s =18 demodulation Φάσμα, μετά την αποδιαμόρφωση (VSB-LSB), πριν το LP φίλτρο αρχικό σήμα τριών τόνων LP σήμα μετά την αποδιαμόρφωση (VSB) Χρόνος (msec) Φάσμα τελικού σήματος 3 τόνων (μετά την διαμ.-αποδιαμ. VSB) Σχήμα 2.6: VSB σήματος διακριτών τόνων

16 2 16 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο Παράδειγμα 2.4 Σύγκριση SSB VSB σε διαμόρφωση με σήμα συνεχούς φάσματος Να επαναληφθούν τα του παραδείγματος 2.1, για διαμόρφωση SSB και VSB με το σήμα συνεχούς φάσματος. Να συγκριθούν οι δύο διαμορφώσεις, όσον αφορά στην αναπαραγωγή του φάσματος στην περιοχή χαμηλών συχνοτήτων. Υλοποίηση σχολιασμός γραφημάτων Ο κώδικας υλοποίησης βασίζεται στα αντίστοιχα τμήματα των κωδίκων 2.1, 2.2 και 2.4: Διαβάζει κατ αρχήν το αρχείο σήματος και πυκνώνει το πλέγμα δειγματοληψίας (γραμμές 6-26 κώδικα 2.1). Στη συνέχεια κάνει τις διαμορφώσεις, αφ ενός κατά SSB-LSB, αφ ετέρου κατά VSB-LSB και σχεδιάζει τα αντίστοιχα γραφήματα φάσματος (σχ. 2.7, 1β-2β). Συνεχίζει με τις αντίστοιχες αποδιαμορφώσεις & βαθυπερατό φιλτράρισμα και παράγει τα αντίστοιχα γραφήματα φάσματος (σχ. 2.7, 1δ-2δ) και χρόνου (σχ. 2.7, 1ε-2ε) του τελικού σήματος. Η σύγκριση των γραφημάτων 1α & 1δ δείχνει την παραμόρφωση φάσματος στην περιοχή χαμηλών συχνοτήτων που προκαλεί η SSB (βλ. ένθετη μεγέθυνση), ενώ αντίστοιχη παραμόρφωση δεν παρατηρείται με την VSB (γραφήματα 1α & 2δ). Τα παραπάνω φαίνονται και στο πεδίο του χρόνου: το τελικό σήμα αποκλίνει του αρχικού στην περίπτωση της SSB (γράφημα 1ε), ενώ τα δύο σήματα σχεδόν ταυτίζονται, στην περίπτωση της VSB (γράφημα 2ε).

17 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων 2 17 SSB VSB -6 Φάσμα αρχικού σήματος -6 Φάσμα αρχικού σήματος, πυκνότερο πλέγμα δειγματοληψίας α α Φάσμα σήματος SSB-LSB, F c =4.92 KHz, F s =32.77 KHz Φάσμα σήματος VSB-LSB, F c =4.92 KHz, F s =32.77 KHz β β -6 Φάσμα, μετά την αποδιαμόρφωση (SSB-LSB), πριν το LP φίλτρο -6 Φάσμα, μετά την αποδιαμόρφωση (VSB-LSB), πριν το LP φίλτρο γ γ -6 Φάσμα, μετά την αποδιαμόρφωση (SSB-LSB), αρχικό πλέγμα δειγματοληψίας -6 Φάσμα, μετα την αποδιαμόρφωση (VSB-LSB), αρχικό πλέγμα δειγματοληψίας δ δ x 1-3 Σύγκριση αρχικού και τελικου (διαμόρφωση-αποδιαμόρφωση SSB) σήματος x 1-3 Σύγκριση αρχικού και τελικού (διαμόρφωση-αποδιαμόρφωση VSB) σήματος 8 Αρχικό σήμα σήμα μετά την αποδιαμόρφωση 8 Original signal Recovered signal Πλάτος Πλάτος Χρόνος (sec) 1ε Χρόνος (sec) 2ε Σχήμα 2.7: Σύγκριση SSB-VSB σε σήμα συνεχούς φάσματος

18 2 18 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο 2.5 Ψηφιακή υλοποίηση διαμόρφωσης FM Σύντομη θεωρία των εκθετικών διαμορφώσεων (PM, FM) Σε αντίθεση με τις διαμορφώσεις πλάτους όλων των εκδοχών, τις ονομαζόμενες και γραμμικές διαμορφώσεις (αν και η διαμόρφωση, αυστηρά θεωρούμενη, δεν είναι γραμμική πράξη), στις εκθετικές διαμορφώσεις ή διαμορφώσεις γωνίας το προς μετάδοση σήμα, x (t), διαμορφώνει τη φάση ή τη συχνότητα του φέροντος: ϕδx( t), ( PM ) s( t) = A cos[2 f t + ( t)], ( t) = t c π c ϕ ϕ (2.1) 2πf Δ x( τ ) dτ, ( FM ) Οι σταθερές ϕ Δ < π και f Δ < f c ονομάζονται απόκλιση φάσης (phase deviation) και απόκλιση συχνότητας (frequency deviation), αντίστοιχα. Το πλάτος του εκ διαμορφώσεως ζωνοπερατού σήματος, s (t), είναι σταθερό, όπως και η μέση ισχύς 2 Ac του, ίση με P s =, ανεξάρτητα από την ισχύ του σήματος βασικής ζώνης. Αυτό 2 σημαίνει ότι μπορεί να αυξηθεί η ισχύς του σήματος x (t) (με αντίστοιχη βελτίωση της σηματοθορυβικής σχέσης, αλλά και αύξηση του απαιτούμενου εύρους ζώνης, όπως θα φανεί παρακάτω), χωρίς να αυξηθεί και η ισχύς του εκπεμπόμενου σήματος, s (t) (SNR-to-bandwidth tradeoff). Η ακριβής φασματική ανάλυση του διαμορφωμένου σήματος δεν μπορεί να διεξαχθεί αναλυτικά στη γενική μορφή της (2.1). Είναι δυνατή στην περίπτωση σήματος x(t) διακριτών τόνων, ή προσεγγιστικά υπό συνθήκες μικρών γωνιακών αποκλίσεων (διαμόρφωση γωνίας στενής ζώνης). PM και FM στενής ζώνης Η σχέση (2.1) μπορεί να γραφεί στη μορφή s( t) = A cos[ ϕ( t)]cos(2πf t) A sin[ ϕ( t)]sin(2πf t) (2.2) c c c Αναπτύσσονται τα cos[ ϕ ( t)] και sin[ ϕ( t)] σε σειρα Taylor και υπό τη συνθήκη μικρών αποκλίσεων φάσης, δηλαδή ϕ ( t) << 1 rad (2.3α) κρατείται ο πρώτος όρος της κάθε σειράς (1 και ϕ (t), αντίστοιχα) οπότε η (2.2) γράφεται s( t) A cos(2πf t) A sin[ ϕ( t)]sin(2πf t) (2.3β) c c c Στην περίπτωση αυτή, το φάσμα του διαμορφωμένου σήματος s(t) δίνεται ως c c

19 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων S ( f ) = Ac [ δ ( f fc) + δ ( f + fc ) + Φ( f fc ) + jφ( f + fc)] (2.4α) 2 όπου ϕδ X ( f ), PM Φ( f ) = I{ ϕ ( t)} = (2.4β) jf Δ X ( f ) / f, FM Παρατηρούμε ότι υπο τη συνθήκη (2.3α), η διαμόρφωση φάσης στενής ζώνης (Narrow Band Phase Modulation NBPM) προσεγγίζει τη διαμόρφωση πλάτους, πέραν μιας ολίσθησης 9 ο και στις δύο πλευρικές, όπως δηλώνει ο συντελεστής j. Στη διαμόρφωση συχνότητας στενής ζώνης (Narrow Band Frequency Modulation NBFM) παρατηρείται ολίσθηση 18 ο στην κάτω πλευρική ζώνη (λόγω του αρνητικού προσήμου), ενώ συμβαίνει και μια ενίσχυση (έμφαση) των χαμηλών συχνοτήτων, λογώ του παράγοντα 1/f Διαμόρφωση PM και FM με σήμα διακριτών τόνων Έστω ότι το σήμα βασικής ζώνης είναι ένας απλό τόνος, συχνότητας f m και, για κοινή τυποποίηση των PM και FM, υποθέτουμε συγκεκριμένα ότι: am sin 2πf mt PM x1 ( t) =, οπότε η (2.1) δίνει: am cos 2πf mt FM ϕ( t) = β sin 2πf t, με m ϕδam PM β f Δ (2.5) am FM f m Η παράμετρος β ονομάζεται δείκτης διαμόρφωσης (modulation index) σε PM ή FM απλού τόνου, το δε διαμορφωμένο σήμα της (2.2) γράφεται τώρα ως εξής: s ( t) = A [cos( β sin 2πf t)cos 2πf t sin( β sin 2πf t)sin 2πf ] (2.6) 1 c m c m ct Χρησιμοποιούμε τις μαθηματικές ταυτότητες των συναρτήσεων Bessel πρώτου είδους για να αναπτύξουμε την (2.6) σε άθροισμα απλών τριγωνομετρικών όρων: cos( β sin 2πf t) = J ( β ) + m sin( β sin 2πf t) = m 2J n n περιττο n άρτιο 2J n ( β )sin 2πnf ( β )cos 2πnf m t m t (2.7) με n θετικό και J π 1 j( β sin μ nμ) n( β ) e dμ, (2.8) 2π π 1 c n c m n= οπότε: s ( t) = A J ( β )cos 2π ( f + n f ) (2.9)

20 2 2 Ν. Μήτρου ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Συνοπτική θεωρία και εργαστήριο Η (2.9) είναι στην επιθυμητή μορφή, αφού εύκολα δίνει το φάσμα του σήματος ως ένα σύνολο φασματικών γραμμών. Αυτές βρίσκονται δεξιά και αριστερά της f c σε αποστάσεις-ακέραια πολλαπλάσια της f m και βάρη τις τιμές των αντίστοιχων συναρτήσεων Bessel με όρισμα το δοσμένο β. Στο σχ. 2.8 έχουν σχεδιαστεί οι συναρτήσεις Bessel πρώτου είδους, τάξης έως 8 και για τιμές του β από έως 1 (σε λογαριθμική κλίμακα, για να παρατηρηθεί η περιοχή μικρών τιμών έως 1). Στο ίδιο σχήμα έχει σκιαγραφηθεί η περιοχή τιμών (-.5,.5). Παρατηρούμε ότι για τιμές του β μέχρι και.5, όλοι οι συντελεστές J n (β ) της (2.9) παραμένουν κατ απόλυτη τιμή κάτω του.5, πλήν των δύο πρώτων (για n= και 1), κάτι που εξηγεί την προσέγγιση στενής ζώνης. Για μεγάλες τιμές του β πολλοί όροι του αθροίσματος 2.9 είναι σημαντικοί, π.χ. για β = 5, οκτώ όροι του αθροίσματος (έως και ο J ( )) έχουν τιμή μεγαλύτερη του.5. 7 β 1 J n (β).5 n= n=1 n=2 n= είκτης διαμόρφωσης, β Σχήμα 2.8: Συναρτήσεις Bessel 1 ου είδους Η σχέση (2.9) γενικεύεται για σήματα πολλών διακριτών τόνων. Παραδείγματος χάριν, για σήμα δύο τόνων στις συχνότητες f 1 και f 2 και αντίστοιχους δείκτες διαμόρφωσης β 1 = a1 f Δ / f1, β 2 = a2 f Δ / f 2, το διαμορφωμένο σήμα δίνεται από τη σχέση 2 ( t) = Ac J n ( 1) J m ( β 2 )cos 2π ( f c + nf1 + mf 2 n= m= s β ) t (2.1)

21 ΚΕΦΑΛΑΙΟ 2: Εξομοίωση Ψηφιακή υλοποίηση αναλογικών διαμορφώσεων Παράδειγμα 2.5 Διαμόρφωση FM με σήμα διακριτών τόνων Α. Να παραχθεί σήμα δύο τόνων, των οποίων οι συχνότητες διαφέρουν σημαντικά (π.χ. f 2 2 f1 ) και είναι πρώτες μεταξύ τους. Να παραχθεί στη συνέχεια σήμα διαμόρφωσης FM συγκεκριμένης συχνότητας φέροντος (π.χ. f c =1f 2 ) (α) στενής ζώνης (π.χ. απόκλισης συχνότητας f Δ = f 2 / 5 ) (β) ευρείας ζώνης (π.χ. απόκλιση συχνότητας f Δ = 2 f 2 ) Και για τις δύο περιπτώσεις διαμόρφωσης, (α) και (β), να προστεθεί στο διαμορφωμένο σήμα FM λευκός, γκαουσιανός θόρυβος για συγκεκριμένη τιμή σηματοθορυβικής σχέσης (π.χ. SNR=15). Σε κάθε στάδιο να σχεδιαστεί το φάσμα του αντίστοιχου σήματος. Να υπολογιστεί και σχεδιαστεί επίσης το θεωρητικώς αναμενόμενο φάσμα του σήματος FM. Β. Για τις δύο περιπτώσεις διαμόρφωσης του προηγούμενου θέματος, να γίνει η αποδιαμόρφωση και να συγκριθούν αντίστοιχα τμήματα, του αρχικού και του τελικού σήματος. Σε κάθε στάδιο να σχεδιαστεί και πάλι το φάσμα του αντίστοιχου σήματος. Να παρατηρηθεί το tradeoff μεταξύ εύρους ζώνης και επίδρασης θορύβου. Υλοποίηση Κώδικας 2.5, Σχήμα 2.9

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες

Διαβάστε περισσότερα

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 1: Εισαγωγή στη διαμόρφωση πλάτους (ΑΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΑΝΑΛΟΓΙΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ SIMULINK ΤΟΥ MATLAB

ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΑΝΑΛΟΓΙΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ SIMULINK ΤΟΥ MATLAB Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Ι Δ Ρ Υ Μ Α Σ Ε Ρ Ρ Ω Ν Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ω Ν Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ & Ε Π Ι Κ Ο Ι Ν Ω Ν Ι Ω Ν ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ

Διαβάστε περισσότερα

Γραμμική διαμόρφωση φέροντος κύματος

Γραμμική διαμόρφωση φέροντος κύματος Γραμμική διαμόρφωση φέροντος κύματος Επικοινωνία στη βασική ζώνη Επικοινωνία στη βασική ζώνη (baseband) χρησιμοποιείται σε Συνδρομητικούς βρόχους (PSTN) Συστήματα PCM μεταξύ τηλεφωνικών κέντρων ισχύς φέρον

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

2 η Εργαστηριακή Άσκηση

2 η Εργαστηριακή Άσκηση Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε

Διαβάστε περισσότερα

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ 3. Εισαγωγή Συστήματα Αναλογικής Διαμόρφωσης Η ιδέα της αναλογικής διαμόρφωσης στηρίζεται στην αλλαγή κάποιας παραμέτρου ενός ημιτονοειδούς σήματος (t), το οποίο λέγεται

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

- Ραδιόφωνο. - Κινητή τηλεφωνία - Ψηφιακή τηλεόραση (π.χ. NOVA)

- Ραδιόφωνο. - Κινητή τηλεφωνία - Ψηφιακή τηλεόραση (π.χ. NOVA) ΙΑΜΟΡΦΩΣΗ Ο σκοπός ενός τηλεπικοινωνιακού συστήµατος είναι η µεταφορά πληροφορίας µε τη µορφή σήµατος µέσω ενός καναλιού το οποίο χωρίζει τον ποµπό από τον δέκτη. Το κανάλι µπορεί να είναι είτε κάποια

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 3: Εισαγωγή στη διαμόρφωση συχνότητας (FΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων Μαθηµατική Παροσίαση των FM και PM Σηµάτων Ένα γωνιακά διαµορφωµένο σήµα, πο αναφέρεται επίσης και ως εκθετικά διαµορφωµένο σήµα, έχει τη µορφή u os j [ ] { π + jφ π + φ Re e } Σεραφείµ Καραµπογιάς Ορίζοµε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το ασύρματο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) 1. ιαµόρφωση Πλάτους. Στην άσκηση αυτή θα ασχοληθούµε µε τη ιαµόρφωση Πλάτους (Amplitude Modulation) χρησιµοποιώντας τον ολοκληρωµένο διαµορφωτή

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής 15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως:

Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ Πλεονεκτήματα: Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: Αύξηση απαίτησης εύρους

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Ο τελεστικός ενισχυτής είναι ένα προκατασκευασμένο κύκλωμα μικρών διαστάσεων που συμπεριφέρεται ως ενισχυτής τάσης, και έχει πολύ μεγάλο κέρδος, πολλές φορές της τάξης του 10 4 και 10 6. Ο τελεστικός

Διαβάστε περισσότερα

Κύριες λειτουργίες ραδιοφωνικών δεκτών

Κύριες λειτουργίες ραδιοφωνικών δεκτών Εμπορικοί δέκτες Κύριες λειτουργίες ραδιοφωνικών δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών Ενίσχυση αντιμετώπιση

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα»

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ Δίκτυα Υπολογιστών Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» Φυσικό στρώμα: Προσδιορίζει τις φυσικές διεπαφές των συσκευών Μηχανικό Ηλεκτρικό Λειτουργικό Διαδικαστικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα 1 από 13

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα 1 από 13 ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα από 3 ΦΥΛΛΑ ΙΟ 4 ο η : Το δοµικό διάγραµµα του ποµπού ΑΜ φαίνεται στο παραπάνω σχήµα. Με βάση αυτό η διαδικασία της διαµόρφωσης αποτελείται από δύο λειτουργικά τµήµατα:

Διαβάστε περισσότερα

Συστήµατα Μετάδοσης Πληροφορίας Εκποµπή και Λήψη Αναλογικού Σήµατος Εισαγωγή (/7) Πώς γίνεται τελικά η µετάδοση των δεδοµένων; Πηγές πληροφορίας Αναλογικές»H τιµή (πλάτος) του σήµατος µεταβάλλεται συνεχώς

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις

Στοχαστικές Ανελίξεις Ντετερμινιστικά Σήματα - Τυχαία Σήματα Ταξινόμηση των σημάτων ανάλογα με τη βεβαιότητα όσο αφορά την τιμή τους κάθε χρονική στιγμή. Τα ντετερμινιστικά σήματα μπορούν να αναπαρασταθούν σαν πλήρως καθορισμένες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 α). Ποιο είναι το εύρος ζώνης του τηλεφωνικού καναλιού (με ακρίβεια). β). Πως εξασφαλίζεται η αμφίδρομη μετάδοση στην τηλεφωνία. γ).ποιο είναι το φυσικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

Μετάδοση σήματος PCM

Μετάδοση σήματος PCM Μετάδοση σήματος PCM Συγχρονισμός ΌπωςσεόλατασυστήματαTDM, απαιτείται συγχρονισμός μεταξύ πομπού και δέκτη Εάν τα ρολόγια στον πομπό και τον δέκτη διαφέρουν, αυτό θα οδηγήσει σε παραμορφώσεις του σήματος

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: «ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ»

ΜΑΘΗΜΑ: «ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ» ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ: «ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ» ρ. ΒΑΡΖΑΚΑΣ ΠΑΝΑΓΙΩΤΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΛΑΜΙΑ ΑΠΡΙΛΙΟΣ

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ α. Τι ονοµάζουµε διασπορά οπτικού παλµού σε µια οπτική ίνα; Ποια φαινόµενα παρατηρούνται λόγω διασποράς; (Αναφερθείτε σε

Διαβάστε περισσότερα

Μάθημα: Ψηφιακή Επεξεργασία Ήχου

Μάθημα: Ψηφιακή Επεξεργασία Ήχου Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Ψηφιακή Επεξεργασία Ήχου Εργαστηριακή Άσκηση 1 «Διαχείριση και Δημιουργία Βασικών Σημάτων, Δειγματοληψία και Κβαντισμός» Διδάσκων: Φλώρος Ανδρέας

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 10 Μετάδοση και Αποδιαμόρφωση Ραδιοφωνικών Σημάτων Λευκωσία, 2010 Εργαστήριο 10

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Στο ανωτέρω Σχήμα η πρώτη κυματομορφή αποτελεί την είσοδο δύο κωδικοποιητών (Line Coders) ενώ οι επόμενες δύο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Όπως θα δούμε και παρακάτω το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων, δηλαδή «κόβουν» κάποιες ανεπιθύμητες

Διαβάστε περισσότερα

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών 1.1 Βασικές μετατροπές Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών Όταν μας ενδιαφέρει ο υπολογισμός μεγεθών σχετικών με στάθμες ισχύος εκπεμπόμενων σημάτων, γίνεται χρήση και της λογαριθμικής κλίμακας με

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM. TEΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ με θέμα Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ. ιαµόρφωση Πλάτους. Περιεχόµενα:

ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ. ιαµόρφωση Πλάτους. Περιεχόµενα: ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ Περιεχόµενα: ιαµόρφωση/αποδιαµόρφωση Πλάτους ΑΜ ιαµόρφωση DSBS ΟµόδυνηΦώρασηΚυµατοµορφών DSBS ιαµόρφωση QAM ιαµόρφωση SSB ιαµόρφωση VSB Μετατόπιση Συχνότητας Πολυπλεξία ιαίρεσης Συχνότητας

Διαβάστε περισσότερα

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Η συνολική ποιότητα της σύνδεσης µέσω ραδιοσυχνοτήτων εξαρτάται από την 9000 απολαβή της κεραίας του

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 5 Επίγεια ψηφιακή τηλεόραση Επίγεια τηλεόραση: Η ασύρματη εκπομπή και λήψη του τηλεοπτικού σήματος αποκλειστικά από επίγειους

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio ΚΩΔΙΚΟΠΟΙΗΣΗ ΚΑΙ ΣΥΜΠΙΕΣΗ ΗΧΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡΟΤΥΠΟ ISO/IEC 11172-3 MPEG-1 Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ. Ραδιοφωνία

ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ. Ραδιοφωνία ΜΑΘΗΜΑ ΕΙΔΙΚΗΣ ΘΕΜΑΤΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ Ραδιοφωνία Περιέχομενα 1.Ιστορική Αναδρομή 2.Μονοφωνικό Σήμα 3.Στερεοφωνικό Σήμα 4.Σύγκριση Μονοφωνικό και Στερεοφωνικό σήματος 5.Ψηφιακή Μετάδοση Μηνύματος - Radio

Διαβάστε περισσότερα

SOURCE. Transmitter. Channel Receiver

SOURCE. Transmitter. Channel Receiver Εισαγωγή στις Τηλεπικοινωνίες Εισαγωγή στα Σήµατα Ψηφιακές Επικοινωνίες - ειγµατοληψία ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για τη διαχείριση

Διαβάστε περισσότερα

Άσκηση 8: Παραγωγή αλλοιωμένης φωνής (Alien voices generation)

Άσκηση 8: Παραγωγή αλλοιωμένης φωνής (Alien voices generation) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Σκοπός της άσκησης Άσκηση 8: Παραγωγή αλλοιωμένης φωνής (Alien

Διαβάστε περισσότερα

ΒΙΟΛΟΓΙΚΑ ΣΗΜΑΤΑ. Επιμέλεια - προσαρμογή : Α. Καναπίτσας. Βιβλιογραφία :

ΒΙΟΛΟΓΙΚΑ ΣΗΜΑΤΑ. Επιμέλεια - προσαρμογή : Α. Καναπίτσας. Βιβλιογραφία : ΒΙΟΛΟΓΙΚΑ ΣΗΜΑΤΑ Επιμέλεια - προσαρμογή : Α. Καναπίτσας Βιβλιογραφία : 1. Ελπινίκη Παπαγεωργίου Σηµειώσεις Παρουσίαση : Μελέτη της απαγωγής βιοϊατρικούσήματος, εφαρμογή σε θεραπευτικά μηχανήματα και ανάλυση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΡΑΔΙΟΦΩΝΙΚΟΙ ΔΕΚΤΕΣ

ΚΕΦΑΛΑΙΟ 7 ΡΑΔΙΟΦΩΝΙΚΟΙ ΔΕΚΤΕΣ 1 ΚΕΦΑΛΑΙΟ 7 ΡΑΔΙΟΦΩΝΙΚΟΙ ΔΕΚΤΕΣ 7.1 Γενικά χαρακτηριστικά ραδιοφωνικού δέκτη 7.1.1 Εισαγωγή Ο δέκτης δέχεται ένα μικρό ποσοστό της ηλεκτρομαγνητικής (ραδιοηλεκτρικής) ενέργειας του πομπού μαζί με πολλά

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση ΒΕΣ 4 Συμπίεση και Μετάδοση Πολυμέσων Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση Τι είναι Σήμα; Βασικές έννοιες επεξεργασίας σημάτων Πληροφορίες που αντιλαμβανόμαστε μέσω

Διαβάστε περισσότερα

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike Πολυπλεξία Ανάλυση σημάτων στο πεδίο χρόνου, συχνότητας, πολυπλεξία διαίρεσης συχνότητας, πολυπλεξία διαίρεσης χρόνου (1.6 ενότητα σελ 19-20, 29-30 και στοιχεία από 2.1 ενότητα σελ. 52-58). http://diktya-epal-b.ggia.info

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ Εργαστήριο Τεχνολογίας Υλικού & Αρχιτεκτονικής Υπολογιστών ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1.1 Τελεστικοί ενισχυτές 1.1.1 Εισαγωγή: Αντικείµενο της εργαστηριακής

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Το ασύρματο περιβάλλον στις κινητές επικοινωνίες

ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Το ασύρματο περιβάλλον στις κινητές επικοινωνίες ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Το ασύρματο περιβάλλον στις κινητές επικοινωνίες Περίληψη Γενικές αρχές για τη διάδοση Απώλειες διαδρομής Διάδοση στον ελεύθερο χώρο Διάδοση πάνω από επίπεδη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13

1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13 Μέρος Α 1. Εισαγωγικές Έννοιες 3 1.1 Το αντικείμενο της θεωρίας των ηλεκτρικών κυκλωμάτων 4 1.2 Φυσικά και μαθηματικά μοντέλα 5 1.3 Συγκεντρωμένα και κατανεμημένα κυκλώματα 6 1.4 Ορισμοί Φορές αναφοράς

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια

Διαβάστε περισσότερα

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1 Ασκήσεις ΑΣΚΗΣΗ 1 Ένα ψηφιακό κανάλι πρέπει να έχει χωρητικότητα 25Mbps. Το ίδιο κανάλι έχει φάσμα μεταξύ 19 ΜΗz και 24 ΜΗz. Α)Ποιος είναι ο απαιτούμενος λόγος σήματος προς θόρυβο σε db για να λειτουργήσει

Διαβάστε περισσότερα