Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ"

Transcript

1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουνίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ (1 η περίοδος εαρινού εξαμήνου 1-11) ΘΕΜΑ 1 ο (35%) Να σχεδιασθούν τα διαγράμματα αξονικών δυνάμεων [N], τεμνουσών δυνάμεων [] και καμπτικών ροπών [] του παρακάτω πλαισίου. Επιπλέον, να υπολογισθεί η τιμή και η θέση της μέγιστης θετικής ροπής. kn/ 5 kn Β 6 kn kn/ 3 Γ Δ 6 kn Z 3 3 ΤΕΙ Αθήνας, Ιουλ / 15

2 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 Επίλυση: Προσδιορισμός Αντιδράσεων: κάτω S = 6 kn + 4 = =-3 kn S F = + + 5kN + 6kN = =- 8kN S = - 6 kn + 6 kn -( kn/ 3 ) kn -( kn/ 6 ) = - 1 kn + 1 kn -9 kn -35 kn -36 kn ( ) kN = kn = 8 kn = 4 kn S F = + -6kN - kn/ 3 - kn/ 6 = + 4 kn -6 kn -6 kn - 1 kn = = kn Ε 8 Β 8 8 Γ 8 Δ Ζ [ N ] (kn) Α ΤΕΙ Αθήνας, Ιουλ. 11 / 15

3 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 [ ] (kn) 4. 1 q /8 = Ε +3 a =+4 Β q /8 =.5 Γ 3.5 Δ Ζ +6 [ ] (kn) Α ΤΕΙ Αθήνας, Ιουλ / 15

4 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 Υπολογισμός Αξονικών Δυνάμεων: από το Α προς το : N =- =- kn, N, κάτω =- =- kn από το Γ προς το : από το Δ προς το : από το Β προς το Ε : N = kn, N, αριστερά = kn N D = kn, N, δεξιά = kn N = =- 8 kn, N, δεξιά = =- 8 kn από το Ε προς το : N, κάτω =- kn/ 6 + =- 1 kn + 4 kn =- 8 kn (έγινε τομή λίγο κάτω από το σημείο Ε και εξετάσθηκε το τμήμα του φορέα πάνω από την τομή), N, πάνω =- + 6 kn + kn/ 3 =- 8 kn (έγινε τομή λίγο πάνω από το σημείο και εναλλακτικά εξετάσθηκε το τμήμα του φορέα κάτω από την τομή) Υπολογισμός Τεμνουσών Δυνάμεων: από το Α προς το Ζ : =- =-- ( 3 kn ) = 3kN, - = = + 3 kn από το Ζ προς το : Z ( ), πάνω =- - 6 kn =- -3 kn - 6 kn =- 3 kn,, κάτω = Z, πάνω =- 3 kn Z από το Γ προς το : από το Δ προς το : =- 6 kn,, αριστερά = =- 6 kn D = kn,, δεξιά =+ kn/ 3 =+ 6 kn από το προς το Ε :, πάνω = + 5 kn =- 8 kn + 5 kn =- 3 kn (έγινε τομή λίγο πάνω από το σημείο και εξετάσθηκε το τμήμα του φορέα πάνω από την τομή), 5 kn 3 kn, κάτω = + =, πάνω =- (έγινε τομή λίγο κάτω από το σημείο Ε και εξετάσθηκε το τμήμα του φορέα πάνω από την τομή), κάτω =- - 6 kn =+ 3 kn - 6 kn =- 3 kn (ή εναλλακτικά γίνεται τομή λίγο κάτω από το σημείο Ε και εξετάζεται το τμήμα του φορέα κάτω από την τομή) από το Ε προς το Β :, δεξιά = ( kn/ 6 ) - = 1 kn - 4 kn = + 8 kn (έγινε τομή λίγο δεξιά από το σημείο Ε και εξετάσθηκε το τμήμα ΕΒ του φορέα, δεξιά της τομής), ΤΕΙ Αθήνας, Ιουλ / 15

5 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 Υπολογισμός Καμπτικών Ροπών: Για την ίδια τομή, εάν εξετασθεί το τμήμα που βρίσκεται αριστερά και κάτω από την τομή, δηλαδή ο υπόλοιπος φορέας εκτός από την δοκό ΕΒ, θα είναι:, δεξιά = -6 kn -( kn/ 3 ), δεξιά = kn -6 kn - 6 kn = + 8 kn, αριστ. =, δεξιά - kn/ 6 = 8 kn - 1 kn =- 4 kn (ή εάν γίνει τομή λίγο αριστερά από το σημείο Β και εξετασθεί το τμήμα δεξιά της τομής:, αριστ. =- =- 4 kn ) τομή στο Ζ και εξέταση του τμήματος κάτω από την τομή: Z =- =- ( - 3 kn ) =+ 6kN τομή κάτω από το και εξέταση του τμήματος κάτω από την τομή:, κάτω =-4-6kN =-4 ( -3 kn ) - 1 kn = kn (λόγω άρθρωσης στο ) τομή αριστερά από το και εξέταση του τμήματος αριστερά της τομής (Γ):, αριστερά =- 6 kn =- 1 kn τομή δεξιά από το και εξέταση του τμήματος δεξιά της τομής (Δ): ( ), δεξιά =- kn/ =- 9 kn τομή πάνω από το και εξέταση του τμήματος πάνω από την τομή (ΕΒ): ( ) =-3 5kN - kn/ , πάνω, πάνω =-15 kn -36 kn -3 ( - 8 kn ) kn =- 3 kn τομή κάτω από το Ε και εξέταση του τμήματος πάνω από την τομή (ΕΒ): ( ), κάτω =- kn/ =- 36 kn kn =- 1 kn τομή δεξιά του Ε και εξέταση του τμήματος δεξιά της τομής (όμοια με την προηγούμενη):, δεξιά =, κάτω =- 1 kn Υπολογισμός Μέγιστης Καμπτικής Ροπής Η μέγιστη ροπή θα εμφανισθεί σε σημείο κάτω από το κατανεμημένο φορτίο όπου η τέμνουσα μηδενίζεται. Αυτό σύμφωνα με το διάγραμμα τεμνουσών δυνάμεων θα συμβεί δεξιά του σημείου Ε σε απόσταση, η οποία υπολογίζεται από τη σχέση: ΤΕΙ Αθήνας, Ιουλ / 15

6 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο kn = = 4. kn/ Η δε τιμή της μέγιστης ροπής στο σημείο αυτό μπορεί να προκύψει με δύο τρόπους: (α) Γίνεται τομή στο σημείο αυτό και υπολογίζεται η ροπή από το δεξί τμήμα της τομής, που είναι προς το σημείο Β και έχει μήκος 6-4 = : a a =-( kn/ ) + =- 4 kn + 4 kn =+ 4 kn (β) Η μέγιστη ροπή υπολογίζεται από το εμβαδόν του διαγράμματος της τέμνουσας: 1 = + εμβαδόν =- 1 kn kn a από έως θέση a a =+ 4 kn ΘΕΜΑ ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος με τη μέθοδο των παραμορφώσεων. (α) Να υπολογισθούν οι καμπτικές ροπές στα σημεία Α και Δ (αριστερά, δεξιά, κάτω). (β) Να σχεδιασθεί το διάγραμμα ροπών του φορέα. (γ) Να προσδιορισθούν οι μέγιστες θετικές ροπές κάμψης. 3 kn/ kn/ D 1 kn ΤΕΙ Αθήνας, Ιουλ / 15

7 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 ΑΚΡΑΙΕΣ ΔΡΑΣΕΙΣ ΜΟΝΟΠΑΚΤΩΝ ΚΑΙ ΑΜΦΙΠΑΚΤΩΝ ΜΕΛΩΝ f1 f f 1 / q q P / N N I I = ( f1 + f), ( 1 ) = f + f 6I 6I = ( f1 + f), ( ) = f 1 + f 3I = 3I f = f 1, = f 1 q =, 1 q =, 1 3I q =- 1 q =- q = 8 5q 3q =, =- 8 8 = 11P =, 16 3P 16 5P =- 16 Επίλυση: Άγνωστο μέγεθος παραμόρφωσης είναι μια αριστερόστροφη στροφή f στο Δ. 3 kn/ f kn/ D 1 kn ΤΕΙ Αθήνας, Ιουλ / 15

8 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 D D D D D D Κόμβος Δ D Δοκός ΑΔ: D D D D I 3 8 = f + D = I 3 8 = f - D = I = f + 1 D = I = f - 1 D = Δοκός ΔΒ: 3I D = f D = D D 3I 11 1 = f D = I 5 1 = f D = Δοκός ΔΓ: 3I 3 D = f + D = D D 3I 5 3 = f D = I 3 3 = f -.5 D = ΤΕΙ Αθήνας, Ιουλ / 15

9 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 Ισορροπία ροπών κόμβου Δ: S = + + = D D D D æ ö ç ( ) + ( +.5) = çè ø 5-7 = = 8 Κόμβος Α: 8 D = + 16 D = D = 167 kn D = + 1 = + 1 D = 1.65 kn 3 3 = = 1.65 kn = 1.65 kn D Κόμβος Δ: 8 D = -16 D = -16 D =- 146 kn = = = 95.5 kn D D D = +.5 = = 5.5 kn D D D 3I D = f D = D = kn Κόμβος Β: D 8 = = D = kn 3 3 ( ) =- = kn = kn Κόμβος Γ: D D 8 = -.5 = -.5 D = kn 3 3 =- = kn = kn D Καμπτικές Ροπές: Υπολογίζονται οι τιμές της καμπτικής ροπής σε χαρακτηριστικά σημεία του πλαισίου προκειμένου να σχεδιασθεί το διάγραμμα καμπτικών ροπών του φορέα. Σημειώνεται ότι ΤΕΙ Αθήνας, Ιουλ / 15

10 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 για όλες τις ροπές το πρόσημο προσδιορίζεται από τον εφελκυσμό ή θλίψη της ίνας αναφοράς στο υπό εξέταση τμήμα του φορέα. =- =- 167 kn D D, αριστερά = D =- 146 kn D, κάτω =- D = kn D, δεξιά =- D =- 5.5 kn = 1.5 = kn = 4.5 kn Διάγραμμα Καμπτικών Ροπών: Α q /8 = 4 Δ 5.5 q /8 = Γ +4.5 Ε a = a = Β.34 [ ] (kn) Υπολογισμός Μέγιστης Καμπτικής Ροπής Η πρώτη μέγιστη θετική ροπή θα εμφανισθεί δεξιά της πάκτωσης Α σε εκείνο το σημείο κάτω από το κατανεμημένο φορτίο των 3 kn/ όπου η τέμνουσα μηδενίζεται. Η απόστασή του από το Α δίνεται από τη σχέση: 1.65 kn = = = kn/ 3 kn/ ΤΕΙ Αθήνας, Ιουλ / 15

11 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 Η μέγιστη ροπή στο διάστημα ΑΔ μπορεί να υπολογισθεί μέσω του εμβαδού του διαγράμματος των τεμνουσών δυνάμεων: a ( a ) 1 = + εμβαδόν από έως θέση = + a 1 =- 167 kn kn = kn a Η δεύτερη μέγιστη θετική ροπή θα εμφανισθεί δεξιά του κόμβου Δ στο σημείο κάτω από το κατανεμημένο φορτίο των kn/ όπου η τέμνουσα μηδενίζεται. Η απόσταση του σημείου αυτού από το Δ θα είναι: D kn = = =.3417 kn/ kn/ Η μέγιστη ροπή στο διάστημα ΔΓ μπορεί να υπολογισθεί από το εμβαδό του διαγράμματος των τεμνουσών δυνάμεων: a ( D a ) 1 = + εμβαδόν από έως θέση = + D D D a 1 =- 5.5 kn kn = kn a (επιλογή ενός εκ των δύο θεμάτων με αριθμό 3) ΘΕΜΑ 3 ο (3%) (Α' επιλογή) Για τη συνεχή δοκό του σχήματος να σχεδιασθούν οι γραμμές επιρροής: (α) των αντιδράσεων στις στηρίξεις Β και Γ, (β) της καμπτικής ροπής i στη τομή i και (γ) της καμπτικής ροπής στη στήριξη. P = 1 kn i Γ ΤΕΙ Αθήνας, Ιουλ / 15

12 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 P = 1 kn 1 Γ i [ γ.ε. ] (kn) 1 +5/3 +1 [ γ.ε. ] (kn) +1 [ γ.ε. i ] (kn) /3 + [ γ.ε. ] (kn) 4/3 ΤΕΙ Αθήνας, Ιουλ / 15

13 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 ΘΕΜΑ 3 ο (3%) (Β' επιλογή) Να επιλυθεί το δικτύωμα του σχήματος ακολουθώντας αυστηρά τα παρακάτω βήματα: (α) Χρησιμοποιώντας τη μέθοδο των τομών και μόνο εξισώσεις ροπών να προσδιορισθούν οι δυνάμεις στα μέλη ΓΔ και ΖΕ. (β) Να υπολογισθούν με τη μέθοδο των κόμβων οι δυνάμεις των ράβδων που συντρέχουν στους κόμβους Β και Η (δηλ. ΒΖ, ΒΗ, ΖΗ και ΗΓ). Για όλα τα μέλη να διευκρινισθεί εάν υπόκεινται σε θλίψη ή εφελκυσμό. 3 kn 4 4 kn D Z H 5 kn 5 kn Επίλυση: Οι άγνωστες αξονικές a N D δυνάμεις θα προσδιορισθούν N κάνοντας τομή aa - η οποία τέμνει τα ζητούμενα μέλη. Η γωνία f υπολογίζεται από τη σχέση: f -1 = tan (4 / 4) = 45 4 kn D f 5 kn a N Z Η γωνία q υπολογίζεται από τη σχέση: -1 q = tan (4 / 6) = f q ΤΕΙ Αθήνας, Ιουλ / 15

14 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 Αντιδράσεις στην άρθρωση Α και κύλιση Β: S = = = = 5 kn S F = = =- 7kN S F = = = 75kN Μέθοδος των τομών: Τομή α-α (αριστερό τμήμα) Δύναμη στο μέλος ΓΔ: S = N sinf = D 4 ( -7) N D = N = N =- 15 kn =-34.6 kn D D (θλίψη) Δύναμη στο μέλος ΖΕ: S = 4 N = Z 4 N ( -7) -8 5 = Z 4 N = N = 15 kn Z Z (εφελκυσμός) Μέθοδος των κόμβων: N H N H N Z q f N ZH f H N H ΤΕΙ Αθήνας, Ιουλ / 15

15 Γραπτή Εξέταση, Στατική ΙΙ Εαρινό εξάμηνο 1-11 Δυνάμεις στο κόμβο Β: üï S F = -NH cos f- NZ cos q = -NH - NZ cos q = ï ý S F = NH sin f+ NZ sin q + = NH + NZ sin q + = ï ïïþ ìn N cos N N cos H Z q ü ì H Z q ü =- ï =- í ï ý ï í ï ý N cos N sin Z q Z q N ï = î ïþ Z = ïî cos q-sin q ïþ ì NH NZ cosq ü =- ï í ï 75 kn ý N H =- 7.4 kn cos N Z 7.4 kn = = ïî cos sin ïþ N Z = 7.4 kn (εφελκυσμός) και N H = kn (θλίψη) Δυνάμεις στο κόμβο Η: S F = - NH cosf + NH cosf- NZH = üï ý S F = NH sinf- NH sinf = NH = N ï H ïþ S F = - NH cosf+ NH cosf- NZH = ü ìnzh ü = ï ý ï í ï ý S F = NH = NH = kn NH =-318. kn ïþ ïî ïþ N ZH = kn και N H = kn (θλίψη) ΤΕΙ Αθήνας, Ιουλ / 15

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών Τ.Ε.Ι. ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΣΚΗΣΕΙΣ ΣΤΤΙΚΗΣ I ιαγράμματα M, Q, N Ισοστατικών οκών Κόκκινος Τριαντ., Ph.D. εκέμβριος 2010 σκήσεις Στατικής I 1 Άσκηση 1 60 N/m 180

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί: 8. ΔΙΚΤΥΩΜΑΤΑ Σχ. 8.1 Παραδείγματα δικτυωμάτων 8.1 Ορισμοί: Δικτύωμα θα λέγεται ένας σύνθετος φορέας που όλα τα μέλη του είναι ράβδοι. Παραδείγματα δικτυωμάτων δίνονται στο σχήμα παραπάνω. Πλεονέκτημα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η

Διαβάστε περισσότερα

9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ

9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ 9. ΦΟΡΤΙ ΔΙΤΟΜΗΣ ΔΟΚΩ 9.1 ενικά Ο όρος φορτία σημαίνει είτε δυνάμεις είτε ροπές. Συνοψίζοντας αυτά που αναφέρθηκαν σε προηγούμενα κεφάλαια, μπορούμε να πούμε ότι δοκός είναι ένα σώμα με μεγάλο μήκος και

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Αναλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό.

ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό. 1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΣΤΑΤΙΚΗ ΙΙΙ - ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΘΕΜΑ 1o Για τον φορέα του σχήματος, να υπολογιστούν και σχεδιαστούν τα πλήρη διαγράμματα Μ όλων των στοιχείων του φορέα, λόγω ταυτόχρονης

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

Μηχανική Ι - Στατική

Μηχανική Ι - Στατική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #6: Δικτυώματα (Μέθοδος Κόμβων) Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

Μάθημα: Τεχνική Μηχανική

Μάθημα: Τεχνική Μηχανική Μάθημα: Τεχνική Μηχανική Ενότητα 1: Τεχνική Μηχανική Διδάσκων: Γκούντας Ιωάννης Τμήμα: Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Ανάλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 1: δυναμικά φορτία Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο Ι.Μ. Δόκας Επικ. Καθηγητής Εμβαδά Υπολογισμός του εμβαδού μιας επιφάνειας γίνεται πάντα στο οριζόντιο επίπεδο με τις παρακάτω μεθόδους: Από τις επίπεδες καρτεσιανές συντεταγμένες

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΟΛΟΣΩΜΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΟΛΟΣΩΜΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΟΛΟΣΩΜΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ Αντικείμενο Σκοπός Τεχνικής Μηχανικής : Ο προσδιορισμός της καταπόνησης ενός φορέα. Η σχεδίαση και διαστασιολόγηση ενός φορέα θα πρέπει

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των

Διαβάστε περισσότερα

Κεφάλαιο 1 Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης

Κεφάλαιο 1 Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης Κεφάλαιο Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης Σύνοψη Οι ασκήσεις του κεφαλαίου αυτού αφορούν τον έλεγχο της κινηματικής ευστάθειας, δηλαδή της στερεότητας, γραμμικών

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός ΤΡΙΚΑΛΑ, ΔΕΚΕΜΒΡΙΟΣ 4 ΠΕΡΙΕΧΟΜΕΝΑ. Η ΜΕΘΟΔΟΣ ΤΩΝ ΤΡΙΩΝ ΡΟΠΩΝ.... Η ΜΕΘΟΔΟΣ

Διαβάστε περισσότερα

ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004

ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 3 η Ισορροπία, στατικότητα και εντατικά µεγέθη κατασκευών Παρασκευή, 10 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

Ανάλυση Ισοστατικών ικτυωµάτων

Ανάλυση Ισοστατικών ικτυωµάτων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός ΤΡΙΚΑΛΑ, ΑΠΡΙΛΙΟΣ 014 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ...3 1.1 Το στατικό πρόβλημα...

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ΔΥΝΑΜΗ ΚΑΙ ΡΟΠΗ. Διάνυσμα δύναμης F. Ιδιότητες διανυσμάτων. Fcos. Fsin. Καρτεσιανές Συντεταγμένες / Συνιστώσες. Νόμος Παραλληλογράμμου: F= Fx+ Fy Fxi

ΔΥΝΑΜΗ ΚΑΙ ΡΟΠΗ. Διάνυσμα δύναμης F. Ιδιότητες διανυσμάτων. Fcos. Fsin. Καρτεσιανές Συντεταγμένες / Συνιστώσες. Νόμος Παραλληλογράμμου: F= Fx+ Fy Fxi Διάνυσμα δύναμης F Καρτεσιανές Συντεταγμένες / Συνιστώσες F F j j i F Ιδιότητες διανυσμάτων Πρόσθεση B Αφαίρεση ' B ( B) F F i ΔΥΝΑΜΗ ΚΑΙ ΡΟΠΗ F Fcos Νόμος Παραλληλογράμμου: F= F+ F Fi Fj F Fsin Μοναδιαία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

4. Επίλυση Δοκών και Πλαισίων με τις

4. Επίλυση Δοκών και Πλαισίων με τις ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 119 Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 6.1 Εισαγωγή Όταν ένα δομικό στοιχείο καταπονείται με ροπές των οποίων τα διανύσματα είναι παράλληλα προς τον άξονα του στοιχείου, δηλαδή προκαλούν συστροφή του στοιχείου

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

ΔΟΚΟΙ ΚΕΦΑΛΑΙΟ Εισαγωγή. 3.2 Δοκοί υπό φορτία βαρύτητος E G P Q Q

ΔΟΚΟΙ ΚΕΦΑΛΑΙΟ Εισαγωγή. 3.2 Δοκοί υπό φορτία βαρύτητος E G P Q Q ΚΕΦΑΛΑΙΟ 3 ΔΟΚΟΙ 3.1 Εισαγωγή Στις κατασκευές οι δοκοί, όπως και όλα τα άλλα δομικά στοιχεία, αποτελούν ένα τμήμα του γενικότερου δομικού συνόλου στο οποίο συνυπάρχουν τα υποστυλώματα, οι δοκοί, οι πλάκες,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙ ΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Για αποκλειστική χρήση από τους φοιτητές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ (ΣΤΡΟΒΟΛΟΥ) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 014 015 Βαθμός αριθμητικώς: Ολογράφως: Υπογραφή Εισηγητή: ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 Μάθημα: Μαθηματικά Τάξη: Γ Ημερομηνία: 15 Ιουνίου

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1

ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1 ΣΤΤΙΚΗ 1 ΥΝΜΕΙΣ Στατική είναι ο κλάδος της μηχανικής που μελετά την ισορροπία των σωμάτων. Κατά την μελέτη δεχόμαστε ότι τα σώματα δεν παραμορφώνονται από τις δυνάμεις που ασκούνται σ αυτά. Οι παραμορφώσεις

Διαβάστε περισσότερα

Βιβλιογραφία Ευρετήριο...437

Βιβλιογραφία Ευρετήριο...437 Περιεχόμενα 1 Εισαγωγή... 11 1.1 Φυσικοί νόμοι Επιστήμη Τεχνολογία Μηχανική...11 1.2 Εξέλιξη της Στατικής...13 1.3 Κανονισμοί, προδιαγραφές και οδηγίες...16 1.4 Ο ρόλος της Στατικής στα πλαίσια του κατασκευαστικού

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Η σεισμική συμπεριφορά κτιρίων από φέρουσα τοιχοποιία εξαρτάται κυρίως από την ύπαρξη ή όχι οριζόντιου διαφράγματος. Σε κτίρια από φέρουσα

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 7&8: ΦΑΣΜΑΤΑ ΑΠΟΚΡΙΣΗΣ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

3. ΥΠΟΛΟΓΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ

3. ΥΠΟΛΟΓΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ 3. ΥΠΟΛΟΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ 3.1 Ορισμός: Φορέας λέγεται ένα στερεό σώμα που δέχεται δυνάμεις (και θέλουμε τελικά να ελέγξουμε την αντοχή του). Είδη γραμμικών φορέων: ράβδος, δοκός, εύκαμπτος γραμμικός

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι

ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι ΔΙΔΑΣΚΩΝ: ΔΡ. ΜΗΧ. ΜΑΛΙΑΡΗΣ ΓΕΩΡΓΙΟΣ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ

Διαβάστε περισσότερα

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ ΕΠΕΜΒΑΣΕΩΝ ΣΕ ΥΦΙΣΤΑΜΕΝΑ ΔΟΜΗΜΑΤΑ

ΚΑΝΟΝΙΣΜΟΣ ΕΠΕΜΒΑΣΕΩΝ ΣΕ ΥΦΙΣΤΑΜΕΝΑ ΔΟΜΗΜΑΤΑ ΣΕΜΙΝΑΡΙΟ ΤΕΕ / ΟΑΣΠ / ΣΠΜΕ ΑΘΗΝΑ, 31 αϊου 2012 ΚΑΝΟΝΙΣΜΟΣ ΕΠΕΜΒΑΣΕΩΝ ΣΕ ΥΦΙΣΤΑΜΕΝΑ ΔΟΜΗΜΑΤΑ Κεφάλαιο 9: Έλεγχοι ασφάλειας Μ.Ν.Φαρδής Τμήμα Πολιτικών Μηχανικών Πανεπιστημίου Πατρών Κεφάλαιο 9: Σκοπός Καθορισμός

Διαβάστε περισσότερα

Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος

Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Επαναλήψεις Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 Θέµατα

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΓΕΩΡΓΙΚΟΙ ΕΛΚΥΣΤΗΡΕΣ OΧΗΜΑΤΑ ΑΝΩΜΑΛΟΥ ΕΔΑΦΟΥΣ. Ασκήσεις

ΓΕΩΡΓΙΚΟΙ ΕΛΚΥΣΤΗΡΕΣ OΧΗΜΑΤΑ ΑΝΩΜΑΛΟΥ ΕΔΑΦΟΥΣ. Ασκήσεις ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ ΓΕΩΡΓΙΚΟΙ ΕΛΚΥΣΤΗΡΕΣ OΧΗΜΑΤΑ ΑΝΩΜΑΛΟΥ ΕΔΑΦΟΥΣ Ασκήσεις Δρ Γ. Παραδεισιάδης Αναπληρωτής Καθηγητής ΘΕΣΣΑΛΟΝΙΚΗ

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 77 Κεφάλαιο 4 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 4.1 Εισαγωγή Στα προηγούμενα κεφάλαια υπολογίσαμε τάσεις και παραμορφώσεις που αναπτύσσονται σε ένα σημείο (σε μια πολύ μικρή περιοχή ) ενός δομικού

Διαβάστε περισσότερα

Η ΕΝΤΑΣΗ ΤΩΝ ΙΣΟΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ

Η ΕΝΤΑΣΗ ΤΩΝ ΙΣΟΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Η ΕΝΤΑΣΗ ΤΩΝ ΙΣΟΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Σημειώσεις για το μάθημα Στατική Ι ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός ΤΡΙΚΑΛΑ, ΟΚΤΩΒΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Κεφάλαιο 8 Ανισοτροπία

Κεφάλαιο 8 Ανισοτροπία Κεφάλαιο 8 Ανισοτροπία Την ανισοτροπία στη μηχανική συμπεριφορά των πετρωμάτων δυνάμεθα να διακρίνουμε σε σχέση με την παραμορφωσιμότητα και την αντοχή τους. 1 Ανισοτροπία της παραμορφωσιμότητας 1.1 Ένα

Διαβάστε περισσότερα

Κεφάλαιο 1: Εισαγωγή

Κεφάλαιο 1: Εισαγωγή 1-1 Η Επιστήµη της Αντοχής των Υλικών, 1-2 Γενικές παραδοχές, 1-3 Κατάταξη δυνάµεων, 1-4 Είδη στηρίξεων, 1-5 Μέθοδος τοµών, Παραδείγµατα, 1-6 Σχέσεις µεταξύ εσωτερικών και εξωτερικών δυνάµεων, Παραδείγµατα,

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

δ. έχουν πάντα την ίδια διεύθυνση.

δ. έχουν πάντα την ίδια διεύθυνση. Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: ΚΑΤΑΣΚΕΥΗ ΔΙΑΤΑΞΗΣ ΣΤΑΤΙΚΗΣ ΦΟΡΤΙΣΗΣ ΚΟΙΛΟΔΟΚΩΝ ΜΕ ΜΕΤΑΒΛΗΤΗ ΦΟΡΤΙΣΗ ΚΑΙ ΣΕ ΔΙΑΦΟΡΕΣ ΘΕΣΕΙΣ

Διαβάστε περισσότερα

Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://www.teiath.gr/stef/tio/medisp/gr_downloads.htm E-mail: gloudos@teiath.gr Ροπή Η τάση για περιστροφή

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

Κεφάλαιο 4. Οι νόμοι της κίνησης

Κεφάλαιο 4. Οι νόμοι της κίνησης Κεφάλαιο 4 Οι νόμοι της κίνησης Οι νόμοι της κίνησης Μέχρι τώρα, περιγράψαμε την κίνηση ενός σώματος συναρτήσει της θέσης, της ταχύτητας, και της επιτάχυνσής του. Δεν λάβαμε υπόψη μας τι μπορεί να επηρεάζει

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση:

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143 9.2 ΔΙΣΚΟΙ 9.2.1 Μέθοδοι ανάλυσης Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ελαστική ανάλυση πλαστική ανάλυση

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα