Φροντιστήριο Διακριτών Μαθηματικών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Φροντιστήριο Διακριτών Μαθηματικών"

Transcript

1 Φροντιστήριο Διακριτών Μαθηματικών Γεώργιος Τζούμας 8 Ιουνίου 007 Εβδομάδα (7-/5 [Το ξενοδοχείο του Hilbert] Εστω ένα ξενοδοχείο με απείρως αριθμήσιμο πλήθος δωματίων που είναι όλα κατειλημμένα Σε κάθε δωμάτιο μένει μόνο ένα άτομο Επιτρέπονται οι μετακινήσεις (α Ερχεται ένας νέος πελάτης να μείνει Χωράει; (β Τι γίνεται στην περίπτωση που έρθουν απείρως αριθμήσιμοι νέοι πελάτες; (γ Αν έρθουν απείρως αριθμήσιμα γκρουπ από απείρως αριθμήσιμους πελάτες; (α Ναι, μετατοπίζονται όλοι κατά ένα δωμάτιο(β Ελευθερώνω τα περιττά δωμάτια μετακινώντας κάθε πελάτη απ τους ήδη υπάρχοντες από το δωμάτιο k στο δωμάτιο k Κατόπιν βάζω τους νέους πελάτες στα περιττά δωμάτια k + (γ Ελευθερώνω τα περιττά δωμάτια όπως προηγουμένως Στη συνέχεια για το j-οστό γκρουπ επιλέγω τον j-οστό πρώτο αριθμό (3,5,7,,3,7, καιτοποθετώτον i-οστόπελάτητουγκρουπστην i-οστήδύναμη αυτούτουαριθμού,πχ 3 = 3, 3 = 9, 3 3 = 7,, 5 = 5, 5 = 5, 5 3 = 5, [Liu,άσκ6,σελ46] (α ΝΔΟτοσύνολοτωνθετικώνρητών Q + είναιαριθμήσιμο q = x y, Q+ = {(x,y : x,y N, x 0, y 0} f(x,y : Q + N s = x + y (x,y f(x,y (, 0 3 (, 3 (, 4 (, (, 4 4 (3, 5 5 (, (, (3, 8 5 (4, 9 Αναπαριστώ τα ζεύγη (x, y με σημεία στο πρώτο τεταρτημόριο Απαριθμώ τα σημεία κινούμενος πάνω στις διαγωνίους παράλληλες με την ευθεία y = x Παίρνω τα σημεία μείδιοάθροισμασυντεταγμένων s = x+y y = x+sπρόκειταιγιατηνεξίσωση της διαγωνίου πάνω στην οποία βρίσκονται τα σημεία με ίδιο άθροισμα συντεταγμένων Μπορώτώραναβρωτησυνάρτηση fχρησιμοποιώνταςτοντύπογιατοάθροισμαόρων αριθμητικής προόδου(υπάρχουν (s σημεία με άθροισμα συντεταγμένων s f(x,y = s(s y

2 Απόδ ότιείναι- Γιαίδιο s,διαφοροποιείταιλόγωτου y Γιαδιαφορετικό s,το s(s /επηρρεάζειπιοπολύ,μιαςκαι y s (β Η ένωση αριθμήσιμου πλήθους αριθμήσιμων συνόλων είναι αριθμήσιμη S = s i i= Εστω x ij s i έναστοιχείοτηςένωσηςπουαντιπροσωπεύειτο j-οστόστοιχείοτου συνόλου s i Τότευπάρχει-αντιστοιχίαμετο Q + ως j/i 3 Το δυναμοσύνολο του N δεν είναι αριθμήσιμο Διαγωνοποίηση Εστω ότι είναι αριθμήσιμο, οπότε απαριθμώ τα στοιχεία του υποσύνολο του N στοιχεία δυαδική ακολουθία s 0 {,3} s {0,,} 0 s i {} s j {0,} Τοψηφίοστηθέση i(ξεκινώνταςαπότο0τηςδυαδικήςακολουθίαςείναιανκαιμόνο αν το i ανήκει στο υποσύνολο Παίρνω το αντίστροφο bit από κάθε στοιχείο της διαγωνίου, δηλ θεωρώτουποσύνολο s N μεστοιχεία i s i / s i i N Τότετο s(στο παράδειγμα s = {0,,i,j,}είναιέναυποσύνολοτου Nπουδενανήκειστηνπαραπάνω λίστα, αφού διαφέρει με κάθε στοιχείο Εβδομάδα (4-9/5 [Liu,άσκ3]Οποιεσδήποτεδύομπάλεςτουμπιλιάρδουέχουντοίδιοχρώμα Λανθασμένη επαγωγική υπόθεση: Ο συλογισμός δεν ισχύει για ν= [Liu, παράδ 7] 3[ΧΚοναξής]Δείξτεότιοαριθμόςτωνδιαγωνίωνσεένακυρτόπολύγωνομε nκορυφέςείναι n(n 3, (n 4 ΒάσηΓια n = 4,έχουμετετράπλευροπουέχειδύοδιαγωνίους Βήμαεπαγωγής Εστωότιπολύγωναμε kκορυφέςέχουν k(k 3διαγωνίουςΠροσθέτουμεμίακορυφη P k+ στο k-γωνοκαιθέλουμεναδείξουμεότιτοπλήθοςτωνδιαγωνίωνειναι (k + (k ΕχουμετιςπαλιέςδιαγωνίουςκαιόσεςνέεςμπορούμεναφέρουμεΆρατο πλήθοςτωνδιαγωνίωνείναι k(k 3καιόσεςμπορούμεναφέρουμεαπότηνκορυφή P k+ στιςκορυφές P,P 3,,P k,δηλαδή k Ηπλευρά P P k τουπαλιούπολυγώνουέγινε διαγώνιοςστονεοεχουμε: k(k 3+(k + = [k(k 3+k ] = (k k = (k + (k 4[ΧΚοναξής]Οn οστόςπεριττόςαριθμόςείναιοn Δείξτεότιτοάθροισματων n πρώτωνπεριττώναριθμώνείναι (n = n ΒάσηΓια n =,ισχύει Βήματηςεπαγωγής Εστω (n = n Θαδείξουμεότι ((n+ = (n+ Πράγματι (n +(n+ (EY = n +(n+ = n + n + = (n +

3 5[Χ Κοναξής][Liu, άσκ 56] (αζητάμετονπληθικόαριθμότουσυνόλου Ω \ {K G P } K G P = K + G + P K G K P G P + K G P = = 845 (β K K P K G + K G P = = 00 Κάνουμε διαγράμματα Venn Εβδομάδα 3(-5/5 (p q ( p qπαραδείγματαγια F Tκλπ Κυκλικές μεταθέσεις n αντικειμένων 3[Liu,άσκ3] x y 7 (α93 mn = n! m = (n! (β Αναπαριστούμε τα ζεύγη με σημεία στο επίπεδο Μετράμε τα σημεία στο φράσσονται απότην y = x 7Αποτέλεσμα57 4[Liu, άσκ 73] Παρατηρώότι A(q p q Άρα A(p q p (p q q Ανκαιμόνοανλες αλήθεια, το αριστερό παρακλάδι οδηγεί στην πόλη; Εβδομάδα 4(8/5-/6 [Liu, άσκ 33] Καρκινικές λέξεις με 7 γράμματα του ελληνικού αλφαβήτου [Liu, άσκ 35] Σχήμα«σταυρός» (α 9 = 5 (β Βρίσκωπόσαείναισυμμετρικά: 7 = 8 Άρα5-8=384 3[Liu, άσκ 37] Σειρά 0 θέσεων, 3 ομάδες 5 συνεχόμενων θέσεων 4 4 Α τρόπος Απαριθμώ: (,6,, (,6,,, (,7,, (,7,3,, (,7,,, (6,,6Συνολικάέχω ( ( (++ = 56 τρόπουςάρατελικάέχω 56 3! = 336 Β Τρόπος Εχω8αντικείμενα:(5θ(5θ(5θ(θ(θ(θ(θ(θ Άρατελικά 8!/5! = 336 4ΚινούμαισεέναπλέγμαακεραίωνΜεπόσουςτρόπουςμπορώναφτάσωαπότο (0,0στο (n, m κινούμενος είτε ένα βήμα δεξιά είτε ένα πάνω; (m + n! m! n! 3

4 Εβδομάδα 5(4-8/6 [Liu,άσκ35] A + B = C, A + B + C = 5 ( 5 5 ( 5 5 0,αν 0βιβλία ( 0, αν βιβλία Εστω Aκαι BπεπερασμένασύνολαΠόσεςείναιοισυναρτήσεις f : A B;Πόσεςείναι-; (α Εστω a = A και b = B Τοπλήθοςτωνσυναρτήσεωνείναι b a (β ( b a! = P(b,a, εφόσον b a a 3[Liu, άσκ 334] Διαιρώ n άτομα σε n ζευγάρια ( n n Εβδομάδα 6(-5/6 Λύσεις προβλημάτων 3 και 5 του homework Εβδομάδα 7(8-/6 Λύση προβλήματος 6 του homework ( m m n k=0 ( n k ( m = m+i ( m+ m ( m+ m+i = n = n n max k=0 n! = (!(! (! }{{} n ( n n! n n (m + (m + (m + i (m i + (m i + (m m > (m + (m + i = (m i + (m i + 3 m > ( = max n n k=0 k ( n + > n = n k ( n = n ( n n n ( n n n n [Spiegel 4]Τοκουτί I περιέχει3κόκκινεςκαιμπλεσφαίρες Τοκουτί II περιέχει κόκκινεςκαι8μπλεσφαίρεςρίχνουμενόμισμακαιανφέρεικορώναβγάζουμεσφαίρααπό τοκουτί I,αλλιώςαπότο IIΠοιάηπιθναβγάλουμεκόκκινησφαίρα P(κ; P(κ = P(κ IP(I + P(κ IIP(II = = 5 4

5 Αν δεν ξέρουμε τι ήρθε(κορώνα/γράμματα, αλλά γνωρίζουμε ότι βγήκε κόκκινη σφαίρα, ποια ηπιθανότηταναφέραμεκορώνα P(I; 3 Monty Hall Problem [cf Wikipedia] P(I κ = P(κ IP(I P(κ = 3 4 Suppose you re on a game show, and you re given the choice of three doors: Behind one door is a car; behind the others, goats You pick a door, say No, and the host, who knows what s behind the doors, opens another door, say No 3, which has a goat He then says to you, Do you want to pick door No? Is it to your advantage to switch your choice? We consider the decision tree So, if you switch, you get the car with probability /3 Εβδομάδα 8(5-9/6 [Liu 365] Υπάρχουν 0 ζευγάρια παπούτσια μέσα σε ντουλάπα Αν επιλέξω τυχαία 8 παπούτσια,ποιαηπιθναεπιλέξω0ζευγάρια;ζευγάρι; Bonus: kζευγάρια; ( 0 ( k 0 k 8 k P(0 = % ( P( = ( ( = (8 0 0( = ( 43% P(k = kζευγάρια υπόλοιπα μη-ζευγάρια 8 k ( αριστερόήδεξί 0 8 όλα τα ενδεχόμενα P(0 + P( + P( + P(3 + P(4 = ( 0 ( 0 k k 8 k ( k [Προσαρμογή CLRS3-3,σελ58]Δείξτεότια n /lgn = O(,β n 3 = O(n! α n /lgn = Επιλέγω c = 5

6 β Άρα n 3 = O(n! lim n n 3 lim n n! = lim n 3 n n(n (n (n 3! = n 3 (n 3 3n + n(n 3! = lim n (n 3! = 0 Μετονορισμόθαπρέπεινακάνωλίγεςπράξειςκαιναδείξωπχότι n (n (n 6

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i. Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Μέρος ΙΙ. Τυχαίες Μεταβλητές Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 3 η Σειρά Ασκήσεων Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω p(x) και q(x) κατηγορήματα με πεδίο ορισμού Ω με σύνολα αλήθειας Α και Β αντίστοιχα (Σύνολα αλήθειας:

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

t = (iv) A B (viii) (B Γ) A

t = (iv) A B (viii) (B Γ) A Διακριτά Μαθηματικά Review για τα Διακριτά Μαθηματικά 1. Να κατασκευάσετε το δένδρο ανάλυσης και τον πίνακα αλήθειας για τις παρακάτω προτάσεις: (i) (ϕ = ψ) ( ( ψ) ϕ ) (ii) (p q) = ( (p q) ) (iii) ( a

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο

Διαβάστε περισσότερα

Gutenberg

Gutenberg Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1} Αλγεβρα Ι, Χειμερινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Το [Α] συμβολίζει το φυλλάδιο ασκήσεων που θα βρείτε στην ιστοσελίδα του μαθήματος επιλέγοντας «Άλλες Ασκήσεις». 1. Πόσες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Διακριτά Μαθηματικά Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Αρχή Εγκλεισμού-Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση ΙΙ και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 19/4/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα/ Συνδυαστική Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Εξέταση Σεπτέμβριος 2014 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Σημεία Προσοχής στην Παράγραφο Ε2.

Σημεία Προσοχής στην Παράγραφο Ε2. Σημεία Προσοχής στην Παράγραφο Ε2. 1. Ίσα Σύνολα Δεν αρκεί δύο σύνολα να έχουν τον ίδιο αριθμό στοιχέιων για να είναι ίσα. Πρέπει να έχουν ακριβώς τα ίδια στοιχεία. ΠΑΡΑΔΕΙΓΜΑ Έχουμε τα σύνολα Α={1,α,5}

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

2 n N: 0, 1,..., n A n + 1 A

2 n N: 0, 1,..., n A n + 1 A Θεωρία Υπολογισμού Ενότητα 5: Τεχνικές απόδειξης & Κλειστότητα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά

Διαβάστε περισσότερα

Εγκλεισμός Αποκλεισμός

Εγκλεισμός Αποκλεισμός Εγκλεισμός Αποκλεισμός Αρχή Εγκλεισμού Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕN μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος για να απαριθμούμε τους τρόπους εκτέλεσης μιας

Διαβάστε περισσότερα

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 03 ΟΚΤ 2017 ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

B A B A A 1 A 2 A N = A i, i=1. i=1

B A B A A 1 A 2 A N = A i, i=1. i=1 Κεφάλαιο 2 Χώρος πιθανότητας και ενδεχόμενα 2.1 Προκαταρκτικά Εστω ότι κάποιος μας προτείνει να του δώσουμε δυόμισι ευρώ για να παίξουμε το εξής παιχνίδι: Θα στρίβουμε ένα νόμισμα μέχρι την πρώτη φορά

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Διακριτά Μαθηματικά Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων

Διαβάστε περισσότερα

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα)

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα) Πιθανότητες & Στατιστική Μέρος I. Εισαγωγή στις Πιθανότητες. 3 βασικές έννοιες Τυχαία Πειράματα (φαινόμενα) Δειγματικός χώρος Ενδεχόμενα Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής,

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εισαγωγή στις Διακριτές Πιθανότητες ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage:

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές Επιµέλεια

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y

Διαβάστε περισσότερα

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ. Γνωριµία ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη 26): ευτέρα

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 Γνωριµία ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α είναι f 1, για κάθε. Μονάδες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2018 Οργάνωση και περιεχόμενα Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 06, 26 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Η ανάλυση LU 2. Η ανάλυση LDM T και η ανάλυση LDL T 3. Συμμετρικοί

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

α Α και α Β, β Α και β Β, γ Α και γ Β, δ Α και δ Β, ε Α και ε Β, ζ Β και ζ Β, η Α και η Β, θ Α και θ Β.

α Α και α Β, β Α και β Β, γ Α και γ Β, δ Α και δ Β, ε Α και ε Β, ζ Β και ζ Β, η Α και η Β, θ Α και θ Β. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017-2018 Χειμερινό Εξάμηνο Ρόδος, Νοέμβριος 2017 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, ΔΙΔΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθημα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Άγγελος Κιαγιάς. https://crypto.di.uoa.gr/dmath aggelos. Τμήμα Πληροφορικής & Τηλεπικοινωνιών. π.

Διακριτά Μαθηματικά. Άγγελος Κιαγιάς. https://crypto.di.uoa.gr/dmath aggelos. Τμήμα Πληροφορικής & Τηλεπικοινωνιών. π. π.1 Διακριτά Μαθηματικά https://crypto.di.uoa.gr/dmath2013 Άγγελος Κιαγιάς http://www.di.uoa.gr/ aggelos Τμήμα Πληροφορικής & Τηλεπικοινωνιών π.2 Τι είναι τα Διακριτά Μαθηματικά; Είναι η μελέτη διακριτών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

LESSON 5 (ΜΑΘΗΜΑ ΠΕΝΤΕ) REF: 201/033/25-ADV. 3 December 2013

LESSON 5 (ΜΑΘΗΜΑ ΠΕΝΤΕ) REF: 201/033/25-ADV. 3 December 2013 LESSON 5 (ΜΑΘΗΜΑ ΠΕΝΤΕ) REF: 201/033/25-ADV 3 December 2013 Place/seat η θέση (thesi) Right (noun) το δίκιο (dikio) I am right έχω δίκιο (eho dikio) Wrong (noun) άδικο (adiko) I am wrong έχω άδικο δεν

Διαβάστε περισσότερα

Συνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017

Συνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017 HY118-Διακριτά Μαθηματικά Πέμπτη, 27/4/2017 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 4: Θεωρία Μέτρησης Po lya Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

το σύνολο των πολυωνυµικών συναρτήσεων βαθµού d στους φυσικούς και µε P= U P το σύνολο των πολυωνυµικών συναρτήσεων. Να εξετάσετε αν τα σύνολα P

το σύνολο των πολυωνυµικών συναρτήσεων βαθµού d στους φυσικούς και µε P= U P το σύνολο των πολυωνυµικών συναρτήσεων. Να εξετάσετε αν τα σύνολα P Θέµα ( ιαδικασίες Απαρίθµησης 0 µονάδες) (α) Μια συνάρτηση p : N N είναι πολυωνυµική βαθµού όταν υπάρχουν φυσικοί ( a a a ) τέτοιοι ώστε 0 l = 0 l p( n) = a l n για κάθε n N Συµβολίζουµε µε P το σύνολο

Διαβάστε περισσότερα

Εύρεση ν-στού πρώτου αριθμού

Εύρεση ν-στού πρώτου αριθμού Εύρεση ν-στού πρώτου αριθμού Ορισμός Πρώτος αριθμός λέγεται κάθε φυσικός αριθμός (εκτός της μονάδας) που έχει φυσικούς διαιρέτες μόνο τον εαυτό του και τη μονάδα. Ερώτημα: Να υπολογιστεί ο ν-στός πρώτος

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2017 Οργάνωση Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες Συνεπαγωγή Αποδείξεις

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2018-2019 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

= 14 = 34 = Συνδυαστική Ανάλυση

= 14 = 34 = Συνδυαστική Ανάλυση 1. Συνδυαστική Ανάλυση 1.1 Ένα κουτί περιέχει 8 κόκκινες, 3 άσπρες και 9 μπλε σφαίρες. Εάν βγάλουμε 3 σφαίρες στην τύχη χωρίς επανατοποθέτηση, ποια είναι η πιθανότητα (α) να είναι και οι 3 κόκκινες, (β)

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 08-09 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Ασκηση Το πείραµά µας συνίσταται στη ϱίψη 3 τίµιων κερµάτων. Συµβολίζουµε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 ιακριτές Τυχαίες Μεταβλητές ( Ι ) Επιµέλεια : Στιβακτάκης Ραδάµανθυς Ασκηση.

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Φύλλο Εργασίας: Το Ορθογώνιο Σύστημα Αξόνων

Φύλλο Εργασίας: Το Ορθογώνιο Σύστημα Αξόνων Διδακτική με Τ.Π.Ε Ανακαλυπτική Μάθηση Σελίδα 1 από 5 Φύλλο Εργασίας: Το Ορθογώνιο Σύστημα Αξόνων Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Εργασία 1 Ανοίξτε το αρχείο 1_ΟρθοκανονικόΣύστημα.ggb.

Διαβάστε περισσότερα

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1 Διακριτά Μαθηματικά [Rosen, κεφ. 5] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέμβριος 2018 Επαγωγή και Αναδρομή [Rosen, κεφ. 5] Μαθηματική επαγωγή [Rosen 5.1] Μέθοδος απόδειξης μιας μαθηματικής

Διαβάστε περισσότερα