HY118-Διακριτά Μαθηματικά

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HY118-Διακριτά Μαθηματικά"

Transcript

1 HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar

2 Module #1 - Logic Άλλη μία απόδειξη ύπαρξης Θεώρημα: Υπάρχουν άπειροι πρώτοι αριθμοί. Κάθε πεπερασμένο σύνολο αριθμών πρέπει να περιέχει ένα μέγιστο στοιχείο, επομένως μπορούμε να αποδείξουμε το θεώρημα αν απλά μπορούμε να δείξουμε ότι δεν υπάρχει κανένας μέγιστος πρώτος αριθμός. Δηλ., θα δείξουμε ότι για κάθε ακέραιο αριθμό, υπάρχει ένας μεγαλύτερος αριθμός ο οποίος είναι κι αυτός πρώτος. Πιό τυπικά: Θα δείξουμε ότι n>0 p>n P(p) P(x) : O x είναι πρώτος 2

3 Module #1 - Logic Μία απόδειξη με περιπτώσεις Για κάθε n>0, απόδειξε ότι υπάρχει πρώτος p>n. Θεωρείστε ότι x = n!+1. Εφόσον x>1, ξέρουμε ότι ο x είτε είναι πρώτος είτε δεν είναι. Περίπτωση 1: Ο x είναι πρώτος. Προφανώς, x>n, οπότε αν θέσουμε p=x έχουμε τελειώσει. Περίπτωση 2: Ο x δεν είναι πρώτος. O x έχει ένα πρώτο παράγοντα, έστω τον p. Αν p n, τότε x mod p = 1, οπότε ο p δεν είναι πρώτος παράγοντας του x Προκύπτει ότι p>n, και εφόσον ο p είναι πρώτος, συμπεραίνουμε ότι υπάρχει πρώτος μεγαλύτερος από τον n. Άρα σε κάθε περίπτωση, για κάθε n>0, υπάρχει πρώτος p>n. 3

4 Module #1 - Logic Κι άλλη απόδειξη με περιπτώσεις Θεώρημα: n Z ( (2 n 3 n) 24 (n2 1) ) Απόδειξη: Αφού 2 3=6, η τιμή του n mod 6 μπορεί να μας πει κατά πόσον 2 n ή 3 n. Εάν (n mod 6) είναι ένα από τα {0,3} τότε 3 n. Εάν είναι ένα από τα {0,2,4} τότε 2 n. Άρα, εάν (2 n 3 n) τότε (n mod 6) είναι ένα από τα {1,5}. Περ. #1: Εάν n mod 6 = 1, τότε ( k) n=6k+1. n2=36k2+12k+1, άρα n2 1=36k2+12k = 12(3k+1)k=12*2m = 24*m γιατί ο (3k+1)k είναι άρτιος*1. Άρα 24 (n2 1). Περ. #2: Εάν n mod 6 = 5, τότε n=6k+5. n2 1 = (n 1) (n+1) = (6k+4) (6k+6) = 12 (3k+2) (k+1). Είτε ο k+1 είτε ο 3k+2 είναι άρτιος *2. Άρα, 24 (n2 1). *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός 4

5 Από τις υποθέσεις στα συμπεράσματα... Έχουμε υποθέσεις p, θέλουμε να αποδείξουμε το συμπέρασμα q. Βρες ένα s 1 τέτοιο ώστε p s 1 Τότε o κανόνας modus ponens δίνει το s 1. Μετά, βρές s 2 τέτοιο ώστε s 1 s 2. Τότε o κανόνας modus ponens δίνει το s 2.. Και ελπίζουμε να βρούμε ένα s n τ.ω.: s n q. Το πρόβλημα με αυτή τη άμεση απόδειξη είναι ότι μπορεί να είναι δύσκολο να «δούμε» το «μονοπάτι» που οδηγεί στην p. 5

6 Από τα συμπεράσματα στις υποθέσεις... Συχνά είναι πιο εύκολο να «δούμε» το ίδιο ακριβώς μονοπάτι, αν ξεκινήσουμε από το συμπέρασμα q κι όχι από τις υποθέσεις Δηλαδή, πρώτα βρες ένα s n τέτοιο ώστε s n q. Μετά ένα s n-1 : s n-1 s n, κ.ο.κ μέχρις ότου βρείς ένα s 1 τέτοιο ώστε p s 1. Σημειώστε ότι εξακολουθούμε να χρησιμοποιούμε modus ponens για να διαδώσουμε την ισχύ των προτάσεων από την p στην s 1 στην στην s n στην q Βρίσκουμε το μονοπάτι προς τα πίσω, αλλά το εφαρμόζουμε προς τα εμπρός!!!! Αυτό δεν είναι το ίδιο με την έμμεση απόδειξη!!! 6

7 Παράδειγμα Θεώρημα: a>0,b>0,a b: (a+b)/2 > (ab) 1/2. Απόδειξη: Δεν είναι προφανές πως από τις υποθέσεις a>0, b>0, a b οδηγούμαστε στο συμπέρασμα (a+b)/2 > (ab) 1/2. Οπότε, ας δοκιμάσουμε να ξεκινήσουμε από το συμπέρασμα, (a+b)/2 > (ab) 1/2! 7

8 Βήματα... (a+b)/2 > (ab) 1/2 (a+b) 2 /4 > ab (a+b) 2 > 4ab a 2 +2ab+b 2 > 4ab a 2 2ab+b 2 > 0 (a b) 2 > 0 Τώρα, εφόσον a b, (a b) 0, προκύπτει ότι (a b) 2 >0, και μπορούμε να ακολουθήσουμε την σωστή σειρά των βημάτων 8

9 Απόδειξη παραδείγματος Θεώρημα: a>0,b>0,a b: (a+b)/2 > (ab) 1/2. Απόδειξη: a b (a b) 0 (a b) 2 >0 a 2 2ab+b 2 > 0 a 2 2ab+b 2 +4ab > 4ab a 2 +2ab+b 2 > 4ab (a+b) 2 > 4ab (a+b) 2 /4 > ab. Αφού ab>0, προκύπτει ότι (a+b)/2 > (ab) 1/2. 9

10 Άλλο ένα παράδειγμα Παιχνίδι με τους εξής κανόνες: Υπάρχουν 15 πέτρες σε μία στοίβα. Δύο παίκτες παίζουν εναλλάξ και καθένας τους μπορεί να πάρει 1, 2, ή 3 πέτρες από τη στοίβα. Νικητής είναι αυτός που παίρνει την τελευταία πέτρα. Θεώρημα: Υπάρχει μία στρατηγική η οποία εξασφαλίζει στον 1 ο παίκτη την νίκη σε κάθε περίπτωση. Πως το αποδεικνύουμε; Ξεκινώντας από το τέλος του παιχνιδιού!!! 10

11 Ξεκινώντας από το τέλος... Ο Π1 νικά αν είναι σειρά του Π2 και δεν υπάρχουν πέτρες Ο Π1 μπορεί να το επιτύχει αυτό αν του μείνουν 1 ή 2 ή 3 πέτρες... Αυτό θα συμβεί αν στον Π2 μείνουν 4 πέτρες... Ο Π1 μπορεί να το επιτύχει αυτό αν του μείνουν 5 ή 6 ή 7 πέτρες... Αυτό θα συμβεί αν στον Π2 μείνουν 8 πέτρες... Κλπ! Παίκτης 1 Παίκτης 2 0 1, 2, 3 4 5, 6, 7 8 9,10, ,14,15 11

12 Διατυπώνοντας την απόδειξη από την αρχή... Θεώρημα: Υπάρχει μία στρατηγική η οποία εξασφαλίζει στον 1 ο παίκτη την νίκη σε κάθε περίπτωση. Απόδειξη. Ο Π1 παίρνει 3 πέτρες, αφήνοντας 12. Αφού παίξει ο Π2, θα περισσέψουν 11, 10, ή 9 πέτρες. Σε κάθε περίπτωση, ο Π1 μπορεί να μειώσει τον αριθμό από πέτρες σε 8. Τότε ο Π2 θα μειώσει τον αριθμό από πέτρες σε 7, 6, ή 5. Σε κάθε περίπτωση, ο Π1 μπορεί να μειώσει τον αριθμό από πέτρες σε 4. Τότε, ο Π2 πρέπει να τις μειώσει σε 3 ή 2, ή 1. Ο Π1 παίρνει τις τελευταίες πέτρες και κερδίζει!!! 12

13 Τέλος, κάποιες κοινές απατηλές αποδείξεις Μία απατηλή απόδειξη είναι ένας μηχανισμός εξαγωγής συμπερασμάτων ο οποίος δεν ευσταθεί λογικά. Μία απατηλή απόδειξη μπορεί να οδηγεί σε εσφαλμένο συμπέρασμα Απατηλότητα αποδοχής του συμπεράσματος: p q αληθές, και q αληθές, άρα p αληθές. (Όχι, γιατί F T αληθές.) Απατηλότητα άρνησης της υπόθεσης: p q αληθές, και p ψευδές, άρα q ψευδές. (Όχι, πάλι επειδή F T αληθές.) 02-Mar-18

14 Module #1 - Logic Κυκλικός συλλογισμός Η απατηλότητα (εμμέσως ή αμέσως) του να υποθέτουμε την ισχύ του συμπεράσματος, στην πορεία προς την απόδειξή του! Παράδειγμα: (για ακεραίους n) εάν ο n2 είναι άρτιος τότε ο n είναι άρτιος. Επιχειρούμενη απόδειξη: Ο n2 είναι άρτιος. Τότε ο n2=2k για κάποιο ακέραιο k. Διαιρώντας και τα δύο μέλη με n μας δίνει n = (2k)/n = 2(k/n). Οπότε υπάρχει ένας ακέραιος j (ο k/n) τέτοιος ώστε n=2j. Αρα ο n είναι άρτιος. Σε ποιό σημείο χρησιμοποιείται κυκλικός συλλογισμός; Πως αποδεικνύεται ότι ο j= k/n = n/2 είναι ακέραιος, χωρίς πρώτα 02-Mar-18 να υποθέσουμε ότι ο n είναι άρτιος;;;;

15 Ας μην ξεχνάμε Έχουμε επίσης δει μία ορθή απόδειξη για την ίδια πρόταση: μία καλή υπενθύμιση για το ότι εάν μία απόδειξη είναι εσφαλμένη, αυτό δεν σημαίνει ότι το συμπέρασμα του αντίστοιχου θεωρήματος δεν ισχύει!!! 02-Mar-18

16 Όρια των αποδείξεων Μερικές πολύ απλές προτάσεις της θεωρίας αριθμών δεν έχουν αποδειχτεί ακόμα! Π.χ.. Εικασία του Goldbach: Έστω Α(x) = x άρτιος, P(x) = x πρώτος x ( [x>2 A(x)] p q P(p) P(q) p+q = x ). Κάθε άρτιος αριθμός μεγαλύτερος του 2 είναι το άθροισμα δύο πρώτων. 16

17 Και οι μεγαλύτεροι μαθηματικοί έχουν προτείνει ψευδείς εικασίες! Ο Euler έκανε την εικασία ότι εάν n>2, το άθροισμα n 1 n οστών δυνάμεων θετικών ακεραίων δεν είναι n οστή δύναμη κάποιου ακεραίου. Παρέμεινε «αληθές» για όλες τις περιπτώσεις που δοκιμάστηκαν για 200 χρόνια, χωρίς όμως να μπορεί να βρεθεί απόδειξη. Το 1966, κάποιος παρατήρησε ότι =

18 Θεωρία Συνόλων 02-Mar-18 18

19 Εισαγωγή στη θεωρία συνόλων Ένα σύνολο είναι μία δομή που αναπαριστά μία συλλογή διαφορετικών αντικειμένων (ενδεχομένως κενή) τα οποία δεν έχουν διάταξη. Η θεωρία συνόλων ασχολείται με πράξεις, σχέσεις και προτάσεις σχετικά με τα σύνολα. Τα σύνολα είναι πανταχού παρόντα στα υπολογιστικά συστήματα. Όλα τα μαθηματικά μπορούν να οριστούν με κάποια μορφή της θεωρίας συνόλων (χρησιμοποιώντας κατηγορηματικό λογισμό). 02-Mar

20 Εισαγωγή στη θεωρία συνόλων Σχεδόν οτιδήποτε μπορείτε να κάνετε με διαφορετικά αντικείμενα, μπορείτε να το κάνετε και με σύνολα αντικειμένων. Π.χ. (μιλώντας άτυπα), μπορείτε Να αναφέρεστε σε αυτά, να τα συγκρίνετε, να τα συνδυάζετε, Επίσης, μπορείτε να κάνετε με σύνολα, πράγματα που δεν μπορείτε, πιθανά, να κάνετε με συγκεκριμένα αντικείμενα: Π.χ., μπορείτε: Να ελέγξετε αν ένα σύνολο περιέχεται σε ένα άλλο Να καθορίσετε πόσα στοιχεία έχει Να τα χρησιμοποιήσετε σαν το πεδίο ορισμού μεταβλητών στον κατηγορηματικό λογισμό 02-Mar

21 Βασικοί συμβολισμοί για τα σύνολα Για τα σύνολα, θα χρησιμοποιούμε τις μεταβλητές S, T, U, Μπορούμε να συμβολίζουμε ένα σύνολο S με το να απαριθμούμε όλα τα στοιχεία του σε αγκύλες: Το σύνολο S = {a, b, c} περιέχει τρία στοιχεία, τα οποία συμβολίζονται με τα a, b, c. Επίσης, μπορούμε να ορίσουμε ένα σύνολο με βάση μία ιδιότητα P που έχουν τα στοιχεία του το {x P(x)} είναι το σύνολο όλων των x που έχουν την ιδιότητα P. 02-Mar

22 Βασικές ιδιότητες των συνόλων Τα σύνολα είναι από τη φύση τους μη διατεταγμένα: Ανεξάρτητα από το τι είναι τα στοιχεία a, b, και c, {a, b, c} = {a, c, b} = {b, a, c} = Όλα τα στοιχεία είναι διαφορετικά μεταξύ τους. Οι πολλαπλές εμφανίσεις ενός στοιχείου δεν κάνουν καμία διαφορά! Εάν a=b, τότε {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}. Πόσα στοιχεία περιλαμβάνει; 2 στοιχεία (το πολύ)! 02-Mar

23 Πολυσύνολα Υπάρχει ένα διαφορετικό μαθηματικό κατασκεύασμα το οποίο ονομάζεται πολυσύνολο, για το οποίο η προηγούμενη υπόθεση δεν ισχύει. Εάν a=b, τότε [c, a] = [c, b], αλλά [a, b, c] [a, c] [a,a,a,c] Συμβολισμός: Εάν B είναι πολυσύνολο, τότε count B (e)=πλήθος εμφανίσεων του e στο B Επομένως, count [1,2,3,3,1,3,3] (3)=4 02-Mar

24 Ορισμός της ισότητας συνόλων Δύο σύνολα είναι ίσα αν και μόνο αν περιέχουν ακριβώς τα ίδια στοιχεία. Δεν έχει σημασία πως το σύνολο έχει οριστεί: Για παράδειγμα: {1, 2, 3, 4} = {x x ακέραιος όπου x>0 και x<5 } = {x x θετικός ακέραιος του οποίου το τετράγωνο είναι μεγαλύτερο του 0 και μικρότερο του 25} 02-Mar

25 Άπειρα σύνολα Τα σύνολα μπορεί να είναι άπειρα. Σύμβολα και μερικά άπειρα σύνολα ειδικού ενδιαφέροντος: N = {1, 2, } Οι φυσικοί (Natural). Z = {, -2, -1, 0, 1, 2, } Οι ακέραιοι (Γερμανικά: Zahl=αριθμός). R = Οι πραγματικοί (Real) Q = Οι ρητοί (Quotient) Οι συμβολισμοί (N, Z, R, Q) χρησιμοποιούνται επίσης για τα παραπάνω ειδικά σύνολα. Τα άπειρα σύνολα έχουν διαφορετικά μεγέθη (!!!) Περισσότερα γι αυτό αργότερα Mar

26 Διαγράμματα Venn John Venn Mar

27 «ανήκει» x S ( το στοιχείο x ανήκει στο σύνολο S ), είναι η πρόταση που λέει ότι το αντικείμενο x είναι ένα στοιχείο/μέλος του συνόλου S. π.χ. 3 N, α {x x γράμμα του αλφάβητου} : Από το ελληνικό «στίν» Συμβολισμός: x S : ορ. (x S) Πως θα ορίζαμε την ισότητα συνόλων με βάση τον κατηγορηματικό λογισμό; 02-Mar

28 Ισότητα συνόλων Η ισότητα συνόλων ορίζεται με βάση το : Δύο σύνολα είναι ίσα αν και μόνο αν έχουν τα ίδια στοιχεία. S=T : ορ. x (x S x T) 02-Mar

29 Ένα σύνολο μπορεί να είναι κενό Υποθέστε ότι καλούμε ένα σύνολο S κενό αν και μόνο αν δεν περιέχει κανένα στοιχείο: x(x S). Καλούμαστε να αποδείξουμε ότι: xy((κενό(x) κενό(y) x=y) Ποιό είναι το νόημα της παραπάνω πρότασης; 02-Mar

30 Ένα σύνολο μπορεί να είναι κενό Θέλουμε να αποδείξουμε ότι υπάρχει το πολύ ένα κενό σύνολο. Πως αυτό μπορούμε να το αποδείξουμε τυπικά; 02-Mar

31 Υπάρχει μόνο ένα κενό σύνολο Θέλουμε να αποδείξουμε ότι: xy((κενό(x) κενό(y) x=y) Ας υποθέσουμε ότι υπάρχουν δύο σύνολα Α και Β διαφορετικά μεταξύ τους, έτσι ώστε και τα δύο να είναι κενά. Επομένως, x(x A) x(x Β) Εφόσον Α Β, θα ισχύει πως x(x Α (x Β)) x(x Β (x Α)) Η 1η πρόταση δεν μπορεί να ισχύει γιατί x(x Α). Η 2η πρόταση δεν μπορεί να ισχύει γιατί x(x Β) Αντίφαση. Επομένως υπάρχει το πολύ ένα κενό σύνολο. και επειδή υπάρχει και τουλάχιστον ένα, το κενό σύνολο είναι ένα και μοναδικό. 02-Mar

32 Το Κενό Σύνολο Είδαμε ότι υπάρχει ακριβώς ένα κενό σύνολο, επομένως θα του δώσουμε ένα ειδικό όνομα: ( το κενό σύνολο ) είναι το μοναδικό σύνολο που δεν περιέχει κανένα στοιχείο. = {} 02-Mar

33 Σχέσεις υποσυνόλου και υπερσυνόλου S T ( Το S είναι υποσύνολο του T ) σημαίνει ότι κάθε στοιχείο του S είναι επίσης και στοιχείο του T. Πως μπορούμε να ορίσουμε τη σχέση υποσυνόλου με βάση τον κατηγορηματικό λογισμό; 02-Mar

34 Σχέσεις υποσυνόλου και υπερσυνόλου S T ( Το S είναι υποσύνολο του T ) σημαίνει ότι κάθε στοιχείο του S είναι επίσης και στοιχείο του T. S T : ορ. x (x S x T) 02-Mar

35 Σχέσεις υποσυνόλου και υπερσυνόλου Τι λέτε για τα παρακάτω; S S ; S ; 02-Mar

36 Σχέσεις υποσυνόλου και υπερσυνόλου Τι λέτε για τα παρακάτω; S S ; ΝΑΙ S ; 02-Mar

37 Σχέσεις υποσυνόλου και υπερσυνόλου Τι λέτε για τα παρακάτω; S S ; ΝΑΙ S ; ΝΑΙ 02-Mar

38 Σχέσεις υποσυνόλου και υπερσυνόλου Τι λέτε για τα παρακάτω; S S ; S ; 02-Mar

39 Σχέσεις υποσυνόλου και υπερσυνόλου Τι λέτε για τα παρακάτω; S S ; ΟΧΙ S ; 02-Mar

40 Σχέσεις υποσυνόλου και υπερσυνόλου Τι λέτε για τα παρακάτω; S S ; ΟΧΙ S ; ΌΧΙ πάντα! Π.χ., {, α, β} αλλά {α, β} 02-Mar

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18

Διαβάστε περισσότερα

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017 HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/4/2016

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 16/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Mar-18

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 15/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 15-Mar-18

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen 08-Feb-18

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen Προηγούμενη

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017 HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016 HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις

HY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Συναρτήσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/2017

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/10/2016

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017 HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013

ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013 ΗΥ118 - Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2013 2 η Σειρά Ασκήσεων Λύσεις Άσκηση 2.1 [2 μονάδες] Έστω μεταβλητές και σταθερές στο σύνολο των ανθρώπων και η προτασιακή μορφή Ρ(x, y) με το νόημα "o x αγαπά

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/24/2017

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.

Διαβάστε περισσότερα

ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις

ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις HY118- ιακριτά Μαθηµατικά Πέµπτη, 31/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 01/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/16/2016

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Γ ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΚΑΤΩ ΤΩΝ 15 1/2 ΕΤΩΝ «Ευκλείδης» Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις HY8- ιακριτά Μαθηµατικά Πέµπτη, 23/03/207 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/207

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 3 η Σειρά Ασκήσεων Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω p(x) και q(x) κατηγορήματα με πεδίο ορισμού Ω με σύνολα αλήθειας Α και Β αντίστοιχα (Σύνολα αλήθειας:

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/30/2017

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 018 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. b. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Σχέσεις. ιµελής σχέση. 12 Εισαγωγή στις Σχέσεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017.

HY118- ιακριτά Μαθηµατικά. Σχέσεις. ιµελής σχέση. 12 Εισαγωγή στις Σχέσεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017. HY118- ιακριτά Μαθηµατικά Τρίτη, 21/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 19/4/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα/ Συνδυαστική Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i. Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1)

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1) Πυθαγόρειες Τριάδες Χριστίνα Ιατράκη Ημερομηνία παράδοσης -10-014 1 Εισαγωγικά Ορισμός 1.1 Πυθαγόρεια τριάδα καλείται κάθε τριάδα ακέραιων (x, y, z) που είναι μη τετριμμένη λύση της εξίσωσης Μια τέτοια

Διαβάστε περισσότερα

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a.

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a. 1. Τα θεμελιώδη αριθμητικά συστήματα Με τον όρο θεμελιώδη αριθμητικά συστήματα εννοούμε τα σύνολα N των φυσικών αριθμών, Z των ακεραίων, Q των ρητών και R των πραγματικών. Από αυτά, το σύνολο N είναι πρωτογενές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 21/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/21/2017

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», « .1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

1 Arq thc Majhmatik c Epagwg c

1 Arq thc Majhmatik c Epagwg c Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου

Διαβάστε περισσότερα

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον

Διαβάστε περισσότερα

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

of Mathematics των I.Stewart και D.Tall, Oxford University Press. Σημειώσεις του Μαθήματος ΜΕΜ 103 Θεμέλια των Μαθηματικών Βασισμένες στο βιβλίο των I.Stewart και D.Tall Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2018 Εισαγωγή Αρχίζοντας τη μελέτη των

Διαβάστε περισσότερα

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1} Αλγεβρα Ι, Χειμερινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Το [Α] συμβολίζει το φυλλάδιο ασκήσεων που θα βρείτε στην ιστοσελίδα του μαθήματος επιλέγοντας «Άλλες Ασκήσεις». 1. Πόσες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ. 6ο ΓΕΛ ΛΑΜΙΑΣ ΧΡΙΣΤΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ. 6ο ΓΕΛ ΛΑΜΙΑΣ ΧΡΙΣΤΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΜΑΘΗΜΑΤΙΚΟΣ ΣΥΝΟΛ 6ο ΓΕΛ ΛΜΙΣ ΧΡΙΣΤΟΣ ΤΡΙΝΤΦΥΛΛΟΥ ΜΘΗΜΤΙΚΟΣ ΣΥΝΟΛ Στοιχεία θεωρίας Σύνολο είναι μια συλλογή από αντικείμενα. Το σύνολο όλων των ελληνικών ποδοσφαιρικών ομάδων. Το σύνολο όλων των χωρών της Ευρώπης.

Διαβάστε περισσότερα