Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας"

Transcript

1 Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εισαγωγικό μάθημα Συστήματα μέτρησης, μετατροπές δυνάμεων, μονάδων και σφάλματα μέτρησης Εισαγωγή Η Φυσική είναι μια επιστήμη που ασχολείται με το μικρό και το μεγάλο, το παλιό και το καινούριο. Από το άτομο έως τους γαλαξίες, από τα ηλεκτρικά κυκλώματα έως την αεροδυναμική, η φυσική είναι ένα πολύ σημαντικό κομμάτι του κόσμου γύρω μας. Τα τεχνολογικά επιτεύγματα των τελευταίων αιώνων, που επέτρεψαν στον άνθρωπο να εκμεταλλευτεί το περιβάλλον προς όφελος του, να επικοινωνεί στιγμιαία με συνανθρώπους του σε απομακρυσμένα σημεία και να βγει από τον πλανήτη του, οφείλονται στη φυσική. Η φυσική αναπτύχθηκε ως μια επιστήμη βασισμένη στη παρατήρηση της φύσης και γρήγορα έγινε κατανοητό ότι ο άνθρωπος μπορούσε να εξηγήσει τους κανόνες που διέπουν τη φύση κάνοντας ένα κατάλληλο πείραμα και εξηγώντας το με μια θεωρία. Σε πολλές βέβαια περιπτώσεις, ιδιαίτερα στον τελευταίο αιώνα, κάποιοι εξαίρετοι επιστήμονες, όπως ο Αϊνστάιν, ο Χόκινγκ κ.α., πρώτα διατύπωσαν μια θεωρία και μετά από κάποιο διάστημα μπόρεσαν να επαληθευτούν αυτές οι θεωρίες με ειδικά σχεδιασμένα πειράματα. Γενικά, μπορούμε σήμερα να πούμε η θεωρία και το πείραμα ότι προχωρούν μαζί θέτοντας τα θεμέλια για τις νέες τεχνολογίες του αύριο. Περίγραμμα μαθήματος Πριν όμως περάσουμε στα βασικά στοιχεία που πρέπει να γνωρίζουμε για το μάθημα θα δούμε μια γενική περιγραφή του μαθήματος και των κεφαλαίων της Φυσικής με τα οποία θα ασχοληθούμε. Πιο συγκεκριμένα το μάθημα θα περιέχει τα εξής: 1) Εισαγωγή στην κινηματική (κίνηση σε ευθεία γραμμή και διανύσματα) ) Κίνηση βλήματος 3) Νόμοι Νεύτωνα και δυνάμεις 4) Κέντρο Μάζας Ορμή 5) Νόμος Βαρύτητας 6) Εισαγωγή στην κυματική (Εξίσωση κύματος) 7) Ηλεκτρικό φορτίο Νόμος Coulomb 8) Ρεύμα και αντίσταση 9) Ηλεκτρικά κυκλώματα 10) Εισαγωγή στη γεωμετρική οπτική (ανάκλαση διάθλαση) Επιπλέον, θα κάνουμε και κάποια επαναληπτικά μαθήματα στα οποία θα δούμε παλιά θέματα εξετάσεων αλλά και επιπλέον ασκήσεις με τις οποίες θα κατανοήσουμε καλύτερα κάποιους νόμους, κανόνες και αρχές.

2 Συστήματα μέτρησης Η εξέλιξη συνεπώς της Φυσικής βασίστηκε στη μέτρηση. Μέτρηση της χρονικής διαφοράς μεταξύ δύο γεγονότων, μέτρηση της έντασης του ρεύματος σε ένα σύρμα, μέτρηση της θερμοκρασίας του Ήλιου σε υγρή φάση, μέτρηση του μήκους κύματος του φωτός κ.α. Είναι λοιπόν πολύ σημαντικό στη Φυσική να μάθουμε να μετράμε σωστά τις ποσότητες που σχετίζονται με τους νόμους της φυσικής. Το μήκος, ο χρόνος, η πίεση κ.α. για να περιγραφούν ως φυσικές ποσότητες πρέπει να οριστεί μια μονάδα μεγέθους και με βάση αυτή να μετρήσουμε πολλαπλάσιες και υποπολλαπλάσιες τιμές. Πρέπει επίσης να κατανοήσουμε τη σημασία της ακρίβειας κατά την περιγραφή μιας τέτοιας ποσότητας και τη σημασία των σφαλμάτων κατά τη διαδικασία της μέτρησης. Για να εκφράσουμε έναν αριθμό, μια τιμή που θα μετρήσουμε για μια ποσότητα που παρατηρούμε πρέπει να γνωρίζουμε το σύστημα μέτρησης το οποίο θα χρησιμοποιήσουμε. Ο άνθρωπος καθημερινά χρησιμοποιεί στις συναλλαγές του αλλά και στο τρόπο μέτρησης το δεκαδικό. Τα στοιχεία αυτού του συστήματος είναι τα 0,1,,3,4,5,6,7,8 και 9. Όλοι οι αριθμοί που χρησιμοποιούμε αποτελούνται από αυτά τα δέκα (και μόνο αυτά) στοιχεία. Υπάρχουν όμως και άλλα συστήματα, όπως για παράδειγμα το δυαδικό, το οκταδικό και το δεκαεξαδικό. Σε αυτά τα συστήματα τα στοιχεία είναι αντίστοιχα, 8, 16. Δυαδικό: 0 και 1 Οκταδικό: 0,1,,3,4,5,6,7 και 8 Δεκαεξαδικό: 0,1,,3,4,5,6,7,8,9,a,b,c,d,e και f Οι υπολογιστές αποτελούνται από ηλεκτρικά κυκλώματα τα οποία είτε διαρρέονται από ρεύμα είτε όχι (καταστάσεις 1 και 0). Συνεπώς οι λέξεις που ένας υπολογιστής καταλαβαίνει πρέπει να μετατραπούν σε ένα δυαδικό σύστημα. Το νούμερο δύο () ο υπολογιστής δεν το καταλαβαίνει. Καταλαβαίνει όμως το 10 που για τον υπολογιστή είναι το. Ομοίως το 3 είναι το 11, το 4 το 100, το 5 το 101, το 6 το 110, το 7 111, το 8 το 1000 κ.ο.κ. Αντιστοίχως σε ένα δεκαεξαδικό σύστημα μέτρησης το a είναι η τιμή 10, το b είναι η τιμή 11, το c είναι η τιμή 1, το d είναι η τιμή 13, το e είναι η τιμή 14, το f είναι η τιμή 15, το 10 είναι η τιμή 16, το 11 είναι η τιμή 17 κ.ο.κ. Ποσότητες - μεγέθη Όταν επιθυμούμε να μετρήσουμε πειραματικά κάποιο γεγονός που παρατηρούμε στη φύση χρησιμοποιούμε κάποια ποσότητα. Οι ποσότητες αυτές είναι μετριούνται είτε με τα λεγόμενα φυσικά ή θεμελιώδη μεγέθη, είτε με τα παράγωγα μεγέθη. Τα φυσικά ή θεμελιώδη μεγέθη είναι αυτά που δεν μπορούν να οριστούν με άλλο τρόπο από άλλα θεμελιώδη μεγέθη. Τα παράγωγα μεγέθη είναι αυτά που προκύπτουν από τα θεμελιώδη με κάποιας μορφής πράξη (πολλαπλασιασμό ή και διαίρεση). Παραδείγματα θεμελιωδών μεγεθών είναι το μήκος, η μάζα και ο χρόνος, ενώ παράγωγα μεγέθη είναι ο όγκος, η ισχύς και η πυκνότητα. Μετατροπές δυνάμεων

3 Το 1971 καθορίστηκε για πρώτη φορά διεθνώς μια κοινά αποδεκτή στην επιστημονική κοινότητα βάση εφτά φυσικών ποσοτήτων (των θεμελιωδών), το System Internationale ή S.I., το οποίο είναι και γνωστό ως μετρικό. Για τις ποσότητες αυτές (χρόνος, μήκος, μάζα, θερμοκρασία, ηλεκτρικό ρεύμα κ.α.) ορίστηκαν για πρώτη φορά με απόλυτη ακρίβεια οι μονάδες. Με βάση αυτό το σύστημα προέκυψαν και οι παράγωγες μονάδες για άλλες φυσικές ποσότητες (π.χ. ισχύς watt). Οι βασικές μονάδες ορίστηκαν με ανθρωποκεντρικό τρόπο για λόγους ευκολίας (π.χ. μέτρο και όχι χιλιόμετρο). Για την περιγραφή μεγαλυτέρων μεγεθών (απόσταση δύο πόλεων) χρησιμοποιήθηκαν δυνάμεις του δεκαδικού συστήματος. Αν π.χ. αυτή η απόσταση είναι η απόσταση Αθήνας Θεσσαλονίκης τότε σίγουρα δεν είναι εύχρηστο να μιλάμε για απόσταση x ,00 m. Είναι προτιμότερο να πούμε ότι αυτή η απόσταση είναι x 5,0x10 5 m αλλά ακόμα πιο εύχρηστο να πούμε x 50 km. Τέτοιες μετατροπές δυνάμεων χρησιμοποιούνται πλέον σε πάρα πολλές επιστήμες όπου το μέγεθος που μετράμε μπορεί να είναι μικρό αλλά ταυτόχρονα σε άλλες περιπτώσεις μεγάλο (βλ. Πίνακα 1). Η επιστημονική βέβαια απεικόνιση μιας τιμής, c, ενός μεγέθους δίνεται από την παρακάτω σχέση: c=αx10 n, Όπου Α είναι: 1 A < 10, με το Α να έχει τυπικά έως 3 με 4 δεκαδικά ψηφία και n είναι ένας ακέραιος (η δύναμη). Στο παράδειγμα της απόστασης ο επιστημονικός τρόπος απεικόνισης (αυτός μάλιστα που χρησιμοποιούνε συχνά τα λογιστικά προγράμματα, όπως τα excel, origin κ.α.) είναι x 5,0x10 5 m. Πίνακας 1. Πίνακας μετατροπής δυνάμεων Τάξη Πρόθεμα Σύμβολο Τάξη Πρόθεμα Σύμβολο μεγέθους μεγέθους 10 4 Yotta Y 10-4 yocto y 10 1 Zeta Z 10-1 zepto z Exa E atto a Peta P femto f 10 1 Tera T 10-1 pico p 10 9 Giga G 10-9 nano n 10 6 Mega M 10-6 micro μ 10 3 Kilo k 10-3 milli m 10 Hector h 10 - centi c 10 1 Deka da 10-1 deci d Μετατροπές μεγεθών Με την καθιέρωση του συστήματος S.I. αντικαταστάθηκαν μονάδες που χρησιμοποιούνταν για πολλούς αιώνες ακόμα (π.χ. μνα, τάλαντο, οκά) και υπήρχαν με διάφορες μορφές σε όλη σχεδόν τη Γη. Εξαίρεση αποτελούν μονάδες του Αγγλικού συστήματος μετρήσεων οι οποίες ακόμα χρησιμοποιούνται ως βασικές μονάδες μέτρησης σε περιοχές όπως οι ΗΠΑ, το Ηνωμένο Βασίλειο και η Αυστραλία. Έτσι σε τέτοιες περιοχές αντί του εκατοστού και του μέτρου έχουμε την ίντσα, το πόδι και το

4 μίλι, αντί των βαθμών Κελσίου έχουμε τους βαθμούς Φαρενάϊτ, αντί του κιλού έχουμε τη λίβρα κ.ο.κ.. Είναι φυσικά εύκολο να μετατρέψουμε τιμές μιας ποσότητα από μια μονάδα σε άλλη αν ξέρουμε τη σχέση μετατροπής τους. Για παράδειγμα στην τεχνολογία οθονών και τηλεοράσεων είναι ευρέως διαδεδομένη η ίντσα σαν μονάδα μέτρησης ενώ στο υψόμετρο αεροπλάνων τα πόδια. 1. Για να βρούμε πόσο είναι το μέγεθος σε εκατοστά (cm) μιας απόστασης 4 ιντσών πρέπει να χρησιμοποιήσουμε το γεγονός ότι μια ίντσα είναι.54cm. Εφαρμόζοντας απλή μέθοδο των τριών είναι: 1 in.54cm 4 in ; Οπότε το αποτέλεσμα είναι x=4*.54 61cm.. Για να βρούμε πόσο είναι το υψόμετρο σε μέτρα (m) στο οποίο πετάει ένα αεροπλάνο βρισκόμενο σε πόδια (ft) πρέπει να γνωρίζουμε ότι 1 πόδι είναι 1 ίντσες. Συνεπώς: 1 ft 1 in 1x.54 cm ft ; ; Οπότε το αποτέλεσμα είναι y=1*10000in=1*10000*.54=304800cm ή y=3048m, δηλαδή περίπου 3 km. Επιπλέον, είναι δυνατόν ορισμένες ποσότητες να περιγραφούν με περισσότερες της μιας μονάδες. Π.χ. η πίεση μιας ατμόσφαιρας (1 Atm) είναι περίπου 10 5 Pa και ένα λίτρο ορίζεται και ως ένα δεκατόμετρο εις την τρίτη (1lt=10 3 dm). Συνεπώς και τα 330ml ενός φυσιολογικού αναψυκτικού είναι 0,33lt ή 0,33dm 3 ή 330cm 3. Σφάλματα μέτρησης (από σημειώσεις θεωρίας σφαλμάτων Δρ. Τσιγαρίδα Γεώργιου) Στη Φύση είναι αδύνατο να μετρηθεί η τιμή ενός μεγέθους με απόλυτη ακρίβεια. Η αβεβαιότητα στη γνώση της τιμής ενός μεγέθους, ή αλλιώς η απόκλιση της μετρούμενης τιμής του μεγέθους από την πραγματική ονομάζεται σφάλμα της μέτρησης. Τα σφάλματα μπορούν να προέλθουν είτε από ατέλειες των οργάνων είτε να οφείλονται στον ανθρώπινο παράγοντα. Για παράδειγμα όταν μετρούμε το μήκος ενός αντικειμένου με μία μετροταινία η οποία έχει ως μικρότερη υποδιαίρεση ένα χιλιοστό, δεν είναι δυνατόν να προσδιορίσουμε το μήκος με ακρίβεια καλύτερη από αυτή του ενός χιλιοστού. Ακόμη όταν μετράμε π.χ. τη διάρκεια της ταλάντωσης ενός εκκρεμούς με ένα χρονόμετρο, τότε δεν είναι δυνατόν να συγχρονίσουμε με απόλυτη ακρίβεια την έναρξη και τη λήξη των ταλαντώσεων με το πάτημα των αντίστοιχων κουμπιών στο χρονόμετρο. Όλοι αυτοί οι παράγοντες, και πολλοί άλλοι, εισάγουν σφάλμα στις μετρήσεις. Όταν η απόκλιση των μετρούμενων τιμών ενός μεγέθους από την πραγματική μεταβάλλεται κατά τυχαίο τρόπο με αποτέλεσμα η τιμή του μεγέθους να προκύπτει άλλοτε μεγαλύτερη και άλλοτε μικρότερη από την πραγματική, τότε έχουμε τυχαίο σφάλμα. Σε αντίθετη περίπτωση, δηλαδή όταν οι μετρούμενες τιμές προκύπτουν συνεχώς μεγαλύτερες ή μικρότερες της πραγματικής, τότε μιλάμε για συστηματικό σφάλμα. Μία πηγή συστηματικού σφάλματος είναι η απόκλιση του μηδενός, δηλαδή η περίπτωση στην οποία το μηδέν της κλίμακας ενός οργάνου δεν συμπίπτει με το πραγματικό μηδέν. Για

5 παράδειγμα, έστω ότι έχουμε μία ζυγαριά η οποία ακόμα και όταν δεν έχουμε τοποθετήσει κάποιο σώμα επάνω της δείχνει π.χ. μία τιμή 1 Kg. Είναι προφανές ότι οποιαδήποτε μέτρηση κάνουμε με τη ζυγαριά αυτή θα έχει απόκλιση + 1 Kg, δηλαδή για να πάρουμε τη σωστή μέτρηση θα πρέπει από όλες τις τιμές να αφαιρούμε 1 Kg. Τα συστηματικά σφάλματα μπορούν σχετικά εύκολα να εξαλειφτούν προσθέτοντας ή αφαιρώντας μία σταθερή τιμή από τις μετρήσεις που παίρνουμε κάθε φορά. Έστω ότι μετρούμε για παράδειγμα το μήκος ενός αντικειμένου και βρίσκουμε ότι είναι l =10 cm με αβεβαιότητα της τάξης του ενός χιλιοστού, δηλαδή δl =1mm = 0.1cm. Στην περίπτωση αυτή γράφουμε ότι l = (10.0 ± 0.1)cm Ο παραπάνω συμβολισμός έχει την έννοια ότι το μήκος του αντικειμένου κυμαίνεται στην περιοχή ( )cm l ( )cm ή 9.9cm l 10.1cm Γενικότερα, όταν μετρούμε την τιμή ενός μεγέθους x και βρίσκουμε μία τιμή x 0 με σφάλμα δx, τότε γράφουμε x 0 = x ± δx το οποίο έχει την έννοια ότι η τιμή του μεγέθους x κυμαίνεται στο διάστημα x 0 δx x x 0 + δx Για παράδειγμα, εάν η περίοδος ενός εκκρεμούς είναι T = 5.0 sec με σφάλμα δt = 0.1 sec τότε γράφουμε T = (5.0 ± 0.1)sec και εννοούμε ότι ( )sec T ( )sec ή 4.9sec T 5.1sec Ο λόγος που γράφουμε T = (5.0 ± 0.1)sec και όχι T = (5± 0.1)sec είναι ότι στην τιμή του μεγέθους κρατάμε τόσα δεκαδικά ψηφία όσα έχει και η τιμή του σφάλματος. Δηλαδή εάν το σφάλμα βρίσκεται στο πρώτο δεκαδικό ψηφίο τότε κρατάμε ένα δεκαδικό, εάν βρίσκεται στο δεύτερο δύο, κ.ο.κ.. Επομένως, εάν το σφάλμα ήταν δt = 0.01sec, τότε θα γράφαμε T = (5.00 ± 0.01)sec, ενώ εάν είχαμε δt = 0.001sec τότε θα γράφαμε T = (5.000 ± 0.001)sec, κλπ. Τέλος, εάν το σφάλμα ήταν δt =1sec θα γράφαμε T = (5±1)sec Σε περίπτωση που η τιμή του μεγέθους έχει περισσότερα δεκαδικά ψηφία από το σφάλμα τότε στρογγυλοποιούμε στην πλησιέστερη τιμή. Για παράδειγμα, εάν έχουμε T = 4.967sec και δ T = 0.01sec τότε γράφουμε T = (4.97 ± 0.01)sec. Οι κανόνες της στρογγυλοποίησης είναι οι εξής: α) Εάν το επόμενο ψηφίο από το τελευταίο που κρατάμε είναι μεγαλύτερο του 5 τότε αυξάνουμε το τελευταίο ψηφίο κατά μία μονάδα. Για παράδειγμα, εάν έχουμε l = (6.47 ± 0.1)cm τότε γράφουμε l = (6.5± 0.1)cm β) Εάν το επόμενο ψηφίο από το τελευταίο που κρατάμε είναι μικρότερο του 5 τότε το τελευταίο ψηφίο δεν μεταβάλλεται. Για παράδειγμα, εάν έχουμε l = (6.43± 0.1)cm τότε γράφουμε l = (6.4 ± 0.1)cm γ) Τέλος, εάν το επόμενο ψηφίο από το τελευταίο που κρατάμε είναι ίσο με 5 τότε το τελευταίο ψηφίο στρογγυλοποιείται στον πλησιέστερο άρτιο αριθμό. Για παράδειγμα, εάν έχουμε l = (6.45± 0.1)cm τότε γράφουμε l = (6.4 ± 0.1)cm (εφόσον το 4 είναι άρτιος), ενώ εάν είχαμε l = (6.55± 0.1)cm, τότε θα γράφαμε l = (6.6 ± 0.1)cm Σημαντικά ψηφία Τα ψηφία της τιμής του μεγέθους τα οποία είναι μεγαλύτερα ή ίσα του σφάλματος δηλαδή βρίσκονται αριστερά από το σφάλμα ονομάζονται σημαντικά ψηφία και αυτά είναι τα μόνα που θα πρέπει να χρησιμοποιούμε όταν γράφουμε την τιμή του μεγέθους.

6 Αντίθετα, τα ψηφία που βρίσκονται δεξιά του σφάλματος, είναι δηλαδή μικρότερα από το σφάλμα δεν είναι σημαντικά ψηφία και δεν θα πρέπει να χρησιμοποιούνται όταν γράφουμε την τιμή του μεγέθους. Παράδειγμα Εάν έχουμε l =.364cm και δ l = 0.0cm τότε τα σημαντικά ψηφία είναι τα τρία πρώτα δηλαδή το.34 και θα πρέπει να γράψουμε l = (.36 ± 0.0)cm. Αντίθετα το τελευταίο ψηφίο (το 4) δεν είναι σημαντικό και παραλείπεται. Σχετικό σφάλμα Ο λόγος του σφάλματος προς την τιμή του μεγέθους ονομάζεται σχετικό σφάλμα: δx σχ. σφάλμα = x 0 Το σχετικό σφάλμα εκφράζει την ακρίβεια της μέτρησης, δηλαδή όσο πιο μικρό είναι το σχετικό σφάλμα τόσο πιο ακριβής είναι η μέτρηση. Παράδειγμα Έστω ότι έχουμε δύο μετρήσεις α) l 1 = (10.0 ± 0.5) cm Το σχετικό σφάλμα είναι: σχ. σφάλμα = = = 0.05 ή 5% β) l = (5.0 ± 0.4) cm Το σχετικό σφάλμα είναι: σχ. σφάλμα = = = 0.08 ή 8% Επομένως η πρώτη μέτρηση είναι ακριβέστερη από τη δεύτερη αν και το απόλυτο σφάλμα είναι μεγαλύτερο. Μετάδοση σφάλματος 1. Άθροισμα και διαφορά μεγεθών με σφάλματα μέτρησης Έστω ότι μετρούμε δύο μήκη l 1 = 10.0 ± 0.5 cm και l = 8.0 ± 0.4 cm και θέλουμε να προσδιορίσουμε το άθροισμά τους l 1 + l καθώς και το σφάλμα του δ(l 1 + l ). Προφανώς έχουμε ότι l 1 + l =10.0cm+ 8.0cm =18.0cm. Αντίθετα για το σφάλμα δεν είναι σωστό να πούμε ότι δ(l 1 + l )=δl 1 +δl = 0.5cm+ 0.4cm = 0.9cm, γιατί κατ αυτόν τον τρόπο βρίσκουμε τιμή του σφάλματος μεγαλύτερη από την πραγματική. Η σωστή τιμή του σφάλματος είναι: ( δl ) + ( δ ) = ( 5 ) + ( 0. 4cm) δ( l 1 + l ) = 1 l 0. cm = 0. 5cm cm 0. 64cm 0. 6cm Δηλαδή εάν θεωρήσουμε ότι έχουμε ένα ορθογώνιο τρίγωνο με κάθετες πλευρές ίσες με τα σφάλματα της κάθε μέτρησης τότε το σφάλμα του αθροίσματος των δύο μεγεθών δίνεται από την υποτείνουσα του τριγώνου. Το ίδιο ισχύει και για τη διαφορά μεταξύ δύο μεγεθών καθώς και για περισσότερα από δύο μεγέθη.

7 . Γινόμενο μεγεθών με σφάλματα μέτρησης Όταν έχουμε γινόμενο δύο μεγεθών ο κανόνας του ορθογωνίου τριγώνου εφαρμόζεται στα σχετικά σφάλματα. Έστω ότι έχουμε ένα ορθογώνιο παραλληλόγραμμο με μήκη πλευρών: l 1 = (10.0 ± 0.5)cm και l = (6.0 ± 0.4) cm Τότε το εμβαδόν του ορθογωνίου είναι : E = l 1 l =10.0cm 6.0cm = 60cm και το σφάλμα δίνεται από τη σχέση: δe δ( l1 l ) δl 1 δl = = = + = E + l1 l l1 l δe = E = cm = 5 04cm 5cm =. Επομένως, έχουμε τελικά ότι E = (60 ± 5)cm. 3. Γενική σχέση Στη γενικότερη περίπτωση που ένα μέγεθος z εξαρτάται από δύο άλλα μεγέθη x, y μέσω μίας συνάρτησης z = f (x, y) τότε το σφάλμα στο z δίνεται από τη σχέση ϑf ϑf δz = δx + δy x y ϑ ϑ ϑf ϑf όπου και η μερική παράγωγος της f ως προς x και y αντίστοιχα. ϑx ϑy Σημείωση: Για τον υπολογισμό της μερικής παραγώγου ισχύουν οι ίδιοι κανόνες με την κανονική παραγώγιση, με τη μόνη διαφορά ότι οι μεταβλητές ως προς τις οποίες δεν παραγωγίζουμε αντιμετωπίζονται ως σταθερές.

1.5 Γνωριμία με το εργαστήριο Μετρήσεις

1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1. Το μήκος, ο χρόνος, η μάζα, η θερμοκρασία κτλ. είναι ποσότητες που τις χρησιμοποιούμε για να περιγράφουμε τα φαινόμενα. Οι ποσότητες αυτές ονομάζονται φυσικά

Διαβάστε περισσότερα

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή Φυσική και μετρήσεις Φυσική Χωρίζεται σε έξι βασικούς κλάδους: Κλασική μηχανική Θερμοδυναμική Ηλεκτρομαγνητισμός Οπτική Σχετικότητα Κβαντική μηχανική είναι

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή

Διαβάστε περισσότερα

Καλώς ήλθατε. Καλό ξεκίνημα.

Καλώς ήλθατε. Καλό ξεκίνημα. Καλώς ήλθατε. Καλό ξεκίνημα. Αν. Καθηγητής Γεώργιος Παύλος ( Φυσικός) - ρ.καρκάνης Αναστάσιος (Μηχανολόγος Μηχανικός) Με τι θα ασχοληθούμε στα πλαίσια του μαθήματος: Α. Μαθηματική θεωρία ιανυσματικά μεγέθη,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Ε Ι Σ Α Γ Ω Γ Η 1. Φ υ σ ι κ ά μ ε γ έ θ η Η Φυσική είναι η θεμελιώδης επιστήμη που εξετάζει τα φυσικά φαινόμενα που συντελούνται στο σύμπαν. Παραδείγματα φυσικών φαινομένων είναι οι κινήσεις των πλανητών,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 1: Εισαγωγή Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Φυσικά Μεγέθη Φυσικά μεγέθη είναι έννοιες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φαινομένων. Διεθνές σύστημα μονάδων S. I Το διεθνές

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Επαναληπτικά μαθήματα φυσικής 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΤΡΕΙΔΗΣ ΓΙΩΡΓΟΣ ΘΕΣΣΑΛΟΝΙΚΗ 2015 16 2 Φροντιστήρια δυαδικό Επαναληπτικά μαθήματα φυσικής 3 ΜΑΘΗΜΑ 1 Μεγέθη Μονάδες Γραφικές παραστάσεις

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

ΤΕΙ Δυτικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Περιβάλλοντος & Μηχανικών Αντιρρύπανσης Τ.Ε.

ΤΕΙ Δυτικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Περιβάλλοντος & Μηχανικών Αντιρρύπανσης Τ.Ε. «Φυσική» Υπ. Μαθήματος: Καθ. Αθαν. Γ. Τριανταφύλλου www.airlab.edu.gr ΤΕΙ Δυτικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Περιβάλλοντος & Μηχανικών Αντιρρύπανσης Τ.Ε. Ιστορία και

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ

ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ Σχολή Χημικών Μηχανικών, 2 ο εξάμηνο ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ Γιώργος Μαυρωτάς, Επ. Καθηγητής Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας, Σχολή ΧΜ, ΕΜΠ Εισαγωγή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ Συστήµατα µονάδων Για το σχηµατισµό ενός συστήµατος µονάδων είναι απαραίτητη η εκλογή ορισµένων µεγεθών που ονοµάζονται θεµελιώδη. Στις επιστήµες χρησιµοποιείται αποκλειστικά

Διαβάστε περισσότερα

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Θεωρία. 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες.

Θεωρία. 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες. Θεωρία 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες. 2.1. Τι είναι φυσικό μέγεθος; Τα φυσικά μεγέθη είναι ποσότητες που προσδιορίζουν τις διαστάσεις ενός σώματος ή ενός φυσικού

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Ένας σημαντικός χρόνος περιορισμένης

Διαβάστε περισσότερα

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ.. ΜΟΝΟΜΕΤΡΑ ΚΑΙ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ.. ΤΟ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ SI.3. ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΜΗΚΟΥΣ, ΕΜΒΑΔΟΥ, ΟΓΚΟΥ ΚΑΙ ΠΥΚΝΟΤΗΤΑΣ..4. ΜΕΤΑΒΟΛΗ ΚΑΙ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 3. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Διαβάστε περισσότερα

Κλίμακα των δυνάμεων του 10.

Κλίμακα των δυνάμεων του 10. Κλίμακα των δυνάμεων του 10. Πρόθεμα (Prefix) Σύμβολο 1000 m 10 n Αριθμητική αναπαράσταση Αμερικανική απόδοση του όρου (short scale) yotta Y 1000 8 10 24 1000000000000000000000000 septillion 1991 zetta

Διαβάστε περισσότερα

Τι μάθαμε μέχρι τώρα:

Τι μάθαμε μέχρι τώρα: Τι μάθαμε μέχρι τώρα: Η μέτρηση μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Κάθε μέτρηση έχει ΑΒΕΒΑΙΟΤΗΤΑ. Παρουσιάζοντας τη μέτρηση σύμφωνα με τη θεωρία σφαλμάτων γράφω δυο αριθμούς: x ± δx ή x ± Σσχ ή x ± %Σσχ όπου

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

Κεφάλαιο 1. Δx: απόλυτο σφάλμα του μεγέθους x. (Το Δx έχει τις ίδιες μονάδες με το x). Δx x Δx x

Κεφάλαιο 1. Δx: απόλυτο σφάλμα του μεγέθους x. (Το Δx έχει τις ίδιες μονάδες με το x). Δx x Δx x Κεφάλαιο 1 Σύνοψη Θεωρία Σφαλμάτων: Βασικές γνώσεις περί σφαλμάτων με στόχο την κατανόηση των διαφόρων πηγών σφάλματος πειραματικών μετρήσεων, του τρόπου ποσοτικής εκτίμησης της επίδρασής τους στην (αν-)ακρίβεια

Διαβάστε περισσότερα

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

Έλεγξε τις γνώσεις σου

Έλεγξε τις γνώσεις σου Έλεγξε τις γνώσεις σου ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ. (α) Να μετατρέψεις το χρόνο των 45 min που σου δόθηκε για να απαντήσεις σε αυτό το διαγώνισμα σε s. (β) Να αναφέρεις όλα τα θεμελιώδη μεγέθη του S.I. και τις

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

Φυσική για Επιστήµονες και Μηχανικούς. Εισαγωγή και Κεφάλαιο Μ1 Φυσική και µετρήσεις

Φυσική για Επιστήµονες και Μηχανικούς. Εισαγωγή και Κεφάλαιο Μ1 Φυσική και µετρήσεις Φυσική για Επιστήµονες και Μηχανικούς Εισαγωγή και Κεφάλαιο Μ1 Φυσική και µετρήσεις Φυσική Θεµελιώδης επιστήµη Ασχολείται µε τις βασικές αρχές του σύµπαντος. Αποτελεί τη βάση γι άλλες επιστήµες. Οι βασικές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΑΝΑΛΥΤΙΚΟ ΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ - 1 - ΕΡΙΕΧΟΜΕΝΑ ΕΝΟΤΗΤΑ ΘΕΜΑ Σελ. ερ. 1 ΕΙΣΑΓΩΓΗ. 1.1 Μονόμετρα και διανυσματικά μεγέθη. 4 0,5 1.2 Το Διεθνές

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

(Από το βιβλίο Γενική Χημεία των Ebbing, D. D., Gammon, S. D., Εκδόσεις Παπασωτηρίου)

(Από το βιβλίο Γενική Χημεία των Ebbing, D. D., Gammon, S. D., Εκδόσεις Παπασωτηρίου) Σύγχρονη χημεία (Από το βιβλίο Γενική Χημεία των Ebbing, D. D., Gammon, S. D., Εκδόσεις Παπασωτηρίου) Η χημεία έχει επηρεάσει και τον τρόπο της σκέψης μας για τον κόσμο που μας περιβάλλει, Για παράδειγμα,

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Με την ολοκλήρωση αυτής της άσκησης ο σπουδαστής θα πρέπει:

Με την ολοκλήρωση αυτής της άσκησης ο σπουδαστής θα πρέπει: ΑΣΚΗΣΗ 1 η ΕΚΦΡΑΣΗ ΤΩΝ ΑΝΑΛΥΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Ι. Αριθμητική (Επιστημονική γραφή των αριθμών, μετρήσεις, σφάλματα, ακρίβεια μετρήσεων, σημαντικοί αριθμοί) II. Μονάδες Σκοπός της άσκησης Με την ολοκλήρωση

Διαβάστε περισσότερα

Μερικές σκέψεις σχετικά με το αποτέλεσμα μιας μέτρησης ή παρατήρησης

Μερικές σκέψεις σχετικά με το αποτέλεσμα μιας μέτρησης ή παρατήρησης 1 ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΑΝ/ΜΙΟ ΠΑΤΡΩΝ ΣΩΤ. ΣΑΚΚΟΠΟΥΛΟΣ Μερικές σκέψεις σχετικά με το αποτέλεσμα μιας μέτρησης ή παρατήρησης (Θεωρία σφαλμάτων, Σημαντικά ψηφία) ΠΑΤΡΑ 2016 2 Εισαγωγή Στη Φυσική, όπως αυτή εκτίθεται

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. 3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ)

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. 3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ) ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 Τι είναι η Χημεία Διεθνές σύστημα μονάδων Γνωρίσματα της ύλης Δομικά σωματίδια της ύλης Με τι ασχολείται η χημεία; Χημεία είναι η επιστήμη των ουσιών, της δομής τους, των ιδιοτήτων

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ

ΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ 1. ΕΡΩΤΗΣΕΙΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ. ΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ Στις παρακάτω προτάσεις συμπληρώστε τις λέξεις που λείπουν. 1. Η μονάδα μέτρησης του μήκους είναι το. από την Ελληνική λέξη μετρώ το οποίο παριστάνεται

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 - ΟΡΓΑΝΟΛΟΓΙΑ

ΑΣΚΗΣΗ 1 - ΟΡΓΑΝΟΛΟΓΙΑ ΣΚΟΠΟΣ ΑΣΚΗΣΗ 1 - ΟΡΓΑΝΟΛΟΓΙΑ Σκοπός της εργαστηριακής άσκησης είναι η ενημέρωση και εξοικείωση με τα βασικά όργανα μέτρησης ηλεκτρικών μεγεθών, όπως το αμπερόμετρο, το βολτόμετρο, το πολύμετρο και ο παλμογράφος

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας.

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. 1. ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. α) Στην παραπάνω εικόνα οι χρωματιστοί δείκτες μας δείχνουν κάποιους αριθμούς. Συμπληρώστε τον παρακάτω

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 01 Μοντέλα Μετρήσεις Διανύσματα ΦΥΣ102 1 ΑΞΙΟΛΟΓΗΣΗ Κατ οίκον εργασίες: 0%. Τεστ

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Μέρος Α ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ i Φυσική Α Λυκείου, Μέρος Α Συγγραφή: Γεώργιος Αρχοντής, Αναπληρωτής Καθηγητής, Τμήμα Φυσικής,

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 941205 ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 2 Εισαγωγή Ευχαριστούμε που χρησιμοποιείτε την ενότητα για την έρευνα της μέτρησης. Ελπίζουμε πως το πακέτο και τα βιβλία εργασίας θα σας ικανοποιήσουν. Αν έχετε οποιεσδήποτε

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Κεφάλαιο 6 Διάδοση αβεβαιοτήτων

Κεφάλαιο 6 Διάδοση αβεβαιοτήτων Κεφάλαιο 6 Διάδοση αβεβαιοτήτων Σύνοψη Στο κεφάλαιο αυτό περιγράφεται ο τρόπος με τον οποίο μπορούμε να υπολογίσουμε την αβεβαιότητα σε μία σύνθετη μέτρηση. Αρχικά δίνονται προσεγγιστικοί τρόποι υπολογισμού

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν:

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: 15 η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2017 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: (1) (2) (3) Σέρρες 10/12/2016 Σύνολο μορίων:..... 0 ΜΕΤΡΗΣΗ ΕΙΔΙΚΗΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 4 Ορθότητα, Ακρίβεια και Θόρυβος (Accuracy, Precision and Noise) Φ. Πλέσσας

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Τελική Εξέταση Ι (Ιουνίου Εαρινό Εξάμηνο 9 Πρόβλημα Α Ένας μηχανικός, με βάση τις μετρήσεις

Διαβάστε περισσότερα

Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006

Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006 ιαλέξεις στη ΦΥΣΙΚΗ Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006 Σηµειώσεις εποπτικό υλικό για το µάθηµα ΦΥΣΙΚΗ. Τα παρακάτω είναι βασισµένα στις διαλέξεις του διδάσκοντα. Το υλικό αποτελεί

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους

ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους 11/10/2011 08:28 καθ. Τεχνολογίας Τι είναι Ηλεκτρισμός Ηλεκτρισμός είναι η κατευθυνόμενη κίνηση των ηλεκτρονίων μέσα σ ένα σώμα το οποίο χαρακτηρίζεται σαν αγωγός

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Πειράματα Φυσικής Β Γυμνασίου

Πειράματα Φυσικής Β Γυμνασίου ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β - Εισαγωγή ΕΙΣΑΓΩΓΗ 1. Πείραμα και θεωρία Πειράματα Φυσικής Β Γυμνασίου Η Φυσική είναι η επιστήμη που διαμόρφωσε και συνεχίζει

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.)

ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.) ΘΕΜΕΛΙΩΔΗ ΜΕΓΕΘΗ Προκύπτουν άμεσα. Δεν ορίζονται με τη βοήθεια άλλων μεγεθών Μήκος: έχει μονάδα μέτρησης το ΜΕΤΡΟ (m) Χρόνος: έχει μονάδα μέτρησης το ΔΕΥΤΕΡΟΛΕΠΤΟ (s ή sec) Μάζα: έχει μονάδα μέτρησης το

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:... Αρ...

ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:... Αρ... ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 16/6/2014 Αριθμητικά ΒΑΘΜΟΣ:..... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες Ολογράφως:...

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

i. ένας προβολέας πολύ μικρών διαστάσεων ii. μια επίπεδη φωτεινή επιφάνεια αποτελούμενη από πολλές λάμπες σε λειτουργία

i. ένας προβολέας πολύ μικρών διαστάσεων ii. μια επίπεδη φωτεινή επιφάνεια αποτελούμενη από πολλές λάμπες σε λειτουργία ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

Κεφάλαιο 4. Οι νόμοι της κίνησης

Κεφάλαιο 4. Οι νόμοι της κίνησης Κεφάλαιο 4 Οι νόμοι της κίνησης Οι νόμοι της κίνησης Μέχρι τώρα, περιγράψαμε την κίνηση ενός σώματος συναρτήσει της θέσης, της ταχύτητας, και της επιτάχυνσής του. Δεν λάβαμε υπόψη μας τι μπορεί να επηρεάζει

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Φυσική Β Γυμνασίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 2 Εισαγωγή 1.1 Οι φυσικές επιστήμες και η μεθοδολογία τους Φαινόμενα: Μεταβολές όπως το λιώσιμο του πάγου, η

Διαβάστε περισσότερα