LC d2 dt 2 y(t) + RC d y(t) + y(t) = x(t) (1)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LC d2 dt 2 y(t) + RC d y(t) + y(t) = x(t) (1)"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 6/5/207 Ηµεροµηνία Παράδοσης : 9/5/207 Οι ασκήσεις µε [ ] είναι bonus, +0 µονάδες η καθεµία στο ϐαθµό αυτής της σειράς ασκήσεων (δηλ. µπορείτε να πάρετε µέχρι 20/80 σε αυτή τη σειρά.) Ασκηση - Κυκλώµατα στο χώρο του Laplace Εστω το κύκλωµα του Σχήµατος, το οποίο αντιπροσωπεύει ένα ΓΧΑ σύστηµα. Αν σας δίνεται ότι η Σχήµα : Κύκλωµα RLC. διαφορική εξίσωση που το περιγράφει είναι η LC d2 dt 2 y(t) + RC d y(t) + y(t) = x(t) () dt µε x(t) την τάση εισόδου (πηγή), y(t) την τάση εξόδου (άκρα πυκνωτή), R η αντίσταση του αντιστάτη, L ο συντελεστής αυτεπαγωγής του πηνίου, και C η χωρητικότητα του πυκνωτή, τότε (αʹ) υπολογίστε τη συνάρτηση µεταφοράς H(s) του κυκλώµατος. (ϐʹ) ϐρείτε τι πρέπει να ισχύει για τις τιµές των R, L, C ώστε το σύστηµα να είναι ευσταθές. Ασκηση 2 - Αντίστροφος Μετασχ. Laplace Βρείτε τον αντίστροφο µετασχ. Laplace των παρακάτω συστηµάτων (αʹ) H(s) = (ϐʹ) H(s) = s + 2 s 2 5s + 6 s 2 2s 2 + 2s 2 (γʹ) H(s) = 2s 2 s 2 + 2s + για όλα τα πιθανά πεδία σύγκλισης. αιτιατότητα. Προσπαθήστε να την εξάγετε µε τους νόµους του Kirchhoff αν ϑέλετε :-) Χαρακτηρίστε κάθε περίπτωση ως προς την ευστάθεια και την

2 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 2 Ασκηση 3 - Μετασχ. Laplace και ΓΧΑ Συστήµατα Ενα αιτιατό ΓΧΑ σύστηµα περιγράφεται από τη συνάρτηση µεταφοράς H(s) = (s + ) s 2 + 2s + 2 (αʹ) Σχεδιάστε όλους τους πόλους και όλα τα µηδενικά της συνάρτησης. (2) (ϐʹ) Υπολογίστε την κρουστική απόκριση του συστήµατος, h(t). Απ.: h(t) = e t cos(t)u(t) (γʹ) Υπολογίστε την έξοδο του συστήµατος για είσοδο x(t) = e t. Απ.: y(t) = 2 5 et u( t) e t cos(t)u(t) e t sin(t)u(t) (δʹ) Μπορείτε να υπολογίσετε το µετασχ. Fourier του συστήµατος (δηλ. την απόκριση σε συχνότητα H(f)) µέσω της συνάρτησης µεταφοράς H(s); Αν ναι, ϐρείτε το H(f). Αν όχι, εξηγήστε. Ασκηση 4 - ιαφορικές Εξισώσεις και µετασχ. Laplace - Ι Ενα σύστηµα περιγράφεται από τη διαφορική εξίσωση d 3 d2 y(t) + 6 dt3 dt 2 y(t) + d y(t) + 6y(t) = x(t) (3) dt. Βρείτε την απόκριση µηδενικής κατάστασης για το σύστηµα αυτό, δεδοµένου ότι x(t) = e 4t u(t). ( ) Απ.: y zs (t) = 6 e t 6 e 4t 2 e 2t + 2 e 3t u(t) 2. Βρείτε την απόκριση µηδενικής εισόδου για το σύστηµα αυτό, αν για t > 0 γνωρίζετε ότι y(0 ) = (4) d dt y(0 ) = (5) d 2 dt 2 y(0 ) = (6) Απ.: y zi (t) = e t u(t) 3. Βρείτε τη συνολική έξοδο του συστήµατος όταν η είσοδος x(t) είναι αυτή του πρώτου ερωτήµατος και οι αρχικές συνθήκες είναι αυτές του δεύτερου ερωτήµατος. [ ] Ασκηση 5 - Συστήµατα Ανάδρασης στο χώρο του Laplace Εστω το σύστηµα του Σχήµατος 2. + w(t) x(t) + h (t) h 3 (t) y(t) - h 2 (t) Σχήµα 2: Σύστηµα Άσκησης 5. Τέτοια συστήµατα ονοµάζονται συστήµατα ανάδρασης - feedback systems και έχουν σπουδαίες ε- ϕαρµογές σε συστήµατα αυτοµάτου ελέγχου.

3 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 3 (αʹ) Χρησιµοποιώντας την ενδιάµεση µεταβλητή w(t), η οποία είναι έξοδος του h (t) και είσοδος του h 2 (t) και του h 3 (t) (αλλά έµµεσα λειτουργεί και ως είσοδος στο h (t)), γράψτε τις δυο σχέσεις που περιγράφουν το σύστηµα αυτό στο πεδίο του χρόνου. Στη µια εξίσωση, το αριστερό µέλος ϑα είναι w(t), και στην άλλη ϑα είναι y(t), δηλ. µε f{ } να συµβολίζει τη σχέση συνάρτησης. (ϐʹ) Μετατρέψτε αυτές τις εξισώσεις στο χώρο του Laplace. w(t) = f{x(t), h (t), h 2 (t), w(t)} (7) y(t) = f{h 3 (t), w(t)} (8) (γʹ) Απαλείψτε το W (s) από τις παραπάνω εξισώσεις, και ϐρείτε µια εξίσωση που να περιλαµβάνει µόνο τα Y (s), H (s), H 2 (s), H 3 (s), X(s). Ποιό είναι το συνολικό σύστηµα H(s) συναρτήσει των H (s), H 2 (s), H 3 (s); (δʹ) Αν τα H (s), H 2 (s), H 3 (s) δίνονται ως H (s) = H 2 (s) = H 3 (s) = χαρακτηρίστε τα ως προς την ευστάθεια και την αιτιατότητα. Απ.: H(s) = H (s) + H (s)h 2 (s) H 3(s), R{s} > s + (9), R{s} > s (0), R{s} > 2 s + 2 () (εʹ) Βρείτε το συνολικό σύστηµα H(s) για τα παραπάνω συστήµατα, και σχεδιάστε το διάγραµµα πόλων- µηδενικών του. Αποφανθείτε για το πεδίο σύγκλισής του (ϐρείτε πρώτα το πεδίο σύγκλισης του συστήµατος χωρίς το H 3 (s) και συνεχίστε µε ϐάση αυτό). (ϛʹ) Είναι το σύστηµα ευσταθές και αιτιατό ; Μόνο ευσταθές ; Μόνο αιτιατό ; (Ϲʹ) Βρείτε την κρουστική απόκριση του συστήµατος, h(t). Απ.: H(s) = s s 2 (s + 2), R{s} > 0 Απ.: h(t) = 3 4 u(t) 2 tu(t) 3 4 e 2t u(t) (ηʹ) Αν η είσοδος του συστήµατος είναι το σήµα x(t) = e t u( t), τότε µπορείτε να ϐρείτε την έξοδο Y (s) στο χώρο του Laplace; [ ] Ασκηση 6 - ιαφορικές Εξισώσεις και µετασχ. Laplace - ΙΙ Ενα αιτιατό ΓΧΑ σύστηµα µε κρουστική απόκριση h(t) έχει τις ακόλουθες ιδιότητες : (αʹ) Για είσοδο x(t) = e 2t, t, παράγει έξοδο y(t) = 6 e2t, t. (ϐʹ) Η κρουστική του απόκριση ικανοποιεί την παρακάτω διαφορική εξίσωση : µε b άγνωστη σταθερά. d dt h(t) + 2h(t) = e 4t u(t) + bu(t) (2)

4 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 4 Βρείτε τη συνάρτηση µεταφοράς του συστήµατος η οποία είναι συνεπής µε τις παραπάνω πληροφορίες. Προσέξτε ότι στο αποτέλεσµά σας δεν πρέπει να υπάρχουν άγνωστες µεταβλητές (δηλ. η σταθερά b δεν πρέπει να υπάρχει στην απάντησή σας). Στη συνέχεια υπολογίστε την κρουστική απόκριση του συστήµατος. Είναι το σύστηµα ευσταθές ; 2 ( ) Απ.: H(s) = s(s + 4), R{s} > 0, h(t) = 2 2 e 4t u(t) Ασκηση 7 - ειγµατοληψία και ιακριτά Σήµατα - Ι Θεωρήστε τα παρακάτω σήµατα x (t) = cos(2π0t) (3) x 2 (t) = cos(2π50t) (4) τα οποία δειγµατοληπτούνται µε ϱυθµό f s = 40 Hz. Βρείτε τη µαθηµατική µορφή των διακριτών σηµάτων x [n], x 2 [n]. Σχεδιάστε τα ως προς το διακριτό χρόνο n. Τι παρατηρείτε ; Εξηγήστε. Ασκηση 8 - ειγµατοληψία και ιακριτά Σήµατα ΙΙ Θεωρήστε το σήµα x a (t) = 3 cos(2π000t) + 5 sin(2π3000t) + 0 cos(2π6000t) (5) (αʹ) Ποιός είναι ο ϱυθµός Nyquist για το παραπάνω σήµα ; (ϐʹ) Εστω ότι δειγµατοληπούµε το σήµα µε ϱυθµό f s = 5000 Hz. Ποιά είναι η µαθηµατική µορφή του διακριτού σήµατος x[n] µετά τη δειγµατοληψία ; (γʹ) Ποιό είναι το σήµα συνεχούς χρόνου που µπορούµε να ανακατασκευάσουµε από τα δείγµατα του x[n]; Είναι ίδιο µε το x a (t); Γιατί ; Ασκηση 9 - Σχεδίαση χαµηλοπερατού (lowpass) ϕίλτρου - MATLAB Εργάζεστε σε µια από τις πρώτες εταιρίες κινητής τηλεφωνίας, και το πόστο σας είναι µηχανικός σχεδίασης ϕίλτρων. Ο προϊστάµενός σας συγκαλεί σύσκεψη στην οποία αποφασίζεται ότι εσείς πρέπει να αναπτύξετε και να σχεδιάσετε ένα σύστηµα µε απόκριση συχνότητας H(f) για εφαρµογές επικοινωνίας ϕωνής, το οποίο ϑα αποκόπτει τις συχνότητες µεγαλύτερες από κάποιο δοθέν f c (η οποία λέγετα συχνότητα αποκοπής - cut-off frequency) ενώ ϑα κρατά όσο γίνεται ανέπαφες τις συχνότητες µικρότερες από f c. Τέτοια συστήµατα ονοµάζονται ϕίλτρα, και για αυτήν την άσκηση ϑα αποκαλούµε έτσι το σύστηµά µας. Ο προϊστάµενός σας, που δε γνωρίζει ϑεωρία σηµάτων και συστηµάτων, σας παραδίδει την απόκριση συχνότητας H(f) που ϑέλει να ϕτιάξετε, στο Σχήµα 3, και σας αναφέρει ότι το Ϲητούµενο f c ισούται µε f c = 2000 Hz, αφού το ϕίλτρο ϑα ενσωµατωθεί σε στρατιωτικά ασύρµατα τηλεφωνικά συστήµατα, όπου το εύρος Ϲώνης επικοινωνίας - και το κόστος λειτουργίας (έχουµε κρίση! :-) ) είναι περιορισµένο. (αʹ) Αποδείξτε του ότι η κρουστική απόκριση h(t) του Ϲητούµενου ϕίλτρου είναι άπειρης διάρκειας και µη-αιτιατή, µε αποτέλεσµα το ϕίλτρο που σας Ϲήτησε να µην είναι υλοποιήσιµο στην πράξη. (ϐʹ) Αφού τον πείσατε για την ορθότητα του παραπάνω ερωτήµατος, σας αναθέτει να υλοποιήσετε ένα ϕίλτρο που να πλησιάζει όσο γίνεται αυτό που σας Ϲήτησε αρχικά, και να είναι υλοποιήσιµο. Στην προσπάθειά σας αυτή, ένας µαθηµατικός ϕίλος σας αναφέρει ότι έχει υπόψη του µια συνάρτηση η οποία να πλησιάζει το Ϲητούµενο ϕίλτρο σας, και την οποία σχεδιάζει πρόχειρα στο χαρτί, όπως στο Σχήµα 4. Η συνάρτηση ονοµάζεται συνάρτηση Butterworth.

5 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 5 H(f) -f c 0 f c Σχήµα 3: Φίλτρο H(f) που ϑέλει ο προϊστάµενος. f H(f) 2 /2 -f c 0 f c f Σχήµα 4: Συνάρτηση Butterworth. Μη έχοντας καλύτερη εναλλακτική, του Ϲητάτε να σας δώσει τη µαθηµατική περιγραφή της συνάρτησης. Σας δίνει µια περιγραφή στο χώρο της συχνότητας που ϐρήκε σε κάποιο µαθηµατικό εγχειρίδιο, ως H(f) 2 = + ( j2πf j2πf c ) 2N (6) µε N την τάξη της συνάρτησης, όπως σας ανέφερε. Μετατρέψτε τη συνάρτηση αυτή στο χώρο του µετασχ. Laplace, ϑέτοντας s = j2πf. (γʹ) Θέλετε να µελετήσετε τη συµπεριφορά του ϕίλτρου - όπως το ονοµάζετε πλέον - Butterworth, για να την κατανοήσετε καλύτερα. Βρείτε και σχεδιάστε τους πόλους του H(s) 2 στο s-επίπεδο. 2k+N jπ Απ.: s k = 2πf c e 2N, k = 0,, 2,, 2N (δʹ) Γνωρίζετε από τη ϑεωρία σας ότι επειδή το ϕίλτρο σας είναι πραγµατικό σήµα στο χρόνο, ϑα ισχύει H(f) 2 = H(f)H (f) = H(f)H( f) = H(s)H( s) s=j2πf (7) Επιλέξτε από τους πόλους που σχεδιάσατε ένα υποσύνολο πόλων ώστε το σύστηµα που ϑα προκύψει από αυτά να είναι ευσταθές και αιτιατό. Προσέξτε ότι αν s p είναι ένας πόλος του H(s), τότε το s p είναι πόλος του H( s). (εʹ) Προσέξτε επίσης ότι H(s)H( s) s=0 =. Υπολογίστε το H(s) για N = και N = 2. Απ.: H N= (s) = s + 2πf c, H N=2 (s) = (s 2πf c e j3π/4 )(s 2πf c e j5π/4 ) (ϛʹ) Βρείτε τη διαφορική εξίσωση τρίτης τάξης που περιγράφει ένα ϕίλτρο Butterworth µε συχνότητα αποκοπής f c = 2π Hz.

6 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 6 Απ.: d 3 d2 y(t) + 2 dt3 dt 2 y(t) + 2 d y(t) + y(t) = x(t) dt (Ϲʹ) Υλοποιήστε στο MATLAB την απόκριση ϕάσµατος H(f) του ϕίλτρου για f c = 2000 Hz, δειγµατοληπτώντας έναν άξονα συχνοτήτων [ 8000, 8000] ανά Df = Hz, για N = 6, N = 6, και N = 46. Η εντολή plot ϑα σας δώσει, ως γνωστόν, τη γραφική παράσταση. Χρησιµοποιήστε την εντολή hold on για να τυπώσετε το ένα πάνω στο άλλο, και να παραδώσετε µαζί εκτυπωµένα τα ϕίλτρα σας. Η συνάρτηση legend ϑα σας ϐοηθήσει να κάνετε το γράφηµά σας πιο περιγραφικό. Περιγράψτε τι επιρροή έχει η τάξη N του ϕίλτρου στο ϕάσµα πλάτους του γενικά, και γύρω από τη συχνότητα f c ειδικά. (ηʹ) Προτού παραδώσετε το ϕίλτρο σας στον προϊστάµενό σας ώστε να υλοποιηθεί σε κύκλωµα, ϑέλετε να ϐεβαιωθείτε ότι λειτουργεί όπως πρέπει, εξοµοιώνοντάς το στο MATLAB και ϐάζοντας ως είσοδο µια τυπική στρατιωτική διαταγή, δωρεά του Υπουργείου Άµυνας. Θα τη ϐρείτε στο αρχείο military.wav, στο site του µαθήµατος. Φορτώστε το αρχείο στο MATLAB µε τη - γνωστή πια - εντολή wavread. Η συνάρτηση butter υλοποιεί ένα χαµηλοπερατό ϕίλτρο Butterworth µε τάξη N την οποία παρέχετε εσείς ως όρισµα, όπως και τη συχνότητα αποκοπής f c, και επιστρέφει τα µηδενικά, τους πόλους, και το κέρδος (δηλ. τη σταθερά του αριθµητή) του ϕίλτρου H(s). Με άλλα λόγια, δε µας δίνει απευθείας τη µορφή του H(s), αλλά µας δίνει ό,τι χρειαζόµαστε για να το ϕτιάξουµε. Τα παραπάνω γίνονται µε τις εντολές f = 2000; N = 8; [z, p, k] = butter(n, 2*pi*f, s ); όπου το όρισµα s δηλώνει στη συνάρτηση ότι το ϕίλτρο µας αντιστοιχεί σε σήµα h(t) συνεχούς χρόνου. (ϑʹ) Στη συνέχεια, πρέπει από τους πόλους, τα µηδενικά, και το κέρδος, να γράψουµε το ϕίλτρο ως λόγο πολυωνύµων H(s) = N(s)/D(s) ώστε να το χρησιµοποιήσουµε. Αυτό γίνεται εύκολα ως [B, A] = zp2tf(z, p, k); όπου η συνάρτηση zp2tf, που είναι συντοµογραφία για τη ϕράση Zeros+Poles to Transfer Function, µετατρέπει τα µηδενικά, τους πόλους, και το κέρδος, σε ένα λόγο πολυωνύµων του s, που ϕυσικά δεν είναι άλλος από τη συνάρτηση µεταφοράς H(s). Η µεταβλητή B περιέχει τους συντελεστές του s-πολυωνύµου του αριθµητή, ενώ η µεταβλητή A τους αντίστοιχους του παρονοµαστή. (ιʹ) είτε την απόκριση συχνότητας H(f) του ϕίλτρου σας µε χρήση των εντολών W = 2*pi*[-5000:5000]; [H] = freqs(b, A, W); subplot(2); plot(w, abs(h)); xlabel( Frequency (Hz) ); title( Magnitude Spectrum ); grid; subplot(22); plot(w, angle(h)); xlabel( Frequency (Hz) ); title( Phase Spectrum ); grid; Είναι το ϕάσµα πλάτους όπως περιµένατε να είναι ; (ιαʹ) Οµως ο υπολογιστής µας είναι ψηφιακός, και το σήµα military.wav που έχουµε είναι ψηφιακό. Πρέπει λοιπόν να µετατρέψουµε το ϕίλτρο H(s) που έχουµε σε µορφή συντελεστών s-πολυωνύµου αριθµητή και παρονοµαστή σε ένα ψηφιακό αντίστοιχό του, και να το χρησιµοποιήσουµε επάνω στο σήµα µας. Ευτυχώς για µας, κάθε αναλογικό ϕίλτρο µπορεί να µετατραπεί σε ψηφιακό (και

7 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 7 ακριβέστερα, σε διακριτού χρόνου), µε πολύ απλές τεχνικές, εκ των οποίων η απλούστερη ονοµάζεται impulse invariance 2, και την οποία το MATLAB έχει έτοιµη. [digital_num, digital_den] = impinvar(b, A, fs); Πλέον στις µεταβλητές digital_num και digital_den έχουµε τους συντελεστές ενός ψηφιακού ϕίλτρου Butterworth H d (s) (που δεν περιγράφεται πλέον στο χώρο του s, δηλ. του Laplace, αλλά χάριν ευκολίας ας διατηρήσουµε το συµβολισµό). (ιϐʹ) Ας χρησιµοποιήσουµε τη συνάρτηση filter, η οποία συντάσσεται ως y = filter(num, Den, x); µε x το σήµα εισόδου, και Num, Den τον αριθµητή και τον παρονοµαστή του ϕίλτρου H d (s), αντίστοιχα, στη µορφή συντελεστών πολυωνύµου όπως σας επιστρέφονται από την impinvar. Εκτελέστε την εντολή, ακούστε το αποτέλεσµα µε την εντολή soundsc(y, fs); και σχολιάστε το αποτέλεσµα σε σχέση µε το αρχικό σήµα. Πώς ϑα χαρακτηρίζατε την ποιότητα του σήµατος εξόδου σε σχέση µε το αρχικό ; (ιγʹ) Παραδώστε ένα plot του τελικού σήµατος, παρέα µε το αρχικό σήµα. Παραδώστε κώδικα MATLAB που εκτελεί το ϕιλτράρισµα επάνω στο σήµα που σας δίνεται, όποια plots και κώδικα σας Ϲητούνται στα υποερωτήµατα, καθώς και τις απαντήσεις στις ϑεωρητικές ερωτήσεις σε ξεχωριστό χαρτί. [ ] Ασκηση 0 - Ασύρµατη Μετάδοση εδοµένων - MATLAB Εστω ότι ϑέλουµε να µεταδώσουµε ένα σήµα της µορφής x(t) = cos(2πf 0 t) (8) µέσα από ένα ασύρµατο κανάλι. Ως εκ τόυτου, το σήµα στο δέκτη ϑα έχει επηρεαστεί από το ϕαινόµενο πολλαπλών διαδροµών (multipath) 3, καθώς κι από το ϕαινόµενο Doppler. Για λόγους απλότητας, έστω ότι οι πιθανές διαδροµές είναι δυο, και έστω ότι ο ποµπός είναι κινούµενος (όπως το κινητό σας τηλέφωνο µέσα σε ένα αυτοκίνητο), οπότε και συµβαίνει µια µετατόπιση Doppler στη συχνότητα. Ας υποθέσουµε ότι ο δέκτης λαµβάνει το σήµα ( r(t) = a 0 cos 2π(f 0 v) ( t L 0 c ) ) + a cos (2π(f 0 v) ( t L ) ) (9) c µε 0 a i η εξασθένιση του πλάτους των σηµάτων, L i οι αποστάσεις που διανύει το σήµα από τον ποµπό στο δέκτη, c = m/s η ταχύτητα διάδοσης του σήµατος, και v η µετατόπιση συχνότητας λόγω του ϕαινοµένου Doppler. (αʹ) Θεωρήστε ότι f 0 = 2000 Hz, v = 50 Hz, a 0 =, a = 0.5, και L 0 = L = 0 4 µέτρα. Θέλουµε να σχεδιάσουµε το σήµα στο MATLAB, για διάρκεια T = 0. s. Για να το αναπαραστήσουµε, έστω ότι τµηµατοποιούµε τον άξονα του χρόνου ανά Dt = /0000 s. Άρα στο MATLAB: Fs = 0000; Dt = /Fs; T = 0.; t = 0:Dt:T; 2 Λεπτοµέρειες στο ΗΥ :-) 3 Οπως καταλαβαίνετε, ένα σήµα στον ασύρµατο χώρο δεν ακολουθεί ευθεία πορεία προς το δέκτη αλλά διαδίδεται στο χώρο, ανακλάται σε τοίχους, κτήρια, κλπ, ενώ επίσης εξασθενεί το πλάτος του. Ο δέκτης λαµβάνει ένα άθροισµα τέτοιων σηµάτων.

8 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 8 Συµπληρώστε τις υπόλοιπες αρχικοποιήσεις, ορίστε το σήµα ως r και κάντε plot(t,r) το σήµα στο MATLAB. (ϐʹ) Χρησιµοποιώντας το γνωστό κώδικα για το µετασχ. Fourier (δίνεται πλέον ως συνάρτηση στο site του µαθήµατος - ctft, για δική σας ευκολία 4 ), αναλύστε το σήµα σας στο εύρος συχνοτήτων [ 5000, 5000] Hz. Επιλέξτε ανάλυση Hz, δηλ. Df = ; f = -5000:Df:5000; Επιλέξτε τον Data Cursor για να ϐρείτε τη συχνότητα των δυο ισχυρών κορυφών στο ϕάσµα πλάτους. Ποιά είναι η συχνότητα που ϐρήκατε ; Συµφωνεί µε τη συχνότητα που έχετε ϑεωρητικά ; (γʹ) Θεωρήστε την εξής περίπτωση : έστω ότι η συχνότητα f 0 παραµένει στα 2 khz, αλλά οι υπόλοιπες παράµετροι είναι τυχαίες, ώστε να προσοµοιώσουµε µια πιο ϱεαλιστική κατάσταση, όπου αυτές οι παράµετροι είναι µη προβλέψιµες (αν και σχετίζονται µε κάποιο τρόπο). Θεωρήστε λοιπόν ξανά το σήµα µε ( r(t) = a 0 cos 2π(f 0 v) ( t L 0 c v = 50η L 0 = 000η ) ) + a cos (2π(f 0 v) ( t L ) ) (20) c L = 0000η a 0 = η a = a 0 /0 και το η παραπάνω αντιπροσωπεύει τυχαία µεταβλητή οµοιόµορφα κατανεµηµένη στο [0, ]. Η συνάρτηση rand του MATLAB παράγει τυχαίους αριθµούς µε οµοιόµορφη κατανοµή στο [0, ]. Γράψτε doc rand για να δείτε το documentation της και να δείτε πως συντάσσεται. ηµιουργήστε 0 διαφορετικά σήµατα r(t) σε ένα for loop και προσθέστε τα µεταξύ τους, για να προσοµοιώσετε µια ακραία - αλλά ϱεαλιστική - κατάσταση µετάδοσης. Τυπώστε το σήµα στο χρόνο, για να παρατηρήσετε τα συσσωρευτικά ϕαινόµενα multipath και Doppler. Ο παρακάτω κώδικας ϑα σας ϐοηθήσει : N = 0; r = zeros(n, length(t)); % We want 0 signals % Memory allocation for i = :N eta = % INSERT CODE HERE u = % INSERT CODE HERE L0 = % INSERT CODE HERE L = % INSERT CODE HERE a0 = % INSERT CODE HERE a = % INSERT CODE HERE r(i,:) = % INSERT CODE HERE end r_tot = sum(r,); 4 Γράψτε doc ctft για να δείτε πως συντάσσεται.

9 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 9 (δʹ) Ελέγξτε το ϕάσµα πλάτους του τελικού σήµατος που παράξατε, µε τη χρήση της συνάρτησης ctft. Μπορεί κανείς να ανακτήσει µε σχετική ακρίβεια τη συχνότητα του σήµατος εκποµπής, x(t); Παραδώστε κώδικα MATLAB για κάθε υποερώτηµα όπου Ϲητείται. Απαντήστε σε σχόλια µέσα στον κώδικα MATLAB όποιες ερωτήσεις όπου Ϲητούνται. [ ] Ασκηση - Φιλτράρισµα - MATLAB Γνωρίζετε το περίφηµο πλέον Ϲεύγος µετασχηµατισµού Fourier ( t ) Arect AT sinc(ft ) (2) T Στην Άσκηση της 5ης σειράς ασκήσεων είδατε την επιρροή του τετραγωνικού παλµού στο χώρο του χρόνου, και πως η διάρκειά του επηρεάζει το χώρο της συχνότητας. Θα ήταν ενδιαφέρον να δούµε τη σχέση αυτή αντίστροφα, δηλ. µε τον τετραγωνικό παλµό στο πεδίο της συχνότητας. Ας ϑεωρήσουµε λοιπόν τον τετραγωνικό παλµό στο χώρο της συχνότητας ως ( f ) H(f) = rect T και ας τον ϑεωρήσουµε ως ένα σύστηµα, που µπορεί να δέχεται εισόδους και να παράγει εξόδους. Προφανώς, λόγω της ιδιότητας της δυικότητας, η έκφραση του συστήµατος - δηλ. η κρουστική απόκριση - στο χώρο του χρόνου ϑα είναι h(t) = T sinc(t t) (23) Ο τετραγωνικός παλµός ϑα λειτουργήσει ως συχνοτικό ϕίλτρο, το οποίο ϑα επιτρέπει τη διέλευση των συχνοτήτων που ϐρίσκονται εντός του διαστήµατος που είναι µη µηδενικός. Το πλάτος αυτών των συχνοτήτων ϑα είναι µοναδιαίο. Επίσης, ϑα αποκόπτει τις συχνότητες που ϑα ϐρίσκονται εκτός αυτού του διαστήµατος. Γιατί όµως ϑα έχει αυτή τη συµπεριφορά ; Γιατί όπως ξέρετε (ΠΛΕΟΝ), η σχέση εισόδου-εξόδου ενός συστήµατος στο χώρο της συχνότητας εκφράζεται µε τη σχέση του γινοµένου των µετασχηµατισµών Fourier της εισόδου και του συστήµατος. Άρα στην περίπτωσή µας, αφού ο τετραγωνικός παλµός έχει µοναδιαίο πλάτος στο διάστηµα f [ T/2, T/2] (στη συχνότητα δηλαδή!), η έξοδος στο χώρο του µετασχ. Fourier για κάθε είσοδο ϑα είναι. (22) Y (f) = X(f)H(f) = { X(f), f T 2 0, f > T 2 (24) Ας δοκιµάσουµε το νέο ϕίλτρο µας. (αʹ) Υλοποιήστε στο MATLAB ένα σήµα ως άθροισµα από τρια ηµίτονα, µε συχνότητες f = 200, f 2 = 600, f 3 = 750 Hz, µε πλάτη και ϕάσεις της επιλογής σας. Σας δίνονται οι εντολές : Dt = 0.000; t = -:Dt:; Df = ; f = -500:500; f = 200; f2 = 600; f3 = 750; A = % INSERT CODE HERE A2 = % INSERT CODE HERE A3 = % INSERT CODE HERE phi = % INSERT CODE HERE phi2 = % INSERT CODE HERE phi3 = % INSERT CODE HERE x = [A A2 A3]*cos(2*pi*[f f2 f3] *t + [phi phi2 phi3] *ones(size(t)));

10 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων 0 (ϐʹ) Τυπώστε και παραδώστε τα τρια γραφήµατα που σας επιστρέφει η συνάρτηση ctft (την οποία κατε- ϐάζετε από το site του µαθήµατος) για το σήµα x. Γράψτε doc ctft για να δείτε τη σύνταξη. Είναι ίδιο µε αυτό που ϑεωρητικά αναµένατε ; (αν εξαιρέσετε τα σφάλµατα στα πλάτη του µετασχηµατισµού) (γʹ) Υλοποιήστε το ϕίλτρο σας στο χρόνο, δηλ. υλοποιήστε την κρουστική απόκριση h(t). Το MATLAB έχει έτοιµη συνάρτηση sinc. Για να την υλοποιήσετε, χρειάζεστε την παράµετρο T : i. Βρείτε στο χαρτί και ορίστε την παράµετρο T να είναι τέτοια ώστε αν δοθεί στο σύστηµα η είσοδος x που δηµιουργήσατε, να µένει στην έξοδο µόνο το ηµίτονο των 200 Hz. Εφαρµόστε το ϕίλτρο στο σήµα σας µε χρήση της συνάρτησης conv, που όπως ϑυµάστε, πραγµατοποιεί τη συνέλιξη µεταξύ των δυο σηµάτων που δέχεται ως όρισµα. Θυµίζεται ότι για σήµατα συνεχούς χρόνου η συνέλιξη υλοποιείται ως y = Dt*conv(x,h);. Τυπώστε και παραδώστε τα γραφήµατα της εξόδου y, µε χρήση της ctft. Ακούστε το αποτέλεσµα µε την εντολή soundsc(y,/dt);. ii. Επαναλάβατε όλα τα παραπάνω µε T τέτοιο ώστε να µένουν στην έξοδο µόνο τα ηµίτονα των 200 και 600 Hz. iii. Επαναλάβατε όλα τα παραπάνω µε T τέτοιο ώστε να µένουν όλα τα ηµίτονα στην έξοδο. iv. Επαναλάβατε όλα τα παραπάνω µε T τέτοιο ώστε να µη µένει κανένα ηµίτονο στην έξοδο! Παρατηρείτε κάτι περίεργο στο ϕάσµα πλάτους ; Εξηγήστε, προσέχοντας την κλίµακα πλάτους του µετασχηµατισµού. (δʹ) Υλοποιήστε το ϕίλτρο σας στη συχνότητα, δηλ. αντι να κάνετε συνέλιξη στο χρόνο υλοποιήστε το ισοδύναµό της στη συχνότητα, δηλ. το γινόµενο των µετασχηµατισµών Fourier! Η συνάρτηση ctft επιστρέφει ως όρισµα εξόδου το µετασχηµατισµό Fourier του σήµατος που της δίνετε. Χρησιµοποιήστε τον τελεστή.* του MATLAB για να υλοποιήσετε το γινόµενο των µετασχηµατισµών. Παραδώστε µόνο τον κώδικα που υλοποιεί το ϕιλτράρισµα στη συχνότητα για κάθε περίπτωση από τις παραπάνω. Παραδώστε κώδικα MATLAB που υλοποιεί τα ερωτήµατα παραπάνω, όποια plots σας Ϲητούνται στα υποερωτήµατα, καθώς και τις απαντήσεις στις ϑεωρητικές ερωτήσεις σε ξεχωριστό χαρτί ή σε σχόλια στον κώδικα MATLAB. Ασκηση 2 - ειγµατοληψία στο MATLAB Η δειγµατοληψία στο MATLAB είναι πολύ απλή υπόθεση - ουσιαστικά σε όλες τις ασκήσεις MATLAB που κάνατε ως τώρα, χρησιµοποιούσατε δειγµατοληψία χωρίς να το ξέρετε! Για παράδειγµα, ένας άξονας χρόνου της µορφής t = 0:0.00:; σηµαίνει ότι δειγµατοληπτείτε το συνεχές διάστηµα [0, ] µε ϱυθµό f s = /0.00 = 000 Hz. Φροντί- Ϲαµε εµείς για σας στις προηγούµενες σειρές ασκήσεων ώστε η συχνότητα δειγµατοληψίας να είναι η κατάλληλη για τα παραδείγµατα που λύνατε. Τώρα ϑα αναλάβετε εσείς τη διαδικασία αυτή, και ϑα δείτε τι αποτελέσµατα έχει µια δειγµατοληψία που δεν υπακούει στο ϑεώρηµα του Shannon. (αʹ) Εστω µια συχνότητα δειγµατοληψίας f s = 2000 Hz, σταθερή σε όλη την άσκηση. Άρα µε αυτή τη συχνότητα µπορούµε να αναπαραστήσουµε συχνότητες µέχρι και 000 Hz χωρίς aliasing. (ϐʹ) ειγµατοληπτήστε µε αυτή τη συχνότητα δειγµατοληψίας το συνεχές διάστηµα [0, 0.05]. (γʹ) ηµιουργήστε ένα ηµίτονο των 200 Hz σε αυτό το διάστηµα. (δʹ) Τυπώστε το δειγµατοληπτηµένο σήµα µε την εντολή stem, η οποία λειτουργεί ακριβώς όπως η plot. Παραδώστε τη γραφική παράσταση. (εʹ) Ορίστε έναν άξονα f από -fs/2 ώς fs/2 για να αναλύσετε το σήµα σας στο χώρο της συχνότητας. Το ϐήµα ανάλυσής σας ϑα είναι Df = 0. Hz.

11 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εβδοµη Σειρά Ασκήσεων (ϛʹ) Χρησιµοποιήστε τη συνάρτηση ctft (την οποία κατεβάζετε από το site του µαθήµατος) για να ελέγξετε το ϕάσµα πλάτους του. Είναι το συχνοτικό του περιεχόµενο σωστό (εξαιρουµένων των τιµών του ϕάσµατος πλάτους); (Ϲʹ) ηµιουργήστε ένα ηµίτονο των 200 Hz σε αυτό το διάστηµα. (ηʹ) Τυπώστε το δειγµατοληπτηµένο σήµα µε την εντολή stem. Παραδώστε τη γραφική παράσταση. (ϑʹ) Χρησιµοποιήστε τη συνάρτηση ctft για να ελέγξετε το ϕάσµα πλάτους του. Είναι το συχνοτικό του περιεχόµενο σωστό (ξανά εξαιρουµένων των τιµών του ϕάσµατος πλάτους); Αν ναι, γιατί ; Αν όχι, γιατί ; Παραδώστε κώδικα MATLAB και όποια plots σας Ϲητούνται στα υποερωτήµατα, καθώς και τις απαντήσεις στις ϑεωρητικές ερωτήσεις σε ξεχωριστό χαρτί ή σε σχόλια µέσα στον κώδικα MATLAB.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/4/206

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 208-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 6/4/209

Διαβάστε περισσότερα

d 2 dt 2 y(t) + d y(t) 2y(t) = x(t) (1)

d 2 dt 2 y(t) + d y(t) 2y(t) = x(t) (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εκτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 28/4/2018

Διαβάστε περισσότερα

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0

Διαβάστε περισσότερα

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.5/10.0 Θέµα 1ο - 5

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :

Διαβάστε περισσότερα

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 8//09

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα

Διαβάστε περισσότερα

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ιάρκεια : 3 ώρες

Διαβάστε περισσότερα

δ[n kp ], k Z (1) 1 cos πn, N 1 n N 1 + N 2 2N

δ[n kp ], k Z (1) 1 cos πn, N 1 n N 1 + N 2 2N ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2015 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τέταρτο Εργαστήριο - Ηµεροµηνία : 27/11/2015 Σηµείωση

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - Σχόλια ιάρκεια : 3 ώρες Ηµεροµηνία

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

P x = X k 2 (2) = = p = 78% (5)

P x = X k 2 (2) = = p = 78% (5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εξέταση Προόδου - Λύσεις Θέµα - Βαθµός : 5 Ενα πραγµατικό

Διαβάστε περισσότερα

z(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6)

z(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 18/2/216

Διαβάστε περισσότερα

x[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n +

x[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n + ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 6 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης : //6 Ηµεροµηνία

Διαβάστε περισσότερα

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1)

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 16/3/017

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Laplace. Εστω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων - Bonus Ασκήσεις Ηµεροµηνία

Διαβάστε περισσότερα

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Επαναληπτικά Θέµατα. Βρείτε το

Διαβάστε περισσότερα

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2)

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2017 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τρίτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

y[n] = f(x[n], w[n]) (1) w[n] = f(x[n], y[n]) (2)

y[n] = f(x[n], w[n]) (1) w[n] = f(x[n], y[n]) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τέταρτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε

Διαβάστε περισσότερα

y[n] = x[n] + αx[n M], a < 1 (1) y[n] + αy[n M] = x[n], a < 1 (2)

y[n] = x[n] + αx[n M], a < 1 (1) y[n] + αy[n M] = x[n], a < 1 (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2018 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τρίτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

x(t) 2 dt X(f) 2 df T d B w 1

x(t) 2 dt X(f) 2 df T d B w 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2)

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τρίτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

0 2j e jπt e j2πkt dt (3)

0 2j e jπt e j2πkt dt (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

x(t) = e 2t u(t) (4) y(t) = e t u( t) (5)

x(t) = e 2t u(t) (4) y(t) = e t u( t) (5) Ηµεροµηνία Ανάθεσης : 17/5/2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2 Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου

Διαβάστε περισσότερα

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Ασκηση. αʹ Γραµµικό: Είναι y = y = Τρίτη Σειρά Ασκήσεων

Διαβάστε περισσότερα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Συνέλιξη και Συστήµατα Σε αυτό

Διαβάστε περισσότερα

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Εστω το σήµα xt

Διαβάστε περισσότερα

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το

Διαβάστε περισσότερα

e (4+j2πf)t dt (5) (0 1)

e (4+j2πf)t dt (5) (0 1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία

Διαβάστε περισσότερα

x 1 [n] = 0, αλλού x[n]e jωn X(e jω ) =

x 1 [n] = 0, αλλού x[n]e jωn X(e jω ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

H ap (z) = z m a 1 az m (1)

H ap (z) = z m a 1 az m (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο - Ηµεροµηνία : 2/2/206 Σηµείωση : Για

Διαβάστε περισσότερα

X 1 = X1 = 1 (1) X 3 = X3 = 1 (2) X k e j2πk 1 2 t = k

X 1 = X1 = 1 (1) X 3 = X3 = 1 (2) X k e j2πk 1 2 t = k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση (i) Είναι T

Διαβάστε περισσότερα

ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς

ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΔΙΑΛΕΞΗ 16 Η Μετασχηματισμός Laplace Ο Μετασχηματισμός Laplace (review) Ο Μετασχηματισμός Laplace (review) Ορισμός Μετασχ. Laplace X s = + x t e st dt (γ )

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5)

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5) Κεφάλαιο 7 Συστήματα στο χώρο του Laplace 7. Εισαγωγή Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας

Διαβάστε περισσότερα

A k s s k. H c (s) = H(z) = 1 e s kt dz 1

A k s s k. H c (s) = H(z) = 1 e s kt dz 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 208 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

H ap (z) = z m a 1 az m (1)

H ap (z) = z m a 1 az m (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 207 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

T 2 Tsinc2( ft e j2πf3t

T 2 Tsinc2( ft e j2πf3t ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Fourier. Απλός

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

ΓΧΑ σύστημα h(t), H(s)

ΓΧΑ σύστημα h(t), H(s) Κεφάλαιο Συστήματα στο χώρο του Laplace Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων από το μετασχ.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Σημάτων Άσκηση 3η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο

Διαβάστε περισσότερα

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΤΕΙ ΠΕΙΡΑΙΑ -ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ ΧΕΙΜΕΡΙΝΟ 2017-18 ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1. ΕΥΑΙΣΘΗΣΙΑ Ενα κύκλωµα, το οποίο κάνει µια συγκεκριµένη λειτουργία εκφραζόµενη

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 15/3/016

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

f s > 2B, (9.1) T s < 1 2B (9.2) f s > 2B (9.3) x(t) X(f) X(0)

f s > 2B, (9.1) T s < 1 2B (9.2) f s > 2B (9.3) x(t) X(f) X(0) Κεφάλαιο 9 Δειγματοληψία 9.1 Εισαγωγή Οι περισσότερες μετρήσιμες φυσικές διαδικασίες που συμβαίνουν στον κόσμο μας είναι συνεχούς χρόνου, και συνήθως αναλογικές. Από την ηλιακή ακτινοβολία, την ανθρώπινη

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ ΣΤΗΑ ΨΕΣ -3 4/4/3 : πµ ΑΝΤΙΚΕΙΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήµατος ΨΕΣ Η Επεξεργασία Σήµατος µέσω της ψηφιοποίησής του και της επεξεργασίας µε ηλεκτρονικό υπολογιστή ή ειδικά ολοκληρωµένα κυκλώµατα

Διαβάστε περισσότερα

= 1 E x. f(t)x n (t)dt, n = 1, 2,, N (2) = 0, i = 1, 2,, N (3) E e = e 2 (t)dt (4) e(t) = f(t) c n x n (t) (5) f(t) cx(t) = 4 sin(t) (7)

= 1 E x. f(t)x n (t)dt, n = 1, 2,, N (2) = 0, i = 1, 2,, N (3) E e = e 2 (t)dt (4) e(t) = f(t) c n x n (t) (5) f(t) cx(t) = 4 sin(t) (7) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 25-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : /3/26

Διαβάστε περισσότερα

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Θεωρούµε ως χρονικό σηµείο αναφοράς τη στιγµή που

Διαβάστε περισσότερα

Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ

Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

x(t) = rect 1 t, 0 t 1 y(t) = 0, αλλού

x(t) = rect 1 t, 0 t 1 y(t) = 0, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 206-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εκτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/4/207

Διαβάστε περισσότερα

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Ψηφιακή Αναπαράσταση Σήµατος: ειγµατοληψία Βιβλιογραφία ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Βασικές Έννοιες Επεξεργασίας Σηµάτων Ψηφιοποίηση

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Υλοποιήσεις Ψηφιακών Φίλτρων

Υλοποιήσεις Ψηφιακών Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 10 Υλοποιήσεις Ψηφιακών Φίλτρων Α. Εισαγωγή Οποιοδήποτε γραµµικό χρονικά αµετάβλητο σύστηµα διακριτού χρόνου χαρακτηρίζεται πλήρως από τη συνάρτηση µεταφοράς του η οποία έχει

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015) Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ Εργαστήριο Ηλεκτρακουστικής Ι Άσκηση 1 - Σελίδα 1 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1. ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ/ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αρχικά, για την καλύτερη κατανόηση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 10: Διακριτός Μετασχηματισμός Fourier (DFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Διακριτός Μετασχηματισμός Fourier (DFT)

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. 1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

(s) V Ιn. ΘΕΜΑ 1 1. Υπολογίστε την συνάρτηση µεταφοράς τάσης του. του κυκλώµατος και χαρακτηρίστε το.

(s) V Ιn. ΘΕΜΑ 1 1. Υπολογίστε την συνάρτηση µεταφοράς τάσης του. του κυκλώµατος και χαρακτηρίστε το. Θέµατα εξετάσεων Η/Ν Φίλτρων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί σε εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα δείχνουν το

Διαβάστε περισσότερα

x[n]e jωn (1) X(e jωkn ) x[n]e jω kn

x[n]e jωn (1) X(e jωkn ) x[n]e jω kn ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 017 ιδάσκοντες : Γ Στυλιανού - Γ Καφεντζής εύτερο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Γενική εικόνα τι είναι σήµα - Ορισµός. Ταξινόµηση σηµάτων. Βασικές ιδιότητες σηµάτων. Μετατροπές σήµατος ως προς το χρόνο. Στοιχειώδη σήµατα.

Γενική εικόνα τι είναι σήµα - Ορισµός. Ταξινόµηση σηµάτων. Βασικές ιδιότητες σηµάτων. Μετατροπές σήµατος ως προς το χρόνο. Στοιχειώδη σήµατα. ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6) Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα

Διαβάστε περισσότερα