d 2 dt 2 y(t) + d y(t) 2y(t) = x(t) (1)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "d 2 dt 2 y(t) + d y(t) 2y(t) = x(t) (1)"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εκτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 28/4/2018 Ηµεροµηνία Παράδοσης : 8/5/2018 Οι ασκήσεις µε [ ] είναι bonus, +10 µονάδες η καθεµία στο ϐαθµό αυτής της σειράς ασκήσεων (δηλ. µπορείτε να πάρετε µέχρι 110/70 σε αυτή τη σειρά.) Ασκηση 1 - ιαφορικές Εξισώσεις και Μετασχ. Laplace Θεωρήστε ένα ΓΧΑ σύστηµα που περιγράφεται από τη διαφορική εξίσωση (αʹ) Βρείτε την αλγεβρική µορφή της συνάρτησης µεταφοράς H(s). 2 y(t) + d y(t) 2y(t) = x(t) (1) (ϐʹ) Βρείτε την κρουστική απόκριση του συστήµατος για τις ακόλουθες περιπτώσεις : i. το σύστηµα είναι αιτιατό ii. το σύστηµα είναι ευσταθές iii. το σύστηµα δεν είναι ούτε ευσταθές, ούτε αιτιατό Απ.: h(t) = 1 3 (e 2t e t )u(t) Απ.: h(t) = 1 3 e 2t u(t) 1 3 et u( t) Απ.: h(t) = 1 3 e 2t u( t) 1 3 et u( t) [ ] Ασκηση 2 - Αντίστροφος µετασχ. Laplace Βρείτε τον αντίστροφο µετασχ. Laplace του συστήµατος H(s) = 2 + 2se 2s + 4e 4s s 2 + 4s + 3 (2) έτσι ώστε το σύστηµα να είναι ευσταθές και αιτιατό. Hint: Λάβετε υπόψη σας την ιδιότητα της χρονικής µετατόπισης. Απ.: h(t) = (e t e 3t )u(t) + [ e (t 2) + 3e 3(t 2) ]u(t 2) + 2[e (t 4) e 3(t 4) ]u(t 4) Ασκηση 3 - Μετασχ. Laplace και Συστήµατα Ενα ΓΧΑ σύστηµα περιγράφεται από τη συνάρτηση µεταφοράς H(s) = 2(s + 1) (s + 2)(s ) (3) (αʹ) Σχεδιάστε όλους τους πόλους και όλα τα µηδενικά της συνάρτησης µεταφοράς. (ϐʹ) Βρείτε την κρουστική απόκριση, h(t), του συστήµατος, αν γνωρίζετε ότι το σύστηµα είναι ευσταθές και αιτιατό. Απ.: h(t) = 6 5 e 2t u(t) e t/3 u(t)

2 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 2 (γʹ) Μπορείτε να υπολογίσετε το µετασχ. Fourier, H(f), του συστήµατος µέσω του µετασχ. Laplace; Αν ναι, εξηγήστε και ϐρείτε τον. Αν όχι, εξηγήστε γιατί. (δʹ) Αν στο σύστηµα παρουσιαστεί η είσοδος x(t) = 2e 3t u(t), τότε ϐρείτε την έξοδο y(t). (εʹ) Για ποιά είσοδο x(t), το σύστηµα δίνει έξοδο y(t) = δ(t); (ϛʹ) Βρείτε µια διαφορική εξίσωση η οποία περιγράφει το παραπάνω σύστηµα H(s). Απ.: y(t) = 12 5 e 2t u(t) 3e 3t u(t) e t/3 u(t) Απ.: x(t) = 1 d 2 δ(t) δ(t) 1 3 e t u(t) Απ.: 2 y(t) + 7 d 3 y(t) y(t) = 2 d x(t) + 2x(t) [ ] Ασκηση 4 - ιαφορικές Εξισώσεις και µετασχ. Laplace Ενα αιτιατό ΓΧΑ σύστηµα περιγράφεται από τη διαφορική εξίσωση 2 y(t) + 3 d 2 y(t) y(t) = 1 4 x(t) + d x(t) (4) (αʹ) Βρείτε τη συνάρτηση µεταφοράς του συστήµατος, H(s), και προσδιορίστε το πεδίο σύγκλισης. Απ.: H(s) = s (s + 1)(s ), R{s} > 1 2 (ϐʹ) Σχεδιάστε τους πόλους και τα µηδενικά του συστήµατος, καθώς και το πεδίο σύγκλισης στο s-επίπεδο. Είναι το σύστηµα ευσταθές ; (γʹ) Υπολογίστε την κρουστική απόκριση του συστήµατος, h(t). Απ.: h(t) = ( 3 2 e t 1 2 e t/2 )u(t) (δʹ) Αν οι αρχικές συνθήκες δεν είναι µηδενικές, αλλά ίσες µε y(0 ) = 1, d ]t=0 y(t) = 0, τότε ϐρείτε την έξοδο του συστήµατος για είσοδο x(t) = e t u(t) e 2t u(t). Απ.: y(t) = ( 7 6 e 2t 3 2 e t e t/ te t) u(t) Ασκηση 5 - Μετασχ. Laplace και Ηλεκτρικά Κυκλώµατα Εστω το RC κύκλωµα του Σχήµατος 1 που ϑεωρείται ένα αιτιατό ΓΧΑ σύστηµα. Βρείτε τη συνάρτηση µεταφοράς H(s) και την κρουστική απόκριση h(t) του κυκλώµατος αν (αʹ) x(t) = u s (t), και y(t) = u c (t) (ϐʹ) x(t) = u s (t), και y(t) = i(t) Hint: Οι διαφορικές εξισώσεις που περιγράφουν το κύκλωµα στις δυο περιπτώσεις είναι οι (α) (ϐ) d y(t) + 1 RC y(t) = 1 x(t) RC (5) d y(t) + 1 RC y(t) = 1 d x(t) R (6)

3 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 3 Σχήµα 1: Σχήµα Ασκησης 5. Απ.: (α) h(t) = 1 RC e t/rc u(t), (ϐ) h(t) = 1 R δ(t) 1 R 2 C e t/rc u(t) Ασκηση 6 - Εύρεση Μετασχ. Laplace από στοιχεία Για να ϐρούµε το µετασχηµατισµό Laplace H(s) ενός αιτιατού συστήµατος µας δίνουν τα παρακάτω στοιχεία : Εχει δυο πόλους και δυο µηδενικά, µε έναν πόλο στο s = 2 κι ένα µηδενικό στο s = 2. Το δεύτερο µηδενικό είναι το µοναδικό µηδενικό του συστήµατος W (s) = s2 + 5s + 6. s + 2 Ισχύει H(0) =. Βρείτε το H(s) και την κρουστική απόκριση h(t). Είναι το σύστηµα ευσταθές ; Απ.: H(s) = s2 + 5s + 6 s 2, h(t) = δ(t) + 10e 2t u(t) 3u(t) 2s Ασκηση 7 - Συστήµατα Ελάχιστης Φάσης και All-pass Εστω το ευσταθές και αιτιατό σύστηµα H(s) = s 2 s 2 s 3 + 3s s + 1 (7) (αʹ) Βρείτε το πεδίο σύγκλισης. Hint: οκιµάστε πρώτα ένα σχήµα Horner µε απλές, µικρές ακέραιες τιµές για να ϐρείτε τη µια ϱίζα. Απ.: R{s} > 1 2 (ϐʹ) Το σύστηµα αυτό αντιστοιχεί στα χαρακτηριστικά ενός καναλιού/µέσου µετάδοσης ϱαδιοφωνικού σήµατος. Αν ο ποµπός στέλνει το σήµα x(t), ο δέκτης λαµβάνει το σήµα y(t) = x(t) h(t) Y (s) = X(s)H(s) (8) Μπορείτε να ακυρώσετε πλήρως την επίδραση του καναλιού επάνω στο σήµα που λαµβάνει ο δέκτης χρησιµοποιώντας ένα ευσταθές και αιτιατό σύστηµα της επιλογής σας ; Αν ναι, εξηγήστε. Αν όχι, περιγράψτε πλήρως, ϐρίσκοντας την κρουστική του απόκριση h new (t), ένα σύστηµα που ϑα µπορέσει µερικώς να ακυρώσει κάποιου είδους πληροφορία του καναλιού. Εξηγήστε όλα τα ϐήµατά σας.

4 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 4 Ασκηση 8 - ιατάξεις Συστηµάτων Ενα αιτιατό ΓΧΑ σύστηµα έχει διαταχθεί όπως στο Σχήµα 2. Σχήµα 2: Σχήµα Ασκησης 8. Βρείτε µια διαφορική εξίσωση που να σχετίζει την είσοδο x(t) µε την έξοδο y(t). Hint: (αʹ) ιαχωρίστε το σύστηµα σε δυο µικρότερα υποσυστήµατα h 1 (t), h 2 (t), σε παράλληλη σύνδεση. Για κάθε µικρότερο υποσύστηµα h i (t), χρησιµοποιήστε µια ενδιάµεση µεταβλητή w i (t), η οποία ϑα είναι έξοδος του πρώτου αθροιστή και είσοδος του επόµενου συστήµατος (h f (t) στο πρώτο υποσύστηµα, h d (t) στο δεύτερο υποσύστηµα). Γράψτε τις δυο σχέσεις που περιγράφουν κάθε υποσύστηµα h i (t) στο πεδίο του χρόνου. Στη µια εξίσωση, το αριστερό µέλος ϑα είναι w i (t), και στην άλλη ϑα είναι y i (t), δηλ. w i (t) = f{x(t), h f (t), w i (t)} (9) y i (t) = f{h d (t), w i (t)} (10) µε f{ } να συµβολίζει τη σχέση συνάρτησης και w i (t), y i (t), i = 1, 2 η ενδιάµεση µεταβλητή και η έξοδος του κάθε υποσυστήµατος, αντίστοιχα. Τα συστήµατα µε αριθµούς 4 και 2 απλώς πολλαπλασιάζουν την είσοδό τους µε τον αντίστοιχο αριθµό. (ϐʹ) Μεταφέρετε τις σχέσεις στο χώρο του Laplace και χρησιµοποιήστε τις µαζί, λύστε ως προς H 1 (s), H 2 (s), συνδυάστε τα κατάλληλα, και επιστρέψτε πίσω στο πεδίο του χρόνου. Απ.: 2 y(t) + 10 d y(t) + 16y(t) = 12x(t) + 3 d x(t) [ ] Ασκηση 9 - Φιλτράρισµα στο MATLAB Γνωρίζετε το περίφηµο πλέον Ϲεύγος µετασχηµατισµού Fourier ( t ) Arect AT sinc(ft ) (11) T Από την ιδιότητα της στάθµισης στο πεδίο του χρόνου, γνωρίζετε την επιρροή του τετραγωνικού παλµού στο χώρο του χρόνου, και πως η διάρκειά του επηρεάζει το χώρο της συχνότητας. Θα ήταν ενδιαφέρον να δούµε τη σχέση αυτή αντίστροφα, δηλ. µε τον τετραγωνικό παλµό στο πεδίο της συχνότητας. Ας ϑεωρήσουµε λοιπόν τον τετραγωνικό παλµό στο χώρο της συχνότητας ως ( f ) H(f) = rect T (12)

5 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 5 και ας τον ϑεωρήσουµε ως ένα σύστηµα, που µπορεί να δέχεται εισόδους και να παράγει εξόδους. Προφανώς, λόγω της ιδιότητας της δυικότητας, η έκφραση του συστήµατος - δηλ. η κρουστική απόκριση - στο χώρο του χρόνου ϑα είναι h(t) = T sinc(t t) (13) Ο τετραγωνικός παλµός ϑα λειτουργήσει ως συχνοτικό ϕίλτρο, το οποίο ϑα επιτρέπει τη διέλευση των συχνοτήτων που ϐρίσκονται εντός του διαστήµατος που είναι µη µηδενικός. Το πλάτος αυτών των συχνοτήτων ϑα είναι µοναδιαίο. Επίσης, ϑα αποκόπτει τις συχνότητες που ϑα ϐρίσκονται εκτός αυτού του διαστήµατος. Γιατί όµως ϑα έχει αυτή τη συµπεριφορά ; Γιατί όπως ξέρετε (ΠΛΕΟΝ), η σχέση εισόδου-εξόδου ενός συστήµατος στο χώρο της συχνότητας εκφράζεται µε τη σχέση του γινοµένου των µετασχηµατισµών Fourier της εισόδου και του συστήµατος. Άρα στην περίπτωσή µας, αφού ο τετραγωνικός παλµός έχει µοναδιαίο πλάτος στο διάστηµα f [ T/2, T/2] (στη συχνότητα δηλαδή!), η έξοδος στο χώρο του µετασχ. Fourier για κάθε είσοδο ϑα είναι. Y (f) = X(f)H(f) = { X(f), f T 2 0, f > T 2 (14) Ας δοκιµάσουµε το νέο ϕίλτρο µας. (αʹ) Υλοποιήστε στο MATLAB ένα σήµα ως άθροισµα από τρια ηµίτονα, µε συχνότητες f 1 = 200, f 2 = 600, f 3 = 750 Hz, µε πλάτη και ϕάσεις της επιλογής σας. Σας δίνονται οι εντολές : Dt = ; t = -1:Dt:1; Df = 1; f = -1500:1500; f1 = 200; f2 = 600; f3 = 750; A1 = % INSERT CODE HERE A2 = % INSERT CODE HERE A3 = % INSERT CODE HERE phi1 = % INSERT CODE HERE phi2 = % INSERT CODE HERE phi3 = % INSERT CODE HERE x = [A1 A2 A3]*cos(2*pi*[f1 f2 f3] *t + [phi1 phi2 phi3] *ones(size(t))); (ϐʹ) Τυπώστε και παραδώστε τα τρια γραφήµατα που σας επιστρέφει η συνάρτηση ctft (την οποία κατεβάζετε από το site του µαθήµατος) για το σήµα x. Γράψτε doc ctft για να δείτε τη σύνταξη. Είναι ίδιο µε αυτό που ϑεωρητικά αναµένατε ; (αν εξαιρέσετε τα σφάλµατα στα πλάτη του µετασχηµατισµού) (γʹ) Υλοποιήστε το ϕίλτρο σας στο χρόνο, δηλ. υλοποιήστε την κρουστική απόκριση h(t). Το MATLAB έχει έτοιµη συνάρτηση sinc. Για να την υλοποιήσετε, χρειάζεστε την παράµετρο T : i. Βρείτε στο χαρτί και ορίστε την παράµετρο T να είναι τέτοια ώστε αν δοθεί στο σύστηµα η είσοδος x που δηµιουργήσατε, να µένει στην έξοδο µόνο το ηµίτονο των 200 Hz. Εφαρµόστε το ϕίλτρο στο σήµα σας µε χρήση της συνάρτησης conv, που όπως ϑυµάστε, πραγµατοποιεί τη συνέλιξη µεταξύ των δυο σηµάτων που δέχεται ως όρισµα. Θυµίζεται ότι για σήµατα συνεχούς χρόνου η συνέλιξη υλοποιείται ως y = Dt*conv(x,h);. Τυπώστε και παραδώστε τα γραφήµατα της εξόδου y, µε χρήση της ctft. Ακούστε το αποτέλεσµα µε την εντολή soundsc(y,1/dt);. ii. Επαναλάβατε όλα τα παραπάνω µε T τέτοιο ώστε να µένουν στην έξοδο µόνο τα ηµίτονα των 200 και 600 Hz. iii. Επαναλάβατε όλα τα παραπάνω µε T τέτοιο ώστε να µένουν όλα τα ηµίτονα στην έξοδο.

6 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 6 iv. Επαναλάβατε όλα τα παραπάνω µε T τέτοιο ώστε να µη µένει κανένα ηµίτονο στην έξοδο! Παρατηρείτε κάτι περίεργο στο ϕάσµα πλάτους ; Εξηγήστε, προσέχοντας την κλίµακα πλάτους του µετασχηµατισµού. (δʹ) Υλοποιήστε το ϕίλτρο σας στη συχνότητα, δηλ. αντι να κάνετε συνέλιξη στο χρόνο υλοποιήστε το ισοδύναµό της στη συχνότητα, δηλ. το γινόµενο των µετασχηµατισµών Fourier! Η συνάρτηση ctft επιστρέφει ως όρισµα εξόδου το µετασχηµατισµό Fourier του σήµατος που της δίνετε. Χρησιµοποιήστε τον τελεστή.* του MATLAB για να υλοποιήσετε το γινόµενο των µετασχηµατισµών. Παραδώστε µόνο τον κώδικα που υλοποιεί το ϕιλτράρισµα στη συχνότητα για κάθε περίπτωση από τις παραπάνω. Παραδώστε κώδικα MATLAB που υλοποιεί τα ερωτήµατα παραπάνω, όποια plots σας Ϲητούνται στα υποερωτήµατα, καθώς και τις απαντήσεις στις ϑεωρητικές ερωτήσεις σε ξεχωριστό χαρτί ή σε σχόλια στον κώδικα MATLAB. Ασκηση 10 - Σχεδίαση χαµηλοπερατού (lowpass) ϕίλτρου - MATLAB Εργάζεστε σε µια από τις πρώτες εταιρίες κινητής τηλεφωνίας, και το πόστο σας είναι µηχανικός σχεδίασης ϕίλτρων. Ο προϊστάµενός σας συγκαλεί σύσκεψη στην οποία αποφασίζεται ότι εσείς πρέπει να αναπτύξετε και να σχεδιάσετε ένα σύστηµα µε απόκριση συχνότητας H(f) για εφαρµογές επικοινωνίας ϕωνής, το οποίο ϑα αποκόπτει τις συχνότητες µεγαλύτερες από κάποιο δοθέν f c (η οποία λέγετα συχνότητα αποκοπής - cutoff frequency) ενώ ϑα κρατά όσο γίνεται ανέπαφες τις συχνότητες µικρότερες από f c. Τέτοια συστήµατα ονοµάζονται ϕίλτρα, και για αυτήν την άσκηση ϑα αποκαλούµε έτσι το σύστηµά µας. Ο προϊστάµενός σας, που δε γνωρίζει ϑεωρία σηµάτων και συστηµάτων, σας παραδίδει την απόκριση συχνότητας H(f) που ϑέλει να ϕτιάξετε, στο Σχήµα 3, και σας αναφέρει ότι το Ϲητούµενο f c ισούται µε f c = 2000 Hz, αφού το ϕίλτρο ϑα ενσωµατωθεί σε στρατιωτικά ασύρµατα τηλεφωνικά συστήµατα, όπου το εύρος Ϲώνης επικοινωνίας - και το κόστος λειτουργίας (έχουµε κρίση! :-) ) είναι περιορισµένο. 1 H(f) -f c 0 f c Σχήµα 3: Φίλτρο H(f) που ϑέλει ο προϊστάµενος. f (αʹ) Αποδείξτε του ότι η κρουστική απόκριση h(t) του Ϲητούµενου ϕίλτρου είναι άπειρης διάρκειας και µηαιτιατή, µε αποτέλεσµα το ϕίλτρο που σας Ϲήτησε να µην είναι υλοποιήσιµο στην πράξη. (ϐʹ) Αφού τον πείσατε για την ορθότητα του παραπάνω ερωτήµατος, σας αναθέτει να υλοποιήσετε ένα ϕίλτρο που να πλησιάζει όσο γίνεται αυτό που σας Ϲήτησε αρχικά, και να είναι υλοποιήσιµο. Στην προσπάθειά σας αυτή, ένας µαθηµατικός ϕίλος σας αναφέρει ότι έχει υπόψη του µια συνάρτηση η οποία να πλησιάζει το Ϲητούµενο ϕίλτρο σας, και την οποία σχεδιάζει πρόχειρα στο χαρτί, όπως στο Σχήµα 4. Η συνάρτηση ονοµάζεται συνάρτηση Butterworth. Μη έχοντας καλύτερη εναλλακτική, του Ϲητάτε να σας δώσει τη µαθηµατική περιγραφή της συνάρτησης. Σας δίνει µια περιγραφή στο χώρο της συχνότητας που ϐρήκε σε κάποιο µαθηµατικό εγχειρίδιο, ως H(f) 2 = ( j2πf j2πf c ) 2N (15) µε N την τάξη της συνάρτησης, όπως σας ανέφερε. Μετατρέψτε τη συνάρτηση αυτή στο χώρο του µετασχ. Laplace, ϑέτοντας s = j2πf.

7 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 7 H(f) 2 1 1/2 -f c 0 f c f Σχήµα 4: Συνάρτηση Butterworth. (γʹ) Θέλετε να µελετήσετε τη συµπεριφορά του ϕίλτρου - όπως το ονοµάζετε πλέον - Butterworth, για να την κατανοήσετε καλύτερα. Βρείτε και σχεδιάστε τους πόλους του H(s) 2 στο s-επίπεδο. 2k+N 1 jπ Απ.: s k = 2πf c e 2N, k = 0, 1, 2,, 2N 1 (δʹ) Γνωρίζετε από τη ϑεωρία σας ότι επειδή το ϕίλτρο σας είναι πραγµατικό σήµα στο χρόνο, ϑα ισχύει H(f) 2 = H(f)H (f) = H(f)H( f) = H(s)H( s) s=j2πf (16) Επιλέξτε από τους πόλους που σχεδιάσατε ένα υποσύνολο πόλων ώστε το σύστηµα που ϑα προκύψει από αυτά να είναι ευσταθές και αιτιατό. Προσέξτε ότι αν s p είναι ένας πόλος του H(s), τότε το s p είναι πόλος του H( s). (εʹ) Προσέξτε επίσης ότι H(s)H( s) s=0 = 1. Υπολογίστε το H(s) για N = 1 και N = 2. Απ.: H N=1 (s) = 1 s + 2πf c, H N=2 (s) = 1 (s 2πf c e j3π/4 )(s 2πf c e j5π/4 ) (ϛʹ) Βρείτε τη διαφορική εξίσωση τρίτης τάξης που περιγράφει ένα ϕίλτρο Butterworth µε συχνότητα αποκοπής f c = 1 2π Hz. Απ.: d 3 d2 y(t) y(t) + 2 d y(t) + y(t) = x(t) (Ϲʹ) Υλοποιήστε στο MATLAB την απόκριση ϕάσµατος H(f) του ϕίλτρου για f c = 2000 Hz, δειγµατοληπτώντας έναν άξονα συχνοτήτων [ 8000, 8000] ανά Df = 1 Hz, για N = 6, N = 16, και N = 46. Η εντολή plot ϑα σας δώσει, ως γνωστόν, τη γραφική παράσταση. Χρησιµοποιήστε την εντολή hold on για να τυπώσετε το ένα πάνω στο άλλο, και να παραδώσετε µαζί εκτυπωµένα τα ϕίλτρα σας. Η συνάρτηση legend ϑα σας ϐοηθήσει να κάνετε το γράφηµά σας πιο περιγραφικό. Περιγράψτε τι επιρροή έχει η τάξη N του ϕίλτρου στο ϕάσµα πλάτους του γενικά, και γύρω από τη συχνότητα f c ειδικά. (ηʹ) Προτού παραδώσετε το ϕίλτρο σας στον προϊστάµενό σας ώστε να υλοποιηθεί σε κύκλωµα, ϑέλετε να ϐεβαιωθείτε ότι λειτουργεί όπως πρέπει, εξοµοιώνοντάς το στο MATLAB και ϐάζοντας ως είσοδο µια τυπική στρατιωτική διαταγή, δωρεά του Υπουργείου Άµυνας. Θα τη ϐρείτε στο αρχείο military.wav, στο site του µαθήµατος. Φορτώστε το αρχείο στο MATLAB µε τη - γνωστή πια - εντολή wavread (ή την audioread, αν έχετε πολύ πρόσφατη έκδοση του MATLAB). Η συνάρτηση butter υλοποιεί ένα χαµηλοπερατό ϕίλτρο Butterworth µε τάξη N την οποία παρέχετε εσείς ως όρισµα, όπως και τη συχνότητα αποκοπής f c, και επιστρέφει τα µηδενικά, τους πόλους, και το κέρδος (δηλ. τη σταθερά του αριθµητή) του ϕίλτρου H(s). Με άλλα λόγια, δε µας δίνει απευθείας τη µορφή του H(s), αλλά µας δίνει ό,τι χρειαζόµαστε για να το ϕτιάξουµε. Τα παραπάνω γίνονται µε τις εντολές

8 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 8 f = 2000; N = 8; [z, p, k] = butter(n, 2*pi*f, s ); όπου το όρισµα s δηλώνει στη συνάρτηση ότι το ϕίλτρο µας αντιστοιχεί σε σήµα h(t) συνεχούς χρόνου. (ϑʹ) Στη συνέχεια, πρέπει από τους πόλους, τα µηδενικά, και το κέρδος, να γράψουµε το ϕίλτρο ως λόγο πολυωνύµων H(s) = N(s)/D(s) ώστε να το χρησιµοποιήσουµε. Αυτό γίνεται εύκολα ως [B, A] = zp2tf(z, p, k); όπου η συνάρτηση zp2tf, που είναι συντοµογραφία για τη ϕράση Zeros+Poles to Transfer Function, µετατρέπει τα µηδενικά, τους πόλους, και το κέρδος, σε ένα λόγο πολυωνύµων του s, που ϕυσικά δεν είναι άλλος από τη συνάρτηση µεταφοράς H(s). Η µεταβλητή B περιέχει τους συντελεστές του s-πολυωνύµου του αριθµητή, ενώ η µεταβλητή A τους αντίστοιχους του παρονοµαστή. (ιʹ) είτε την απόκριση συχνότητας H(f) του ϕίλτρου σας µε χρήση των εντολών W = 2*pi*[-5000:5000]; [H] = freqs(b, A, W); subplot(211); plot(w, abs(h)); xlabel( Frequency (Hz) ); title( Magnitude Spectrum ); grid; subplot(212); plot(w, angle(h)); xlabel( Frequency (Hz) ); title( Phase Spectrum ); grid; Είναι το ϕάσµα πλάτους όπως περιµένατε να είναι ; (ιαʹ) Οµως ο υπολογιστής µας είναι ψηφιακός, και το σήµα military.wav που έχουµε είναι ψηφιακό. Πρέπει λοιπόν να µετατρέψουµε το ϕίλτρο H(s) που έχουµε σε µορφή συντελεστών s-πολυωνύµου αριθµητή και παρονοµαστή σε ένα ψηφιακό αντίστοιχό του, και να το χρησιµοποιήσουµε επάνω στο σήµα µας. Ευτυχώς για µας, κάθε αναλογικό ϕίλτρο µπορεί να µετατραπεί σε ψηφιακό (και ακριβέστερα, σε διακριτού χρόνου), µε πολύ απλές τεχνικές, εκ των οποίων η απλούστερη ονοµάζεται impulse invariance 1, και την οποία το MATLAB έχει έτοιµη. [digital_num, digital_den] = impinvar(b, A, fs); Πλέον στις µεταβλητές digital_num και digital_den έχουµε τους συντελεστές ενός ψηφιακού ϕίλτρου Butterworth H d (s) (που δεν περιγράφεται πλέον στο χώρο του s, δηλ. του Laplace, αλλά χάριν ευκολίας ας διατηρήσουµε το συµβολισµό). (ιϐʹ) Ας χρησιµοποιήσουµε τη συνάρτηση filter, η οποία συντάσσεται ως y = filter(num, Den, x); µε x το σήµα εισόδου, και Num, Den τον αριθµητή και τον παρονοµαστή του ϕίλτρου H d (s), αντίστοιχα, στη µορφή συντελεστών πολυωνύµου όπως σας επιστρέφονται από την impinvar. Εκτελέστε την εντολή, ακούστε το αποτέλεσµα µε την εντολή soundsc(y, fs); και σχολιάστε το αποτέλεσµα σε σχέση µε το αρχικό σήµα. Πώς ϑα χαρακτηρίζατε την ποιότητα του σήµατος εξόδου σε σχέση µε το αρχικό ; (ιγʹ) Παραδώστε ένα plot του τελικού σήµατος, παρέα µε το αρχικό σήµα. 1 Λεπτοµέρειες στο ΗΥ :-)

9 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 9 Παραδώστε κώδικα MATLAB που εκτελεί το ϕιλτράρισµα επάνω στο σήµα που σας δίνεται, όποια plots και κώδικα σας Ϲητούνται στα υποερωτήµατα, καθώς και τις απαντήσεις στις ϑεωρητικές ερωτήσεις σε ξεχωριστό χαρτί. [ ] Ασκηση 11 - Συστήµατα στο MATLAB µέσω ιαφορικών Εξισώσεων Το MATLAB έχει τη δυνατότητα να λύσει µε συµβολικό τρόπο διαφορικές εξισώσεις. Ας δούµε πως : έστω ότι ϑέλουµε να ϐρούµε τη συνολική έξοδο, δηλ. την έξοδο λόγω αρχικών συνθηκών - η οποία λέγεται απόκριση µηδενικής εισόδου - και την έξοδο λόγω εφαρµογής της εισόδου - η οποία λέγεται απόκριση µηδενικής κατάστασης - ενός συστήµατος που περιγράφεται από τη διαφορική εξίσωση για είσοδο x(t) = e t u(t) και µε αρχικές συνθήκες y(0 ) = 2. d y(t) + 2y(t) = x(t) + 2 d x(t) (17) (i.) Απόκριση µηδενικής εισόδου : η απόκριση µηδενικής εισόδου είναι η έξοδος του συστήµατος µόνο λόγω των αρχικών συνθηκών, δηλ. ϑεωρώντας ότι δεν εφαρµόζουµε το σήµα εισόδου. Οπότε στην παραπάνω διαφορική εξίσωση ϑέτουµε x(t) = 0, όπως και για όλες τις παραγώγους του x(t) που εµφανίζονται. Η διαφορική εξίσωση τότε ονοµάζεται οµογενής και γράφεται ως d y(t) + 2y(t) = 0 (18) Για να τη λύσουµε στο MATLAB χρησιµοποιούµε τη συνάρτηση dsolve και κάνουµε το εξης : syms y(t) yzi = dsolve(diff(y,t) + 2*y == 0, y(0) == 2) % Symbolic function y(t) % Find yzi(t) και το MATLAB µας απαντά ότι yzi = 2*exp(-2*t) που είναι και η σωστή απάντηση (το u(t) υπονοείται εδώ). Παρατηρήστε ότι η dsolve πήρε δυο ορίσµατα : ένα που περιγράφει τη διαφορική εξίσωση (η συνάρτηση diff υποδηλώνει την παράγωγο ως προς t) και ένα όρισµα που δηλώνει την αρχική συνθήκη. Προσέξτε το == στη σύνταξη! (ii.) Απόκριση µηδενικής κατάστασης : η απόκριση µηδενικής κατάστασης είναι η έξοδος του συστήµατος για κάποια είσοδο x(t), µε µηδενικές τιµές για όλες τις αρχικές συνθήκες. Ξέρουµε ήδη ότι αυτή η έξοδος δίνεται από την πράξη της συνέλιξης. Για να τη ϐρούµε στο MATLAB χρησιµοποιούµε τη συνάρτηση dsolve µε λίγο διαφορετικό τρόπο, ως εξης : syms y(t) % Symbolic function y(t) syms x(t) % Symbolic function x(t) x(t) = exp(-t); % Make x(t) specific yzs = dsolve(diff(y,t) + 2*y == x(t) + 2*diff(x,t), y(0) == 0) % Find yzs(t) και το MATLAB µας επιστρέφει yzs = exp(-2*t) - exp(-t) όπου και εδώ το u(t) στα εκθετικά υπονοείται. Παρατηρήστε ότι η dsolve πήρε δυο ορίσµατα : ένα που περιγράφει τη διαφορική εξίσωση µε τη δεδοµένη είσοδο που µας ενδιαφέρει, και ένα όρισµα που δηλώνει την αρχική συνθήκη, η οποία εδώ είναι µηδενική, ως οφείλει.

10 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Εκτη Σειρά Ασκήσεων 10 (iii.) Άρα η συνολική έξοδος και λύση για την παραπάνω διαφορική εξίσωση µε τη δεδοµένη είσοδο x(t) = e t u(t) είναι y(t) = y zi (t) + y zs (t) = (2e 2t e t + e 2t )u(t) = (3e 2t e t )u(t) (19) και αυτό µας το επιβεβαιώνει και το MATLAB: ytotal = yzi + yzs ytotal = 3*exp(-2*t) - exp(-t) Παραδώστε κώδικα MATLAB που ϐρίσκει τη συνολική έξοδο για τις παρακάτω διαφορικές εξισώσεις, ϐάζοντας σε σχόλια την απάντηση που παίρνετε : 1. 2 y(t) + 6 d y(t) + 9y(t) = 9x(t) + 2 d x(t), για x(t) = e 2t u(t), και µε αρχικές συνθήκες y(0 ) = 1, y (0 ) = y(t) + 2 d y(t) + y(t) = d x(t), για x(t) = e t u(t), και µε αρχικές συνθήκες y(0 ) = 0, y (0 ) = 1. Hint: Για να ϐάλετε στο παιχνίδι τις αρχικές συνθήκες παραγώγων, δηλώστε µαζί µε τις x(t), y(t) µια νέα συµ- ϐολική συνάρτηση Dy = diff(y,t) η οποία αντιπροσωπεύει την παράγωγο της y(t), και ϑέστε κατάλληλα τη µεταβλητή Dy(0).

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/4/206

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 208-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 6/4/209

Διαβάστε περισσότερα

LC d2 dt 2 y(t) + RC d y(t) + y(t) = x(t) (1)

LC d2 dt 2 y(t) + RC d y(t) + y(t) = x(t) (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 206-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 6/5/207

Διαβάστε περισσότερα

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.5/10.0 Θέµα 1ο - 5

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά

Διαβάστε περισσότερα

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία

Διαβάστε περισσότερα

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

P x = X k 2 (2) = = p = 78% (5)

P x = X k 2 (2) = = p = 78% (5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εξέταση Προόδου - Λύσεις Θέµα - Βαθµός : 5 Ενα πραγµατικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 8//09

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Laplace. Εστω

Διαβάστε περισσότερα

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ιάρκεια : 3 ώρες

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - Σχόλια ιάρκεια : 3 ώρες Ηµεροµηνία

Διαβάστε περισσότερα

x[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n +

x[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n + ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 6 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης : //6 Ηµεροµηνία

Διαβάστε περισσότερα

δ[n kp ], k Z (1) 1 cos πn, N 1 n N 1 + N 2 2N

δ[n kp ], k Z (1) 1 cos πn, N 1 n N 1 + N 2 2N ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2015 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τέταρτο Εργαστήριο - Ηµεροµηνία : 27/11/2015 Σηµείωση

Διαβάστε περισσότερα

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1)

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 16/3/017

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων - Bonus Ασκήσεις Ηµεροµηνία

Διαβάστε περισσότερα

z(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6)

z(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 18/2/216

Διαβάστε περισσότερα

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Επαναληπτικά Θέµατα. Βρείτε το

Διαβάστε περισσότερα

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2)

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2017 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τρίτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

e (4+j2πf)t dt (5) (0 1)

e (4+j2πf)t dt (5) (0 1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2 Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου

Διαβάστε περισσότερα

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το

Διαβάστε περισσότερα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Συνέλιξη και Συστήµατα Σε αυτό

Διαβάστε περισσότερα

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Ασκηση. αʹ Γραµµικό: Είναι y = y = Τρίτη Σειρά Ασκήσεων

Διαβάστε περισσότερα

y[n] = f(x[n], w[n]) (1) w[n] = f(x[n], y[n]) (2)

y[n] = f(x[n], w[n]) (1) w[n] = f(x[n], y[n]) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τέταρτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε

Διαβάστε περισσότερα

y[n] = x[n] + αx[n M], a < 1 (1) y[n] + αy[n M] = x[n], a < 1 (2)

y[n] = x[n] + αx[n M], a < 1 (1) y[n] + αy[n M] = x[n], a < 1 (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2018 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τρίτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Εστω το σήµα xt

Διαβάστε περισσότερα

x(t) 2 dt X(f) 2 df T d B w 1

x(t) 2 dt X(f) 2 df T d B w 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς

ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΔΙΑΛΕΞΗ 16 Η Μετασχηματισμός Laplace Ο Μετασχηματισμός Laplace (review) Ο Μετασχηματισμός Laplace (review) Ορισμός Μετασχ. Laplace X s = + x t e st dt (γ )

Διαβάστε περισσότερα

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2)

y[n] = x[n] + αx[n M], a < 1 (1) y[n] = αy[n M] + x[n], a < 1 (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τρίτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

X 1 = X1 = 1 (1) X 3 = X3 = 1 (2) X k e j2πk 1 2 t = k

X 1 = X1 = 1 (1) X 3 = X3 = 1 (2) X k e j2πk 1 2 t = k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση (i) Είναι T

Διαβάστε περισσότερα

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία

Διαβάστε περισσότερα

H ap (z) = z m a 1 az m (1)

H ap (z) = z m a 1 az m (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο - Ηµεροµηνία : 2/2/206 Σηµείωση : Για

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5)

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5) Κεφάλαιο 7 Συστήματα στο χώρο του Laplace 7. Εισαγωγή Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων

Διαβάστε περισσότερα

0 2j e jπt e j2πkt dt (3)

0 2j e jπt e j2πkt dt (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

T 2 Tsinc2( ft e j2πf3t

T 2 Tsinc2( ft e j2πf3t ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Fourier. Απλός

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

A k s s k. H c (s) = H(z) = 1 e s kt dz 1

A k s s k. H c (s) = H(z) = 1 e s kt dz 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 208 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

H ap (z) = z m a 1 az m (1)

H ap (z) = z m a 1 az m (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 207 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Πέµπτο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

x 1 [n] = 0, αλλού x[n]e jωn X(e jω ) =

x 1 [n] = 0, αλλού x[n]e jωn X(e jω ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερο Εργαστήριο Σηµείωση : Για ϐοήθεια σχετικά µε τις

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6) Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση

Διαβάστε περισσότερα

Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 73 Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Ο µετασχηµατισµός Laplace µετασχηµατίζει τις διαφορικές εξισώσεις που περιγράφουν τα γραµµικά µη χρονικά µεταβαλλόµενα συστήµατα συνεχούς χρόνου, σε αλγεβρικές εξισώσεις και

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

ΓΧΑ σύστημα h(t), H(s)

ΓΧΑ σύστημα h(t), H(s) Κεφάλαιο Συστήματα στο χώρο του Laplace Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων από το μετασχ.

Διαβάστε περισσότερα

x(t) = rect 1 t, 0 t 1 y(t) = 0, αλλού

x(t) = rect 1 t, 0 t 1 y(t) = 0, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 206-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εκτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/4/207

Διαβάστε περισσότερα

Υλοποιήσεις Ψηφιακών Φίλτρων

Υλοποιήσεις Ψηφιακών Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 10 Υλοποιήσεις Ψηφιακών Φίλτρων Α. Εισαγωγή Οποιοδήποτε γραµµικό χρονικά αµετάβλητο σύστηµα διακριτού χρόνου χαρακτηρίζεται πλήρως από τη συνάρτηση µεταφοράς του η οποία έχει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : /3/7 Ηµεροµηνία

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 15/3/016

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Σημάτων Άσκηση 3η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

x(t) = e 2t u(t) (4) y(t) = e t u( t) (5)

x(t) = e 2t u(t) (4) y(t) = e t u( t) (5) Ηµεροµηνία Ανάθεσης : 17/5/2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015) Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές

Διαβάστε περισσότερα

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ Εργαστήριο Ηλεκτρακουστικής Ι Άσκηση 1 - Σελίδα 1 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1. ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ/ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αρχικά, για την καλύτερη κατανόηση

Διαβάστε περισσότερα

Συνέλιξη και Συστήµατα

Συνέλιξη και Συστήµατα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015/16 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό

Διαβάστε περισσότερα

Συνέλιξη Κρουστική απόκριση

Συνέλιξη Κρουστική απόκριση Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΚΑΙ ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΚΑΙ ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΚΑΙ ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ Στην εργαστηριακή άσκηση 4 µελετήσαµε τη σχέση εισόδου εξόδου ενός γραµµικού χρονικά αµετάβλητου (ΓΧΑ) συστήµατος, που, στο πεδίο του χρόνου

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες

Διαβάστε περισσότερα

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΤΕΙ ΠΕΙΡΑΙΑ -ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ ΧΕΙΜΕΡΙΝΟ 2017-18 ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1. ΕΥΑΙΣΘΗΣΙΑ Ενα κύκλωµα, το οποίο κάνει µια συγκεκριµένη λειτουργία εκφραζόµενη

Διαβάστε περισσότερα

= 1 E x. f(t)x n (t)dt, n = 1, 2,, N (2) = 0, i = 1, 2,, N (3) E e = e 2 (t)dt (4) e(t) = f(t) c n x n (t) (5) f(t) cx(t) = 4 sin(t) (7)

= 1 E x. f(t)x n (t)dt, n = 1, 2,, N (2) = 0, i = 1, 2,, N (3) E e = e 2 (t)dt (4) e(t) = f(t) c n x n (t) (5) f(t) cx(t) = 4 sin(t) (7) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 25-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : /3/26

Διαβάστε περισσότερα

d k dt k a ky(t) = dt k b kx(t) (5.1)

d k dt k a ky(t) = dt k b kx(t) (5.1) Κεφάλαιο 5 Ανάλυση Σημάτων και Συστημάτων στο Πεδίο του Χρόνου 5. Εισαγωγή Σε αυτό το κεφάλαιο, θα συζητήσουμε για την αναλυτική μελέτη συστημάτων στο πεδίο του χρόνου. Είδαμε στο προηγούμενο κεφάλαιο

Διαβάστε περισσότερα