Λύσεις μερικών ασκήσεων του τρίτου φυλλαδίου.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύσεις μερικών ασκήσεων του τρίτου φυλλαδίου."

Transcript

1 Λύσεις μερικών ασκήσεων του τρίτου φυλλαδίου.. Έστω 0 < a <. Θεωρήστε τη σειρά Fourier της -περιοδικής συνάρτησης με τύπο {, αν x < a f(x = 0, αν a < x < και, εφαρμόζοντας το Θεώρημα.4, υπολογίστε το άθροισμα + sin(x n για κάθε x. Συγκλίνει ομοιόμορφα στο R η σειρά Fourier της f; Λύση. Η συνάρτηση είναι ορισμένη στο διάστημα (, ] εκτός από τα σημεία ±a και. Αυτό δεν πειράζει διότι τα τρία αυτά σημεία αποτελούν σύνολο μηδενικού μέτρου. Υπολογίζουμε: f(n = f(xe πinx dx = (, ] f(x a + a a { a, αν n = 0 e πinx dx = sin(a, αν n 0 sin(a e πinx, όπου το σύμβολο δηλώνει ότι η συνάρτηση f(x στην αριστερή πλευρά έχει σειρά Fourier την σειρά της δεξιάς πλευράς. Παρατηρούμε ότι το άθροισμα που πρέπει να υπολογίσουμε είναι (μετά από αλλαγή συμβόλου από x σε a ουσιαστικά ίσο με το άθροισμα της σειράς Fourier για x = 0. Γι αυτό θα βρούμε το άθροισμα της σειράς Fourier για x = 0. Παρατηρούμε ότι η f είναι συνεχής στο x = 0 και παραγωγίσιμη στο x = 0., για x = 0 έχουμε: a + sin(a e πin0 = f(0, οπότε a + sin(a =. Βλέπουμε ότι οι όροι της σειράς έχουν ίδιες τιμές για n και για n, οπότε + a + sin(a =. + sin(a n = ( a π. Τώρα θα δούμε πώς συμπεριφέρεται η σειρά για οποιονδήποτε x (, ].

2 Αν x (, ] και x ±a και x, τότε η f είναι συνεχής και παραγωγίσιμη στον x. a + sin(a ( e πinx = f(x για x (, a ( a, a a,. ( Αν x = a, η f δεν είναι καν ορισμένη στον a, οπότε βλέπουμε αν έχει πεπερασμένα πλευρικά όρια και πεπερασμένες πλευρικές παραγώγους στον a. Πράγματι, και f( a =, για x = a έχουμε: lim f(x = x a a + Αν x = a, κάνουμε τα ίδια: και, για x = a έχουμε: f ( a = f +( a = f(a f(x =, x a x a lim 0 = 0, f( a+ f(x = x a x a+ f(x f( a 0 0 lim x a x ( a x a x + a = 0, f(x f( a+ lim x a+ x ( a x a+ x + a = 0. lim = x a+ sin(a e πin( a f( a + f( a+ = =. ( f (a f(x f(a x a x a f +(a x a+ a + f(x f(a+ x a f(a+ f(x 0 = 0 x a+ x a+ x a x a = 0, 0 0 x a+ x a = 0. sin(a e πina f(a + f(a+ = =. (3 Τέλος, παρατηρούμε ότι μπορεί να μην είναι ορισμένη η f στον αλλά, αν θέσουμε f( = 0, τότε η f είναι συνεχής και παραγωγίσιμη στον., για x = έχουμε: a + sin(a ( e πin = f = 0. (4 Συνολικά, από τις ( - (4 έχουμε a + sin(a e πinx = 0, αν < x < a, αν x = a, αν a < x < a, αν x = a 0, αν a < x Τα προηγούμενα ισχύουν στο διάστημα (, ]. Δηλαδή η σειρά συγκλίνει στο διάστημα αυτό στην συνάρτηση που βλέπουμε με τον πολλαπλό τύπο στην δεξιά πλευρά της τελευταίας εξίσωσης. Επειδή η σειρά είναι -περιοδική, συγκλίνει σε ολόκληρο το R στην συνάρτηση που παίρνουμε επεκτείνοντας -περιοδικά την τελευταία αυτή συνάρτηση από το (, ] σε ολόκληρο το R. Τώρα βλέπουμε ότι η -περιοδική συνάρτηση στην οποία συγκλίνει η σειρά Fourier στο R δεν είναι συνεχής στο R και, συγκεκριμένα, στα σημεία x = ±a + k με k Z. Αν η σύγκλιση της σειράς ήταν ομοιόμορφη, τότε, επειδή κάθε όρος-συνάρτηση της σειράς είναι συνεχής, θα ήταν και η οριακή συνάρτηση συνεχής. η σύγκλιση δεν είναι ομοιόμορφη.

3 . Έστω t 0. Θεωρήστε τη σειρά Fourier της -περιοδικής συνάρτησης με τύπο και, εφαρμόζοντας το Θεώρημα.4, αποδείξτε ότι f(x = e πtx για < x < + t + n = π e πt + e πt t e πt e πt t, Συγκλίνει ομοιόμορφα στο R η σειρά Fourier της f; + ( n t + n = πt (eπt e πt t (e πt e πt. Λύση. Η συνάρτηση είναι ορισμένη στο διάστημα (, ] εκτός από το σημείο. Αυτό δεν πειράζει διότι το σημείο αυτό αποτελεί σύνολο μηδενικού μέτρου. Υπολογίζουμε: f(n = f(xe πinx dx = (, ] e π(t inx dx = eπ(t in e π(t in π(t in = ( n (e πt e πt. π(t in f(x ( n (e πt e πt e πinx, π(t in όπου το σύμβολο δηλώνει ότι η συνάρτηση f(x στην αριστερή πλευρά έχει σειρά Fourier την σειρά της δεξιάς πλευράς. Η συνάρτηση f είναι συνεχής και παραγωγίσιμη σε κάθε x (,. έχουμε ( n (e πt e πt e πinx = f(x = e πtx για π(t in < x <. (5 Τώρα, η συνάρτηση δεν είναι καν ορισμένη στον, οπότε βλέπουμε αν έχει πεπερασμένα πλευρικά όρια και πεπερασμένες πλευρικές παραγώγους στον. Εδώ θα μας βοηθήσει να σκεφτούμε ότι, επειδή η συνάρτηση είναι -περιοδική, όταν υπολογίζουμε όρια στον από την δεξιά πλευρά του, τότε μπορούμε να χρησιμοποιούμε τις τιμές της συνάρτησης κοντά στον και από την δεξιά πλευρά του (για να μην χρειαστεί να γράψουμε τον τύπο που πρέπει να έχει η συνάρτηση στο διάστημα (, 3. Πράγματι, ( ( f f(x e πtx = e πt, f x x + f(x e πtx = e πt x + x + και f + f ( ( f(x f( e πtx e πt x x x x f(x f( + e πtx e πt x + x x + x + = πte πt, = πte πt., για x = έχουμε: ( n (e πt e πt e πin f( = + f( + π(t in = eπt + e πt. (6 Συνολικά, από τις (5 και (6, ( n (e πt e πt e πinx = π(t in { e πtx, αν < x < e πt +e πt, αν x = (7 3

4 Τα προηγούμενα ισχύουν στο διάστημα (, ]. Δηλαδή η σειρά συγκλίνει στο διάστημα αυτό στην συνάρτηση που βλέπουμε με τον πολλαπλό τύπο στην δεξιά πλευρά της τελευταίας εξίσωσης. Επειδή η σειρά είναι -περιοδική, συγκλίνει σε ολόκληρο το R στην συνάρτηση που παίρνουμε επεκτείνοντας -περιοδικά την τελευταία αυτή συνάρτηση από το (, ] σε ολόκληρο το R. Τώρα βλέπουμε ότι η -περιοδική συνάρτηση στην οποία συγκλίνει η σειρά Fourier στο R δεν είναι συνεχής στο R και, συγκεκριμένα, στα σημεία + k με k Z. Αν η σύγκλιση της σειράς ήταν ομοιόμορφη, τότε, επειδή κάθε όρος-συνάρτηση της σειράς είναι συνεχής, θα ήταν και η οριακή συνάρτηση συνεχής. η σύγκλιση δεν είναι ομοιόμορφη. Για να αποδείξουμε τους δυο ειδικούς τύπους θα χρησιμοποιήσουμε τα αθροίσματα της σειράς Fourier για x = 0 και για x =. Κατ αρχάς, γράφουμε οπότε η σειρά Fourier γράφεται: Για x = 0 η σειρά Fourier γράφεται: t in = t + in t + n, ( n (e πt e πt e πinx = eπt e πt ( n (t + in π(t in π t + n e πinx. (8 e πt e πt π ( n (t + in t + n = eπt e πt t π ( n t + n + eπt e πt i π ( n n t + n. Παρατηρούμε ότι οι συμμετρικοί όροι στο πρώτο άθροισμα της δεξιάς πλευράς είναι ίσοι ενώ οι συμμετρικοί όροι στο δεύτερο άθροισμα της δεξιάς πλευράς είναι αντίθετοι. για x = 0 η σειρά Fourier γράφεται (αφού ξεχωρίσουμε τον όρο που αντιστοιχεί στον n = 0: e πt e πt π t + eπt e πt π + t ( n t + n. Σύμφωνα με την (5 ή την (7, αυτό το άθροισμα είναι ίσο με e πt0 =. e πt e πt π + t ( n t + n = eπt e πt π t, οπότε + ( n t + n = πt (eπt e πt t (e πt e πt. Για x = η σειρά Fourier στην (8 γράφεται: e πt e πt t + in π t + n = eπt e πt t π t + n + eπt e πt i n π t + n. Παρατηρούμε ότι, πάλι, οι συμμετρικοί όροι στο πρώτο άθροισμα της δεξιάς πλευράς είναι ίσοι ενώ οι συμμετρικοί όροι στο δεύτερο άθροισμα της δεξιάς πλευράς είναι αντίθετοι. για x = η σειρά Fourier γράφεται (αφού ξεχωρίσουμε τον όρο που αντιστοιχεί στον n = 0: e πt e πt π t + eπt e πt π 4 + t t + n.

5 Σύμφωνα με την (6 ή την (7, αυτό το άθροισμα είναι ίσο με eπt +e πt. e πt e πt π + t t + n = eπt + e πt eπt e πt π t, οπότε + t + n = π e πt + e πt t e πt e πt t. 3. Θεωρήστε την συνάρτηση με τύπο f(x = x για 0 < x <. [α] Πώς θα αναπτύξετε την f ως σειρά ημιτόνων + b n sin(x στο διάστημα (0, ; Σκεφτείτε ότι, αν γίνει κάτι τέτοιο, τότε η f θα έχει μια συγκεκριμένη περιοδικότητα (ποιά; και ότι θα έχει ένα επιπλέον χαρακτηριστικό (ποιό; ως συνάρτηση. [β] Πώς θα αναπτύξετε την f ως σειρά συνημιτόνων στο διάστημα (0, ; a a n cos(x Λύση. [α] Η συνάρτηση που ορίζεται από μια σειρά ημιτόνων είναι αναγκαστικά -περιοδική και περιττή., κατ αρχάς, θα επεκτείνουμε την δοσμένη συνάρτηση στο συμμετρικό διάστημα (, 0 ώστε να είναι περιττή και, κατόπιν, θα την επεκτείνουμε -περιοδικά. Θα την ορίσουμε και στον x = 0 να έχει τιμή f(0 = 0, οπότε θα είναι συνεχής στον 0. η συνάρτησή μας έχει τύπο f(x = x για < x <. Η f είναι ορισμένη στο διάστημα (, ] εκτός από το σημείο. Αυτό δεν πειράζει διότι το σημείο αυτό αποτελεί σύνολο μηδενικού μέτρου. Υπολογίζουμε f(n = f(x xe πinx dx = { ( n πin, αν n 0 0, αν n = 0 ( n πin eπinx, όπου το σύμβολο δηλώνει ότι η συνάρτηση f(x στην αριστερή πλευρά έχει σειρά Fourier την σειρά της δεξιάς πλευράς. Τώρα, η σειρά Fourier γράφεται: ( n πin eπinx = ( n πin cos(x + i ( n πin sin(x. 5

6 Παρατηρούμε ότι οι συμμετρικοί όροι στο πρώτο άθροισμα της δεξιάς πλευράς είναι αντίθετοι ενώ οι συμμετρικοί όροι στο δεύτερο άθροισμα της δεξιάς πλευράς είναι ίσοι. η σειρά Fourier γράφεται: + ( n sin(x. Τέλος, επειδή η συνάρτηση f είναι συνεχής και παραγωγίσμη σε κάθε x (0,, συνεπάγεται + ( n sin(x = f(x = x για 0 < x <. παίρνουμε b n = ( n [β] Δική σας υπόθεση. Η λύση είναι παρόμοια. για n N. 4. Έστω -περιοδική f L ([0,. [α] Αν k N και n k f(n < +, αποδείξτε ότι η f είναι σ.π. ίση με μια συνάρτηση η οποία είναι k φορές συνεχώς παραγωγίσιμη. Αντιστρόφως, αν η f είναι σ.π. ίση με μια συνάρτηση η οποία είναι k φορές συνεχώς παραγωγίσιμη, αποδείξτε ότι n k f(n < +. Μπορείτε, στην τελευταία σχέση, το k να το κάνετε k ; [β] Αποδείξτε ότι η f είναι σ.π. ίση με μια συνάρτηση η οποία είναι άπειρες φορές συνεχώς παραγωγίσιμη αν και μόνο αν n k f(n < + για κάθε k. Λύση. [α] Θα θεωρήσουμε μόνο την περίπτωση k = και δεν θα ασχοληθούμε με το [β]. Υποθέτουμε, λοιπόν, ότι n f(n < +. Θεωρούμε τις σειρές f(ne πinx, πin f(ne πinx. (9 Για τους όρους - συναρτήσεις της δεύτερης σειράς έχουμε ότι πin f(ne πinx = π n f(n, οπότε, βάσει της υπόθεσης και του κριτηρίου του Weierstrass για ομοιόμορφη σύγκλιση σειρών συναρτήσεων, συνεπάγεται ότι η δεύτερη σειρά στην (9 συγκλίνει ομοιόμορφα στο R. Επίσης, για κάθε x έχουμε f(ne πinx = f(n f(0 + n f(n < +, 6

7 οπότε και η πρώτη σειρά στην (9 συγκλίνει για κάθε x (ένα μόνο x είναι αρκετό. Σύμφωνα με ένα γνωστό θεώρημα, συμπεραίνουμε ότι η πρώτη σειρά συγκλίνει ομοιόμορφα στο R και ορίζει συνάρτηση, έστω g, παραγωγίσιμη στο R έτσι ώστε η παράγωγος της g ταυτίζεται με την συνάρτηση που ορίζεται από την δεύτερη σειρά στην (9. Δηλαδή g(x = f(ne πinx, g (x = πin f(ne πinx για κάθε x. Τώρα, λόγω ομοιόμορφης σύγκλισης της σειράς που ορίζει την g, έχουμε ότι η σειρά αυτή είναι η σειρά Fourier της g, δηλαδή ĝ(n = f(n για κάθε n Z. g(x = f(x για σ.κ. x. Τέλος, επειδή η δεύτερη σειρά στην (9 συγκλίνει ομοιόμορφα και κάθε όρος - συνάρτηση είναι συνεχής στο R, η συνάρτηση g είναι συνεχής στο R. η f είναι σ.π. ίση με μια συνάρτηση, την g, η οποία είναι μια φορά συνεχώς παραγωγίσιμη. Τώρα, αντιστρόφως, έστω ότι f = g σ.π., όπου η g είναι μια φορά συνεχώς παραγωγίσιμη. Τότε γνωρίζουμε ότι υπάρχει κάποια σταθερά c ανεξάρτητη του n ώστε να είναι ĝ(n c n Επειδή f = g σ.π., έχουμε f(n = ĝ(n για κάθε n, οπότε f(n c n για κάθε n Z, n 0. για κάθε n Z, n 0. (0 n f(n = n f(n c + n = c n < +. Τώρα, μας ζητούν να αποδείξουμε, αν γίνεται, ότι n f(n < +, δηλαδή f(n < +. Είναι σαφές ότι η (0 δεν αρκεί για κάτι τέτοιο. H g είναι, λόγω υπόθεσης, συνεχής, οπότε αφ ενός g L ([0, αφ ετέρου ĝ (n = πinĝ(n για κάθε n Z. Από την ταυτότητα Parseval έχουμε ĝ (n = g < + 7

8 και, επομένως, και, επομένως, n ĝ(n < + n f(n < +. Τώρα έχουμε δυο δυνατότητες. Η πιο fancy είναι να χρησιμοποιήσουμε την ανισότητα του Cauchy: f(n = n n f(n ( ( n n f(n < +. Η άλλη δυνατότητα είναι να χρησιμοποιήσουμε την πιο απλή ανισότητα ab a + b για να πάρουμε και, κατόπιν, f(n = n n f(n f(n n + n + n f(n n f(n < +. Όπως να ναι, έχουμε αποδείξει ότι f(n < Έστω n N. Υπολογίστε τους αριθμούς a 0, a,..., a n ώστε η παράσταση να έχει την ελάχιστη δυνατή τιμή. 0 a0 + a cos(πx + + a n cos(π(n x cos n (πx dx Λύση. Επειδή οι συναρτήσεις που εμφανίζονται στην παράσταση που θέλουμε να ελαχιστοποιήσουμε είναι άρτιες, η παράσταση γράφεται a 0 + a cos(πx + + a n cos(π(n x cos n (πx dx. Ένας ακόμη λόγος να επεκταθούμε στο διάστημα (, είναι ότι όλες οι συναρτήσεις είναι -περιοδικές ενώ τουλάχιστον η cos(πx δεν είναι -περιοδική. Αν θέσουμε f 0 (x =, f (x = cos(πx,..., f n (x = cos(π(n x και f(x = cos n (πx, τότε η παράσταση γράφεται (a 0 f 0 + a f + + a n f n f. ( Επειδή οι συναρτήσεις f 0, f,..., f n αποτελούν ορθοκανονικό σύστημα στον L((, ], γνωρίζουμε ότι η νόρμα στην ( ελαχιστοποιείται αν και μόνο αν a k = f, f k = cos n (πx cos(πkx dx για k = 0,,..., n. Τα ολοκληρώματα αυτά μπορούν να υπολογιστούν σχετικά εύκολα αν γράψουμε cos(iθ = eiθ +e iθ και κάνουμε πράξεις. Αλλά δεν χρειάζεται να γίνει κάτι τέτοιο, διότι έχουμε καταλήξει σε συγκεκριμένους τύπους για τους a k. 8

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

Τριγωνομετρικά πολυώνυμα

Τριγωνομετρικά πολυώνυμα Κεφάλαιο Τριγωνομετρικά πολυώνυμα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund, Katznelson 4 και Stein and Shakarchi.. Μερικά βασικά περί μιγαδικών αριθμών Υποθέτουμε ως γνωστές

Διαβάστε περισσότερα

Συντελεστές και σειρές Fourier

Συντελεστές και σειρές Fourier Κεφάλαιο 3 Συντελεστές και σειρές Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 22, Katznelson 24 και Stein and Shakarchi 211. 3.1 Συντελεστές Fourier μιας ολοκληρώσιμης

Διαβάστε περισσότερα

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx. Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ Άσκηση 0... Θεωρήστε τη σειρά συναρτήσεων sin( ). Αποδείξτε ότι η σειρά συγκλίνει σε κάποια συνάρτηση s κατά σημείο στο R και ομοιόμορφα στο [ a, a]

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΚΤΟ ΜΑΘΗΜΑ Τώρα θα μας απασχολήσουν τρία ερωτήματα σε σχέση με την κατά σημείο σύγκλιση ακολουθίας συναρτήσεων. Και για τα τρία ερωτήματα θα υποθέσουμε ότι f f στο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, 14-1-14 Μ. Παπαδημητράκης. 1 Τις διάφορες απλές ιδιότητες των παραγώγων θα τις θεωρήσω γνωστές από πιο στοιχειώδη μαθήματα απειροστικού λογισμού και από το λύκειο. Τώρα

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe Άρτιο και Περιττό μέρος Συνάρτησης Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας e και μιας περιττής συνάρτησης, ως εξής: Αν e και,

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ένατου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ένατου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 018-19. Λύσεις ένατου φυλλαδίου ασκήσεων. 1. Έστω a < b. Αποδείξτε ότι υπάρχει ξ ώστε (i) a < ξ < b και e b e a = (b a)e ξ. (ii) a < ξ < b και cos b cos a = (e

Διαβάστε περισσότερα

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!). η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο

Διαβάστε περισσότερα

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B. Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων

Διαβάστε περισσότερα

Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν

Διαβάστε περισσότερα

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Όταν η s δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Παρατήρηση: Το αντίστροφο του προηγουμένου θεωρήματος δεν ισχύει. Παράδειγμα η σειρά με νιοστό όρο α = +-. Τότε lim α =0. Όμως s =α +α + +α = - + 3- +...+

Διαβάστε περισσότερα

Σειρές Taylor και MacLaurin

Σειρές Taylor και MacLaurin Σειρές Taylor και MacLaurin Πολυωνυμική προσέγγιση: Υποθέτουμε ότι για μια συνάρτηση f γνωρίζουμε την τιμή της f(α) αλλά δεν γνωρίζουμε πώς να βρούμε την τιμή f(x) σε άλλα σημεία x κοντά στο α. Για παράδειγμα

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ Συνεχίζουμε την λύση της άσκησης 6.3.. Μέχρι τώρα έχουμε αποδείξει ότι για κάθε διαμέριση του [, b] υπάρχει μια αντίστοιχη διαμέριση του [, B] ώστε να ισχύουν

Διαβάστε περισσότερα

n sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4.

n sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4. ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Εξετάστε ως προς τη σύγκλιση τη σειρά si. Λύση: Παρατηρούμε ότι si 0 άρα η σειρά δεν συγκλίνει. Συγκεκριμένα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

L 2 -σύγκλιση σειρών Fourier

L 2 -σύγκλιση σειρών Fourier Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο

Διαβάστε περισσότερα

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3 Αρµονική Ανάλυση (2017 2018) Φυλλάδιο Ασκήσεων 3 0. (α) Εστω f L (T). είξτε ότι σ n ( f ) f n N. (ϐ) Εστω f L (T). είξτε ότι (γ) είξτε ότι S n ( f ) f + n k=1 sin(kt) k n k= n [Υπόδειξη: Για το (γ) ϑεωρήστε

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι Ασκήσεις

Απειροστικός Λογισμός Ι Ασκήσεις Απειροστικός Λογισμός Ι Ασκήσεις Μ. Παπαδημητράκης . Για καθεμία από τις ανισότητες ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ + >, +, + > +3 3+, ( )( 3) ( ) 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων το σύνολο

Διαβάστε περισσότερα

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 Εισαγωγή Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια της μεθόδου Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε

Διαβάστε περισσότερα

2. Επίλυση μη Γραμμικών Εξισώσεων

2. Επίλυση μη Γραμμικών Εξισώσεων 2. Επίλυση μη Γραμμικών Εξισώσεων Ασκήσεις 2.4 Έστω (x n ) n2n η ακολουθία των προσεγγίσεων, την οποία δίνει η μέθοδος της διχοτόμησης για την εξίσωση f (x) = 0 με f : [ 1; p 2]! R; f (x) := x 3 3 2 x2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ Χρησιμοποιούμε τα σύμβολα f και f() d για να συμβολίσουμε όλα μαζί τα αόριστα ολοκληρώματα της f σε ένα διάστημα I. Δηλαδή, γράφουμε f = f + c ή f() d =

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις

Διαβάστε περισσότερα

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b) 1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό

Διαβάστε περισσότερα

Σύγκλιση σειρών Fourier σε χώρους L p

Σύγκλιση σειρών Fourier σε χώρους L p Σύγκλιση σειρών Fourier σε χώρους L p Μιχάλης Σαράντης και Κωνσταντίνος Τσίνας Βασικά αποτελέσµατα από την ανάλυση Fourier Ορισµός.. Ο n-οστός πυρήνας του Dirichlet ορίζεται ως (.) D n (y) Πρόταση.. Για

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 8-9. Λύσεις ενδέκατου φυλλαδίου ασκήσεων.. (i) Βρείτε μία παράγουσα της + στο (, + ). Ποιές είναι όλες οι παράγουσες της + στο (, + ); (ii) Βρείτε μία παράγουσα

Διαβάστε περισσότερα

1. E. Stein and R. Shakarchi, Fourier Analysis, and introduction, Princeton Univ. Press, 2003

1. E. Stein and R. Shakarchi, Fourier Analysis, and introduction, Princeton Univ. Press, 2003 Αρμονική Ανάλυση (Μ 25 ή Μ 2) Φθινοπωρινό Εξάμηνο 2- Τελευταία τροποποίηση: April, 2 Μιχάλης Κολουντζάκης Τμήμα Μαθηματικών, Πανεπιστήμιο Κρήτης, Λεωφόρος Κνωσού, 74 9 Ηράκλειο, kolount AT gmail.com Περιεχόμενα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 16-1-14 Μ. Παπαδημητράκης. 1 Άσκηση 5..15. Έστω f παραγωγίσιμη στο (0, + ) και lim x + f (x) = 0. Αποδείξτε ότι ( ) lim f(x + 1) f(x) = 0. x + Λύση: Θα εκμεταλλευτούμε

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, 5--3 Μ. Παπαδημητράκης. Είδαμε στο προηγούμενο μάθημα ότι για να έχει νόημα το όριο f(x) x ξ πρέπει το ξ να είναι σε κατάλληλη θέση σε σχέση με το πεδίο ορισμού A της συνάρτησης

Διαβάστε περισσότερα

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Ακριβής ορισμός του πλευρικού ορίου Έστω ότι το πεδίο ορισμού της f x περιέχει ένα διάστημα d, c στα αριστερά του c. Η f x έχει αριστερό όριο L στο c

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ FOURIER. Μιχάλης Κολουντζάκης και Χρήστος Παπαχριστόδουλος

ΑΝΑΛΥΣΗ FOURIER. Μιχάλης Κολουντζάκης και Χρήστος Παπαχριστόδουλος ΑΝΑΛΥΣΗ FOURIER Μιχάλης Κολουντζάκης και Χρήστος Παπαχριστόδουλος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης Βούτες 700 13 Ηράκλειο 2 Περιεχόμενα Πρόλογος 5 1 Μέτρο και ολοκλήρωμα

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Αποδείξτε με τον ορισμό ότι:. lim ( ) = +,. lim =,. lim ln( + ) = ln, + 4. lim + =. Λύση:. Θεωρούμε αυθαίρετο

Διαβάστε περισσότερα

Πες το με μία γραφική παράσταση

Πες το με μία γραφική παράσταση Πες το με μία γραφική παράσταση Μαθηματικά Κατεύθυνσης Γ Λυκείου www askisopolisgr ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Να γράψετε και να σχεδιάσετε γραφικές παραστάσεις (ορισμένες σε διάστημα ή σε ένωση διαστημάτων):

Διαβάστε περισσότερα

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier 2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier

Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier Κεφάλαιο 6 Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 2002, Katznelson 2004 και Stein and Shakarchi 20. 6. Όχι σύγκλιση σε

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δέκατου φυλλαδίου ασκήσεων. 2 x dx = 02 ( 2) 2

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δέκατου φυλλαδίου ασκήσεων. 2 x dx = 02 ( 2) 2 Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις δέκατου φυλλαδίου ασκήσεων.. Υπολογίστε το x αν x < 0 4 fx) dx όταν fx) = αν 0 x 3/x αν < x 4 Λύση: Η f ταυτίζεται στο [, 0] με την συνεχή συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 11. Πολυώνυμα Taylor Ορισμός

Κεφάλαιο 11. Πολυώνυμα Taylor Ορισμός Κεφάλαιο Πολυώνυμα Taylor Στο κεφάλαιο αυτό θα κάνουμε μια σύντομη εισαγωγή στα πολυώνυμα Taylor. Τα πολυώνυμα αυτά μπορούν να χρησιμοποιηθούν ως προσεγγίσεις μιας συνάρτησης γύρω από ένα σημείο, και έχουν

Διαβάστε περισσότερα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Σειρές Fourier. Σειρές Fourier. Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Μία συνάρτηση f() είναι περιοδική με περίοδο όταν ισχύει f(+)=f(). Η ελάχιστη δυνατή περίοδος λέγεται και θεμελιώδης

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

Αθροισιμότητα σειρών Fourier

Αθροισιμότητα σειρών Fourier Κεφάλαιο 4 Αθροισιμότητα σειρών Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 22, Katznelson 24 και Stein and Shakarchi 2. 4. Θεώρημα Μοναδικότητας Μπορούν δύο διαφορετικές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Διδάσκοντες: Δάλλα - Αλικάκος 6 Ιουλίου 204 Θέμα (α) Από την γνωστή ανισότητα a 2 + b 2 2 ab, όταν (x, y) (0, 0), τότε ισχύει: f(x, y) f(0, 0) x 2 y 2x

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

Τυχαία Διανύσματα και Ανεξαρτησία

Τυχαία Διανύσματα και Ανεξαρτησία Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα Αντιπαράγωγος μίας συνάρτησης f() ορισμένης σε ένα διάστημα [α,β] λέγεται κάθε συνάρτηση F() που επαληθεύει την ισότητα F( ) f ( ) F( ) c επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Π Δ Μ τμ. Μηχανικών Πληροφορικής & τμ. Μηχανολόγων Μηχανικών Τηλεπικοινωνιών Μαθηματική Ανάλυση I Μαθηματικά Ι ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Να δειχτεί ότι οι σειρές α) 4 + 6 + 3 8 + 4 0 +..., β) + 3 4 +

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

u x = 2uu y u y = 0 ϕ x = x t h (t), ϕ xx = x2 t 3 h (t) και ϕ y = y t h (t), ϕ yy = y2 t 3 h (t). t 2 h (t) + x2

u x = 2uu y u y = 0 ϕ x = x t h (t), ϕ xx = x2 t 3 h (t) και ϕ y = y t h (t), ϕ yy = y2 t 3 h (t). t 2 h (t) + x2 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Β 9 Ιουνίου, 07 Θ. αʹ) Αν το G είναι ένας τόπος, δηλαδή ένα ανοικτό και συνεκτικό σύνολο στο

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

Ερωτήσεις-Απαντήσεις Θεωρίας

Ερωτήσεις-Απαντήσεις Θεωρίας 1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 4. Άσκηση : Υπολογίστε, αν υπάρχουν, τα παρακάτω όρια. Αν χρειάζεται, υπολογίστε τα αντίστοιχα πλευρικά όρια. + 4 3 + +,

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1)

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1) Πυθαγόρειες Τριάδες Χριστίνα Ιατράκη Ημερομηνία παράδοσης -10-014 1 Εισαγωγικά Ορισμός 1.1 Πυθαγόρεια τριάδα καλείται κάθε τριάδα ακέραιων (x, y, z) που είναι μη τετριμμένη λύση της εξίσωσης Μια τέτοια

Διαβάστε περισσότερα

( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2

( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2 ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγματικό μέρος uxy (, ) = ycosxκαι φανταστικό μέρος vxy (, ) = y sinx, όπου = x+ iy

Διαβάστε περισσότερα

Όριο και συνέχεια πραγματικής συνάρτησης

Όριο και συνέχεια πραγματικής συνάρτησης ΚΕΦΑΛΑΙΟ 4 Όριο και συνέχεια πραγματικής συνάρτησης Αγνοώ το πώς με βλέπει ο κόσμος αλλά στον εαυτό μου, φαίνομαι σαν να μην ήμουν τίποτα άλλο από ένα αγοράκι που παίζει στην ακρογιαλιά και κατά καιρούς

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 3. Άσκηση : Προσδιορίστε, αν υπάρχουν, τις τιμές τού a για τις οποίες οι παρακάτω συναρτήσεις είναι συνεχείς. + +, αν >

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.

Διαβάστε περισσότερα

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων.

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. 1. Ποιά από τα παρακάτω σύνολα είναι συμπαγή; Μία κλειστή μπάλα, μία ανοικτή μπάλα, ένα ανοικτό ορθ. παραλληλεπίπεδο, ένα ευθ. τμήμα (στον R n ), μία

Διαβάστε περισσότερα

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ~ ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Μια συνάρτηση f ( ) u( x, y) iv( x, y ) έχει παράγωγο σε ένα σημείο x iy αν ικανοποιούνται

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θέματα τύπου Σωστό-Λάθος στις Πανελλαδικές Εξετάσεις από το 2000 έως 204 χωρισμένα σε Κεφάλαια Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 = 2. Για κάθε μιγαδικό αριθμό z ισχύει: α.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

Κεφάλαιο 12. Σειρές Ορισμός και Παραδείγματα Ορισμός

Κεφάλαιο 12. Σειρές Ορισμός και Παραδείγματα Ορισμός Κεφάλαιο 2 Σειρές Στο κεφάλαιο αυτό θα εισάγουμε την έννοια της σειράς, δηλαδή του αθροίσματος ενός άπειρου πλήθους πραγματικών αριθμών. Στην Παράγραφο 2. θα ορίσουμε, καταρχάς, τις σειρές, και θα δούμε

Διαβάστε περισσότερα

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης.

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κεφάλαιο 1 Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Stein and Shakarchi 2009 και Wheeden 2015. 1.1 Μέτρο Lebesgue στο R Αν E R το μέτρο

Διαβάστε περισσότερα

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x)

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - Λύσεις 2ης Σειράς Ασκήσεων Ασκηση 1. Για κάθε a,b και x 2, η f είναι παραγωγίσιµη.

Διαβάστε περισσότερα

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Πραγματική Ανάλυση Μέτρο και ολοκλήρωμα Lebesgue στο R Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Το μέτρο Lebesgue.. Μήκη διαστημάτων..................................2

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα