Πεπερασμένες Διαφορές.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πεπερασμένες Διαφορές."

Transcript

1 Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x 0, ορίζεται ως f (x 0 )=lim 0 f(x 0 + ) f(x 0 ) Χρησιμοποιώντας αυτόν τον ορισμό μπορούμε να προσεγγίσουμε την τιμή της f (x 0 ) από το λόγο f (x 0 ) f(x 0 + ) f(x 0 ), για μικρές τιμές του >0. Με τον ίδιο τρόπο μπορούμε να προσεγγίσουμε την f (x 0 ) από το λόγο f (x 0 ) f(x 0 ) f(x 0 ) = f(x 0) f(x 0 ), για μικρές τιμές του >0. Θα καλούμε τον πρώτο λόγο εμπρός διαφορά και το δεύτερο λόγο, οπισθοδρομική διαφορά και θα θεωρήσουμε τον ακόλουθο συμβολισμό. δ + f(x 0) f(x 0 + ) f(x 0 ), > 0 δ f(x 0) f(x 0) f(x 0 ), > 0 (1.1) 1

2 2 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ Γεωμετρική ερμηνεία Επειδή η παράγωγος μιας συνάρτησης f στο σημείο x 0, είναι η κλίση της εφαπτομένης ευθείας στο σημείο (x 0,f(x 0 )) του γραφήματος της f, μπορούμε γεωμετρικά να την προσεγγίσουμε με την κλίση του ευθύγραμμου τμήματος που τέμνει τα σημεία (x 0,f(x 0 )), και (x 0 +, f(x 0 +)), βλέπε το γράφημα Παρόμοια ισχύουν και για την κλίση του ευθύγραμμου τμήματος που ενώνει τα σημεία (x 0, f(x 0 )), και (x 0,f(x 0 )), βλέπετο γράφημα κλίση f(x0 + ) f(x0) κλίση f (x 0) x 0 x 0 + Σχήμα 1.1: Γεωμετρική ερμηνεία της δ + f(x 0) Ενας άλλος τρόπος προσέγγισης της παραγώγου f (x 0 ) είναι η κεντρική διαφορά, η οποία ορίζεται από τό λόγο, f (x 0 ) f(x 0 + ) f(x 0 ), 2 για μικρές τιμές του >0 και θα συμβολίζουμε δ c f(x 0) f(x 0 + ) f(x 0 ), > 0 (1.2) 2 Μια φυσική ερώτηση που δημουργείτε είναι `πόσο καλές είναι αυτές οι προσεγγίσεις για την εκτίμηση της παραγώγου. Ας θεωρήσουμε τη συνάρτηση f(x) =ln(x) και x 0 =1.1. Στο πίνακα 1.1, δίνουμε τις τιμές των παραπάνω προσεγγίσεων για την f (1.1) = 1/

3 1.1. ΠΡΟΣΕΓΓΙΣΗ ΠΑΡΑΓΩΓΩΝ. 3 κλίση f (x 0) κλίση f(x0) f(x0 ) x 0 x 0 Σχήμα 1.2: Γεωμετρική ερμηνεία της δ f(x 0) δ + f(1.1) δ f(1.1) δc f(1.1) Πίνακας 1.1: Πίνακας με τιμές των προσεγγίσεων της f (1.1) = 1/1.1 Λήμμα 1.1. Εστω f[a, b] R, f C 2 [a, b], x 0 (a, b) και >0, τότε ισχύουν τα ακόλουθα φράγματα: Αν επιπλέον f C 3 [a, b], τότε δ + f(x 0) f (x 0 ) 2 max x [a,b] f (x), δ f(x 0) f (x 0 ) 2 max x [a,b] f (x). (1.3) δ c f(x 0) f (x 0 ) 2 6 max x [a,b] f (x). (1.4) Απόδειξη. Αναπτύσοντας κατά Taylor έχουμε f(x 0 + ) =f(x 0 )+f (x 0 )+ 2 2 f (ξ 1 ), ξ 1 (x 0,x 0 + ), > 0. (1.5)

4 4 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ κλίση f (x 0) κλίση f(x0 + ) f(x0 ) 2 x 0 x 0 x 0 + Σχήμα 1.3: Γεωμετρική ερμηνεία της δ c f(x 0) Επίσης, f(x 0 ) =f(x 0 ) f (x 0 )+ 2 2 f (ξ 2 ), ξ 2 (x 0, x 0 ), > 0. (1.6) Από τις σχέσεις (1.5) και (1.6) εύκολα προκύπτει η ζητούμενη σχέση (1.3). Αν τώρα η f C 3 [a, b], μπορούμε να αναπτύξουμε και πάλι κατά Taylor και να πάρουμε τις παρακάτω δύο σχέσεις. f(x 0 + ) =f(x 0 )+f (x 0 )+ 2 2 f (x 0 )+ 3 6 f (ζ 1 ), ζ 1 (x 0,x 0 + ), f(x 0 ) =f(x 0 ) f (x 0 )+ 2 2 f (x 0 ) 3 6 f (ζ 2 ), ζ 2 (x 0, x 0 ), με >0. Αφαιρώντας τώρα κατά μέλη τις 2 σχέσεις της (1.7) έχουμε f(x 0 + ) f(x 0 ) =2f (x 0 )+ 3 6 (f (ζ 1 )+f (ζ 2 )), από όπου εύκολα προκύπτει η ζητούμενη σχέση (1.4). (1.7) Παρατήρηση: Από το Λήμμα 1.1, φαίνεται ότι το σφάλμα της προσέγγισης δ c f(x 0) είναι μικρότερο από τα αντίστοιχα των προσεγγίσεων δ + f(x 0) και

5 1.1. ΠΡΟΣΕΓΓΙΣΗ ΠΑΡΑΓΩΓΩΝ. 5 δ f(x 0), για <1 και εξηγεί γιατί στον Πίνακα 1.1 η δ c f(1.1) προσεγγίζει καλύτερα την f (1.1) από τις δ + f(1.1) και δ f(1.1). Η συμμετρία που υπάρχει στον ορισμό της προσέγγισης δ c f(x 0) είναι ο λόγος γιατί το σφάλμα (1.4) είναι μικρότερο από αυτών των δ + f(1.1) και δ f(1.1). Αυτό φαίνεται στην (1.7), όπου οι όροι 2 2 f (x 0 ) αλληλοαναιρούνται αφαιρώντας τις δύο σχέσεις Δεύτερη παράγωγος. Από τον ορισμό της δεύτερης παράγωγου μιας συνάρτησης f στο x 0 έχουμε f f (x 0 + ) f (x 0 ) (x 0 )=lim. 0 Οπότε, μπορούμε να την προσεγγίσουμε χρησιμοποιώντας μία από τις προσεγγίσεις δ + f (x 0 ), δ f (x 0 ) ή δ c f (x 0 ). Αν όμως θέλουμε να χρησιμοποιήσουμε μόνο τιμές της f, θα πρέπει να αντικαταστήσουμε την f (x 0 ) με κάποια προσέγγιση της. Ετσι ένας τρόπος είναι f (x 0 ) δ + f (x 0 )= f (x 0 + ) f (x 0 ) =δ + δ f(x 0). δ f(x 0 + ) δ f(x 0) Από τον ορισμό των δ + και δ προκύπτει ότι δ + δ f(x 0)= 1 (f(x 0 + ) f(x 0 ) f(x 0) f(x 0 ) ) = f(x 0 + ) 2f(x 0 )+f(x 0 ) 2. Ακολουθώντας παρόμοιο τρόπο μπορούμε να προσεγγίσουμε την f (x 0 ) ως f (x 0 ) δ f (x 0 )= f (x 0 ) f (x 0 ) =δ δ+ f(x 0). δ+ f(x 0 + ) δ + f(x 0) Από όπου προκύπτει δ δ+ f(x 0)= 1 (f(x 0 + ) f(x 0 ) f(x 0) f(x 0 ) ) = f(x 0 + ) 2f(x 0 )+f(x 0 ) 2.

6 6 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ δ,2 c f(1.1) Πίνακας 1.2: Πίνακας με τιμές των προσεγγίσεων της f (1.1) = 1/(1.1) Επίσης από τον ορισμό της δ c έχουμε δ c /2 δc /2 f(x 0)= δc /2 f(x 0 + /2) δ c /2 f(x 0 /2) = 1 (f(x ) f(x ) = f(x 0 + ) 2f(x 0 )+f(x 0 ) 2. Συμβολίζουμε λοιπόν f(x ) f(x ) ) δ c,2 f(x 0) f(x 0 + ) 2f(x 0 )+f(x 0 ) 2, (1.8) και αυτός ο λόγος θα αποτελεί προσέγγιση της f (x 0 ).Οπότεσύμφωναμετα παραπάνω θα έχουμε ότι δ c,2 f(x 0)=δ + δ f(x 0)=δ δ+ f(x 0)=δ c /2 δc /2 f(x 0). Στο πίνακα 1.2, δίνουμε τιμές για παραπάνω προσεγγίσης για τη συνάρτηση f(x) =ln(x) και x 0 =1.1, όπουf (1.1) = 1/(1.1) Λήμμα 1.2. Εστω f[a, b] R, f C 4 [a, b], x 0 (a, b) και >0, τότε ισχύει το ακόλουθο φράγμα: δ c,2 f(x 0) f (x 0 ) 2 12 max x [a,b] f (4) (x). (1.9) Απόδειξη. Αν τώρα η f C 4 [a, b], μπορούμε να αναπτύξουμε και πάλι κατά Taylor και να πάρουμε τις παρακάτω δύο σχέσεις. f(x 0 + ) =f(x 0 )+f (x 0 )+ 2 2 f (x 0 )+ 3 6 f (x 0 ) f (4) (ζ 1 ), f(x 0 ) =f(x 0 ) f (x 0 )+ 2 2 f (x 0 ) 3 6 f (x 0 ) f (4) (ζ 2 ), (1.10)

7 1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 7 με ζ 1 (x 0,x 0 + ), ζ 2 (x 0, x 0 ) και >0. Προσθέτοντας κατά μέλη τις 2 σχέσεις της (1.10) έχουμε f(x 0 + )+f(x 0 ) =2f(x 0 )+ 2 f (x 0 ) (f (4) (ζ 1 )+f (4) (ζ 2 )). Συνεπώς από το θεώρημα ενδιάμεσης τιμής έχουμε f(x 0 + ) 2f(x 0 )+f(x 0 ) 2 από όπου εύκολα προκύπτει η ζητούμενη σχέση (1.9). 1.2 Το πρόβλημα 2 σημείων. = f (x 0 ) f (4) (ξ), ξ (ζ 2,ζ1), (1.11) Θεωρούμε το πρόβλημα δύο σημείων για μια συνήθη διαφορική εξίσωση (Σ.Δ.Ε.) δεύτερης τάξης: Ζητείται μια συνάρτηση u C 2 [a, b], τέτοιαώστε u (x)+q(x)u(x) =f(x), x [a, b], με u(a) =u(b) =0, (1.12) όπου a, b R, q, f C[a, b] και q(x) > 0, για κάθε x [a, b]. Θα θεωρήσουμε ένα φυσικό αριθμό N και μια διαμέριση του διαστήματος [a, b] από ισαπέχοντα N +2 σημεία a = x 0 <x 1 <...<x N <x N+1 = b, όπου = x i+1 x i, i =0,...,N. Τότε σε κάθε σημείο του διαμερισμού x i, i =1,...,N,θαισχύει: u (x i )+q(x i )u(x i )=f(x i ), i =1,...,N. (1.13) Σκοπός μας είναι να κατασκευάσουμε προσεγγίσεις των τιμών u(x i ) της ακριβούς λύσης του (1.12), τις οποίες θα συμβολίζουμε με U i, i =0,...,N+1. Λόγω των συνοριακών συνθήκών έχουμε ότι u(x 0 )=u(x N+1 )=0, θέτουμε λοιπόν U 0 = U N+1 =0. Οι τιμές των U i, i =1,...,N προκύπτουν με τον ακόλουθο τρόπο. Για να προσεγγίσουμε την u (x) στα σημεία x i, i =1,...,N,χρησιμοποιούμε την προσέγγιση δ,2 c που θεωρήσαμε στην (1.8), έτσι αν υποθέσουμε ότι u C 4 [a, b], λόγω της (1.11) η (1.13) γίνεται, u(x i+1) 2u(x i )+u(x i 1 ) 2 + q(x i )u(x i )=f(x i )+η i, i =1,...,N, (1.14) όπου η i = 2 12 u(4) (ξ i ), μεξ i (x i 1,x i+1 ). Για να κατασκευάσουμε λοιπόν προσεγγίσεις U i των u(x i ), i =1,...,N, θεωρούμε τις ακόλουθες εξισώσεις U i+1 2U i + U i q(x i )U i = f(x i ), i =1,...,N. (1.15)

8 8 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ Επομένως αν συμβολίσουμε με U R N, το διάνυσμα με συνιστώσες U = (U 1,...,U N ) T, το σύστημα των εξισώσεων (1.15) μπορούμε να το γράψουμε ισοδύναμα με το γραμμικό σύστημα AU = F, (1.16) όπου A είναι ο N N πίνακας 2+ 2 q(x 1 ) A = q(x 2 ) q(x N 1 ) q(x N ) και F =(f(x 1 ),...,f(x N )) T. Ενα ερώτημα που δημιουργείται είναι αν το γραμμικό σύστημα (1.36) έχει μοναδική λύση, το οποίο είναι ισοδύναμο μετο αν ο πίνακας A είναι αντιστρέψιμος. Οπως εύκολα μπορούμε να παρατηρήσουμε ο πίνακας A είναι τριδιαγώνιος, δηλαδή τα στοιχεία a ij =0αν i j > 1 και έχει αυστηρά κυριαρχική διαγώνιο αν q(x) > 0 για x [a, b]. Οπωςθαδούμε παρακάτω, υπάρχουν εύκολα υλοποιήσιμοι αλγόριθμοι για την ανάλυση LU ενός αντιστρέψιμου τριδιαγώνιου πίνακα Επίλυση τριδιαγώνιου γραμμικού συστήματος Εστω ότι θέλουμε να λύσουμε το γραμμικό σύστημα Ay = z, δηλαδή να βρούμε το y R N,όπουA είναι ένας N N τριδιαγώνιος πίνακας με στοιχεία a 1 b 1 0 c 2 a 2 b 2 A = , (1.17) 0 c N 1 a N 1 b N 1 c N a N και z R N ένα δοσμένο διάνυσμα. Για τα στοιχεία του πίνακα A, θα κάνουμε τις ακόλουθες υποθέσεις a 1 > b 1, a k b k + c k, k =2,...,N 1, a N > c N. (1.18) Για να λύσουμε το γραμμικό σύστημα Ay = b μπορούμε να εφαρμόσουμε διάφορους αλγόριθμους όπως είναι η απαλοιφή Gauss. Στηνπερίπτωσηόμως του πίνακα A, είναι προτιμότερο να χρησιμοποιήσουμε έναν αλγόριθμο που να εφαρμοστεί ειδικά για τριδιαγώνιους πίνακες, όπως ο ακόλουθος:

9 1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 9 Ο πίνακας A μπορεί να γραφεί ως γινόμενο δύο πινάκων LU που έχουν τη μορφή L = 1 e 1,U= 1 e , (1.19) 0 c N d N 1 d 1 c 2 d δηλαδή έχουν μη μηδενικά στοιχεία στη διαγώνιο και ο L στην πρώτη υποδιαγώνιο και ο U στην πρώτη υπερδιαγώνιο. Είναι απλό να δούμε ότι οι αριθμοί d 1,...,d N και e 1,...,e N 1 προκύπτουν με τον ακόλουθο αλγόριθμο, d 1 = a 1,e 1 = b 1 /d 1 για k =2, 3,...,N 1 d k = a k c k e k 1 e k = b k /d k τέλος για d N = a k c N e N 1. (1.20) Η υπάρξη των πινάκων L και U, και η ολοκλήρωση του αλγορίθμου (1.20) αποδεικνύεται στο ακόλουθο λήμμα. Λήμμα 1.3. Εστω A ένας τριδιαγώνιος πίνακας της μορφής (1.17) τέτοιος ώστε ισχύουν οι υποθέσεις (1.18), τότε υπάρχουν πίνακες L και U και ο αλγόριθμος (1.20) είναι καλά ορισμένος και ολοκληρώνεται. Απόδειξη. Για να είναι ο αλγόριθμος (1.17) καλά ορισμένος και συνεπώς να υπάρχει η ανάλυση του Α=LU (1.19), αρκεί να ισχύει, d k 0, k =1,...,N. Από τις υποθέσεις (1.18) έχουμε ότι a 1 > b 1,οπότε e 1 < 1. Επαγωγικά μπορούμε θα δείξουμε ότι d k 0,k =1,...,N, e k < 1 Εστω ότι ισχύει d k 1 0, e k 1 < 1 για κάποιο k. Τότε d k = a k c k e k 1 a k c k e k 1 > a k c k b k > 0. Επιπλέον e k = b k / d k < 1 Εφόσον έχουμε δείξει ότι A = LU, για να λύσουμε τώρα το γραμμικό σύστημα LUy = z, λύνουμε πρώτα το Lw = z εφαρμόζοντας τον ακόλουθο

10 10 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ αλγόριθμο w 1 = z 1 /d 1 για k =2, 3,...,N 1 τέλος για w k =(z k c k w k 1 )/d k (1.21) και στη συνέχεια το διάνυσμα y προκύπτει ως λύση του γραμμικού συστήματος Uy = w y N = w N για k = N 1,N 2,...,1 τέλος για y k = w k e k y k+1 (1.22) Παράδειγμα 1: Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών u (x)+u(x) =sin(2πx), 0 <x<1, με u(0) = u(1) = 0. (1.23) Η ακριβής λύση αυτού του προβλήματος είναι η u(x) = sin(2πx) 1+4π 2. (1.24) Η εξίσωση πεπερασμένων διαφορών (1.15) γίνεται τώρα U i+1 2U i + U i U i =sin(2πx i ), i =1,...,N. (1.25) Χρησιμοποιώντας τον παραπάνω αλγόριθμο, μπορούμε να βρούμε διακριτές λύσεις που προσεγγίζουν την ακριβή λύση, όπως φαίνεται από το γράφημα Ανάλυση της μεθόδου πεπερασμένων διαφορών Θεώρημα 1.1. Εστω U R N η λύση του προβλήματος (1.15), μεu 0 = U N+1 =0. Τότε ισχύει η ακόλουθη ανισότητα, max 0 i N+1 U i max x [a,b] f(x i). (1.26)

11 1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ ακριβής λύση λύση για N =2 λύση για N = Λύση x άξονας Σχήμα 1.4: Παράδειγμα 1: Ακριβής και προσεγγιστικές λύσεις Απόδειξη. Από τη σχέση (1.15), εύκολα παίρνουμε (2 + 2 q(x i ))U i = U i+1 + U i 1 + f(x i ), 1 i N. Στη συνέχεια, επειδή q συνεχής και q(x) > 0, για x [a, b], αν θέσουμε q min =min x [a,b] q(x), η παραπάνω ισότητα δίνει για κάθε i =1,...,N, Οπότε (2 + 2 q min ) U i U i+1 + U i 1 + f(x i ) 2 max U i +max 0 i N+1 x [a,b] f(x). (2 + 2 q min ) max U i 2 max U i +max 1 i N 0 i N+1 η οποία εύκολα δίνει τη ζητούμενη σχέση (1.32). x [a,b] f(x), Ευστάθεια: Μια αριθμητική μέθοδος λέγεται ευσταθής αν μικρές μεταβολές των δεδομένων οδηγούν σε μικρές μεταβολές της αριθμητικής λύσης. Στην ειδική περίπτωση που η διαφορική εξίσωση είναι γραμμική όπως είναι η (1.12), ζητούμε η αριθμητική λύση να φράσσεται με μια σταθερά επί τα δεδομένα, όπως η σχέση (1.32). Η ευστάθεια του αριθμητικού σχήματος είναι εσωτερική ιδιότητα του σχήματος, δηλαδή δεν έχει σχέση με τη συγκεκριμμένο πρόβλημα που θέλουμε να λύσουμε.

12 12 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ Από το Θεώρημα 1.1 μπορούμε να δείξουμε ότι το γραμμικό σύστημα που οδηγεί η (1.15) έχει μοναδική λύση. Αν θεωρήσουμε το αντίστοιχο ομογενές γραμμικό σύστημα, τότε από το Θεώρημα 1.1, οδηγούμαστε ότι η μοναδική λύση είναι η μηδενική λύση U i =0, i =0,...,N +1. Συνέπεια: Αν αντικαταστήσουμε στο αριθμητικό σχήμα που ικανοποιεί η προσεγγιστική λύση U, (1.15), με την ακριβή λύση u, τότε θα πάρουμε τη σχέση (1.14). Φυσικά το διάνυσμα με συνιστώσες u(x i ), i =1,...,N δεν θα ικανοποιεί τη (1.15) και θα υπάρχει ένα σφάλμα, όπως φαίνεται από τη (1.14). Αν αυτό το σφάλμα η i, τείνει στο μηδέν καθώς το τείνει στο μηδέν, όπως γίνεται στη περίπτωση του σχήματος που μελετούμε, τότε η μέθοδος λέγεται συνεπής. Θεώρημα 1.2. Εστω ότι η λύση u του προβλήματος (1.12) είναι αρκετά ομαλή, u C 4 [a, b], τότε υπάρχει μια σταθερά C, ανεξάρτητη του, τέτοια ώστε max U i u(x i ) C 2. (1.27) 0 i N+1 Απόδειξη. Θέτουμε E i = U i u(x i ), i =0,...,N+1, όπου λόγω των σχέσεων U 0 = u(a) =0και U N+1 = u(b) =0, έχουμε E 0 = E N+1 =0. Αφαιρούμε τώρα κατά μέλη τις (1.15) και (1.14), οπότε παίρνουμε E i+1 (2 + q(x i ) 2 )E i + E i 1 = 2 η i, i =1,...,N, όπου λόγω του Λήμματος 1.2, max η i 2 1 i N 12 max a x b u(4) (x). Θέτουμε στη συνέχεια Ē =max 1 i N E i, η =max 1 i N η i και επειδή q συνεχής και q(x) > 0, για x [a, b], q min =min x [a,b] q(x). Συνεπώς οπότε Από όπου προκύπτει η οποία δίνει τη ζητούμενη ανισότητα (2 + q(x i ) 2 )E i = E i+1 + E i η i, (2 + q min 2 ) E i 2Ē + 2 η. q min 2 max E i 2 η 1 i N max E i η C 2 1 i N

13 1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ Συνοριακές Συνθήκες Neumann Θεωρούμε τώρα το πρόβλημα δύο σημείων (1.12), με διαφορετικές συνοριακές συνθήκες, δηλαδή το εξής: u (x)+q(x)u(x) =f(x), x [a, b], με u (a) =u (b) =0, (1.28) όπου a, b R, q, f C[a, b] και q(x) > 0, για κάθε x [a, b]. Σε αυτή την περίπτωση είναι απαραίτητο να ισχύει ότι q>0 στο [a, b], γιατί διαφορετικά δεν έχουμε μοναδική λύση του (1.28). Πράγματι, το πρόβλημα u (x) =0, x [a, b], με u (a) =u (b) =0, (1.29) έχει ως λύση όλες τις σταθερές συναρτήσεις στο [a, b]. Θεωρούμε και πάλι ένα φυσικό αριθμό N και μια διαμέριση του διαστήματος [a, b] από ισαπέχοντα N +2 σημεία a = x 0 <x 1 <...<x N <x N+1 = b, όπου = x i+1 x i, i =0,...,N. Σκοπός μας είναι και πάλι να κατασκευάσουμε προσεγγίσεις U i των τιμών u(x i ) της ακριβούς λύσης του (1.28). Ομως σε αντίθεση με προηγουμένως δεν γνωρίζουμε τις τιμές u(x 0 ) και u(x N+1 ). Ετσι τώρα θα χρειαστούμε 2 επιπλέον εξισώσεις εκτός από τις (1.15), για να υπολογίσουμε τα U i, i =0,...,N +1. Ενας τρόπος για να το κάνουμε αυτό είναι να θεωρήσουμε ότι η u επεκτείνεται άρτια αριστερά του a και δεξιά του b, δηλαδή u(a + ) =u(a ) και u(b ) =u(b + ), >0. Ο λόγος που θεωρούμε άρτια επέκταση είναι διότι αν π.χ. η u είναι άρτια γύρω από το a, τότεu (a) =lim 0 (u(a + ) u(a )/(2) =0. Επομένως η προσέγγιση της u (a), δ,2 c u(a) γίνεται δ,2 c + ) 2u(a)+u(a ) u(a + ) u(a) u(a) =u(a 2 =2 2. Συνεπώς οι δύο επιπλέον σχέσεις που συμπληρώνουν τις (1.15) εδώ είναι 2 U 1 U q(x 0 )U 0 = f(x 0 ) 2 U N U N q(x N+1 )U N+1 = f(x N+1 ) (1.30) Επομένως αν συμβολίσουμε με U R N+2, το διάνυσμα με συνιστώσες U = (U 0,...,U N+1 ) T το νέο σύστημα εξισώσεων μπορούμε να το γράψουμε ισοδύναμα AU = F, (1.31)

14 14 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ όπου A είναι ο (N +2) (N +2)πίνακας 2+ 2 q(x 0 ) A = q(x 1 ) q(x N ) q(x N+1 ) και F =(f(x 0 ),...,f(x N+1 )) T. Προκύπτει λοιπόν ένα τριδιαγώνιο γραμμικό σύστημα με αυστηρά κυριαρχική διαγώνιο διότι q>0. Με όμοια επιχειρήματα όπως και στην περίπτωση του Θεωρήματος 1.1, προκύπτει Θεώρημα 1.3. Εστω U R N+2 η λύση του προβλήματος (1.28). ισχύει η ακόλουθη ανισότητα, Τότε max U i max f(x i). (1.32) 0 i N+1 x [a,b] Απόδειξη. Η απόδειξη προκύπτει με ανάλογο τρόπο όπως και αυτή του Θεωρήματος 1.1 Και σε αυτό το πρόβλημα μπορούμε να δείξουμε ότι η προσεγγιστική λύση θα συγκλίνει στην ακριβή λύση του (1.28). Θεώρημα 1.4. Εστω ότι η λύση u του προβλήματος (1.28) είναι αρκετά ομαλή, u C 4 [a, b], τότε υπάρχει μια σταθερά C, ανεξάρτητη του, τέτοια ώστε max U i u(x i ) C. (1.33) 0 i N+1 Απόδειξη. Η απόδειξη προκύπτει με ανάλογο τρόπο όπως και αυτή του Θεωρήματος 1.2 Παρατήρηση: Μπορούμε να δείξουμε μεγαλύτερη τάξη σύγκλισης (δηλαδή 2) όπως και για τη μέθοδο για το πρόβλημα με τις ομογενείς συνοριακές συνθήκες, όπως χρειαζόμαστε περισσότερη αναλύση της μεθόδου που δεν θα αναπτύξουμε σε αυτές τις σημειώσεις Ενα γενικότερο πρόβλημα Θεωρούμε τώρα το πρόβλημα δύο σημείων (1.12), με ομογενείς συνοριακές συνθήκες Diriclet, u (x)+p(x)u (x)+q(x)u(x) =f(x), x [a, b], με u(a) =u(b) =0, (1.34)

15 1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 15 όπου a, b R, p, q, f C[a, b] και q(x) > 0, για κάθε x [a, b]. Σκοπός μας είναι να κατασκευάσουμε προσεγγίσεις των τιμών u(x i ) της ακριβούς λύσης του (1.12), τις οποίες θα συμβολίζουμε με U i, i =0,...,N+1. Λόγω των συνοριακών συνθήκών έχουμε ότι u(x 0 )=u(x N+1 )=0, θέτουμε λοιπόν U 0 = U N+1 =0. Οι τιμές των U i, i =1,...,N προκύπτουν με τον ακόλουθο τρόπο U i+1 2U i + U i p(x i ) U i+1 U i q(x i )U i = f(x i ), i =1,...,N. (1.35) Επομένως αν συμβολίσουμε με U R N, το διάνυσμα με συνιστώσες U = (U 1,...,U N ) T το νέο σύστημα εξισώσεων μπορούμε να το γράψουμε ισοδύναμα AU = F, (1.36) όπου A R N+1 N+1 είναι ο πίνακας 2+ 2 q(x 0 ) 1+p(x 1 ) A = 1 1 p(x 2 ) q(x 1 ) 1+p(x 2 ) p(x N 1 ) q(x N 1 ) 1+p(x N 1 ) p(x N ) q(x N ) και F =(f(x 1 ),...,f(x N )) T. Προκύπτει λοιπόν ένα τριδιαγώνιο γραμμικό σύστημα. Για να έχει αυστηρά κυριαρχική διαγώνιο ο A πρέπει καθώς και 2+ 2 q(x i ) 1+p(x i ) p(x i), i =2,...,N 1, q(x 1 ) 1 p(x 1 ) 2, και 2+2 q(x N ) 1+p(x N ) 2. Για να ισχύουν οι παραπάνω αρκεί να ισχύει ότι p(x i ) 2 < 1, γιατί σε αυτή την περίπτωση έχουμε ότι 1+p(x i ) 2 > 0 και 1 p(x i) 2 > 0. Με όμοια επιχειρήματα όπως και στην περίπτωση του Θεωρήματος 1.1, προκύπτει Θεώρημα 1.5. Εστω U R N η λύση του προβλήματος (1.34) και επιπλέον p(x i ) 2 < 1, i =0,...,N +1. Τότε ισχύει η ακόλουθη ανισότητα, max U i max f(x i). (1.37) 0 i N+1 x [a,b] Απόδειξη. Η απόδειξη προκύπτει με ανάλογο τρόπο όπως και αυτή του Θεωρήματος 1.1

16 16 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ 1.3 Ασκήσεις Ασκήσεις για προβλήματα συνοριακών τιμών της μορφής: u (x)+p(x)u + q(x)u(x) =f(x), u(a) =c, u(b) =d. x [a, b], 1. Εστω u η λύση του προβλήματος συνοριακών τιμών x 2 u (x) xu (x)+4u(x) =20x 3, x [1, 2], u(1) = 0, u(2) = 0. Γράψτε το αριθμητικό σχήμα πεπερασμένων διαφορών χρησιμοποιώντας κεντρικές διαφορές. Ποιός είναι ο περιορισμός για το βήμα, ώστε ο α- ντίστοιχός πίνακας που χρησιμοποιούμε για την προσέγγιση της λύσης να είναι αντιστρέψιμος; 2. Εστω u η λύση του προβλήματος συνοριακών τιμών u (x)+u =1, u(a) =c, u(b) =d. x [a, b], (αʹ) Εστω ότι προσεγγίζουμε τη δεύτερη παράγωγο, u (x i ),μετηκεντρική διαφορά (u(x i+1 ) 2u(x i )+u(x i 1 ))/ 2 και τη πρώτη παράγωγο, u (x i ), με τη διαφορά (u(x i ) u(x i 1 ))/. Ποιό θα είναι το διακριτό σχήμα και ποιό το σφάλμα διακριτοποίησης; (βʹ) Γράψτε τη μέθοδο σε μορφή πινάκων. Για να είναι αντιστρέψιμος ο πίνακας υπάρχει περιορισμός στο βήμα ; 3. Εστω u η λύση του προβλήματος συνοριακών τιμών u (x)+u(x) =f(x), x [0, 1], au(0) + bu (0) = c, u(1) = 0. (αʹ) Διατυπώστε ένα διακριτό σχήμα με σφάλμα διακριτοποίησης O( 2 ). (βʹ) Γράψτε τη μέθοδο σε μορφή πινάκων. 4. Εστω u η λύση του προβλήματος συνοριακών τιμών u (x)+u(x) =f(x), x [0, 1], u(0) = u(1), u (0) = u (1).

17 1.3. ΑΣΚΗΣΕΙΣ 17 (αʹ) Διατυπώστε ένα διακριτό σχήμα με σφάλμα διακριτοποίησης O( 2 ). (βʹ) Γράψτε τη μέθοδο σε μορφή πινάκων. 5. (αʹ) Χρησιμοποιώντας το θεώρημα του Taylor δείξτε ότι u(x i+1 ) 2u(x i )+ u(x i 1 )= 2 u (x i ) u (x i )+O( 6 ) και από αυτό δείξτε ότι u(x i+1 ) 2u(x i )+u(x i 1 )= (u (x i+1 )+10u (x i )+u (x i 1 ))+ O( 6 ). (βʹ) Αν υποθέσουμε ότι η u ικανοποιεί τη Δ.Ε. u (x) =F (x, u), χρησιμοποιείστε το παραπάνω αποτέλεσμα για να καταλήξετε στη μέθοδο πεπερασμένων διαφορών (U i+1 2U i + U i+1 )= 2 12 (F i+1 +10F i + F i+1 ) (γʹ) Διατυπώστε τη μέθοδο οταν F (x, u) = f(x) q(x)u. Γράψτε τη μέθοδο σε μορφή πίνακα. 6. Θεωρούμε το πρόβλημα d dx (D(x) d u(x)) + u(x) =f(x), x [0, 1], dx u(0) = u(1) = 0. όπου D είναι θετική συνάρτηση. (αʹ) Γράψτε ένα πεπλεγμένο αριθμητικό σχήμα με σφάλμα διακριτοποίησης O( 2 ). Εκφράστε τη μέθοδο και σε μορφή πίνακα. (βʹ) Είναι αυτή η μέθοδος ευσταθής; 7. Θεωρούμε το πρόβλημα u (x)+p(x)u + q(x)u(x) =f(x), x [0, 1], u(0) = u(1) = 0. Θεωρούμε ένα μη ομοιόμορφο διαμερισμό του διαστήματος [0, 1], και συμβολίζουμε με i = x i x i 1 (αʹ) Εκφράστε με πεπερασμένες διαφορές την προσέγγιση της πρώτης και της δεύτερης παραγώγου στο x i και δώστε το τοπικό σφάλμα διακριτοποίησης. Οι προσεγγίσεις πρέπει να είναι συνεπείς, δηλαδή αν i και i+1 πάει στο μηδέν, τότε το σφάλμα τείνει και αυτό στο μηδέν. (βʹ) Χρησιμοποιήστε τα αποτελέσματα του προηγούμενου ερωτήματος για να διατύπώστε ένα σχήμα πεπερασμένων διαφορών για την παραπάνω διαφορική εξίσωση.

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Τα θεωρήματα Green, Stokes και Gauss

Τα θεωρήματα Green, Stokes και Gauss Τα θεωρήματα των Green, Stokes και Guss Αντώνης Τσολομύτης Σάμος, 2012 curl F div S F Επειδή αναϕέρθηκε στο μάθημα... Ενεργητική ϕωνή Ενεστώτας παράγω παρέχω Ενεστώτας-υποτακτική να παράγω να παρέχω Ενεστώτας-προστακτική

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 1 ΕΙΣΑΓΩΓΙΚΟ-ΠΑΡΑΓΩΓΟΙ Ορισμός παραγώγου συνάρτησης σε σημείο Μια συνάρτηση f (X) λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014 ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ Ιωάννινα 0 Περιεχόμενα ΕΙΣΑΓΩΓΗ 5. Νόρμες.................................... 6. Υπαρξη και μονοσήμαντο.......................... 8 ΟΜΟΙΟΜΟΡΦΗ

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 9 Φεβουαρίου 007 Ημερομηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε Συνέχεια συνάρτησης Σελ 17 ΜΕΘΟΔΟΛΟΓΙΑ 4.0.1 Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε κάποιο διάστημα τιμών της μεταβλητής της, οδηγεί στην εφαρμογή του θεωρήματος Βlzan ως εξής: i) Μεταφέρουμε

Διαβάστε περισσότερα

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013 ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 3 Εισαγωγή Μέσα Μαΐου και ο πυρετός των Πανελλαδικών όλο και ανεβαίνει! Οι μαθητές ξεκοκαλίζουν τα βιβλία για να ανακαλύψουν δύσκολα θέματα διαφορετικά από αυτά που κυκλοφορούν

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q)

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q) Κεφάλαιο 2 Κανονικές επιφάνειες Σύνοψη Προκειμένου να ορίσουμε την έννοια της επιφάνειας στον R 3, έχουμε δύο δυνατές προσεγγίσεις. Με την πρώτη μπορούμε να ορίσουμε μια επιφάνεια ως ένα υποσύνολο του

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Σημαντικές παρατηρήσεις

Σημαντικές παρατηρήσεις ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Διαφορικός Λογισμός Σημαντικές παρατηρήσεις Φυλλάδιο Φυλλάδι555 5 ο ο Η έννοια της παραγώγου Να υπάρχει διάστημα της μορφής ή ή α,,β

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Μεθοδολογία στους Μιγαδικούς

Μεθοδολογία στους Μιγαδικούς ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στους ΜΙΓΑΔΙΚΟΥΣ Α. ΜΙΓΑΔΙΚΟΙ.Περιγράψτε το σύνολο των μιγαδικών αριθμών και δώστε τους ορισμούς της πρόσθεσης, του πολ/σμού και της ισότητας δύο μιγαδικών αριθμών.(σελ. 86-87, τα μπλε

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα