L 2 -σύγκλιση σειρών Fourier

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "L 2 -σύγκλιση σειρών Fourier"

Transcript

1 Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό γινόµενο αν ικανοποιεί τα εξήσ: (α) x, x 0 για κάθε x X, µε ισότητα αν και µόνο αν x = 0. (ϐ) x, y = y, x, για κάθε x, y X. (γ) για κάθε y X η συνάρτηση x x, y είναι γραµµική. Πρόταση 7.1. (ανισότητα Cauchy-Schwarz). Εστω X χώρος µε εσωτερικό γινόµενο. Αν x, y X, τότε (7.1.1) x, y x, x y, y. Απόδειξη. Εξετάζουµε πρώτα την περίπτωση K = C. Εστω x, y X και έστω M = x, y. Υπάρχει θ R ώστε x, y = Me iθ. Για κάθε µιγαδικό αριθµό λ = re it έχουµε 0 λx + y, λx + y = λ x, x + λ x, y + λ x, y + y, y = λ x, x + Re(λ x, y ) + y, y = r x, x + Re(rMe i(θ+t) ) + y, y. Επιλέγουµε το t έτσι ώστε e i(θ+t) = 1. Τότε, έχουµε (7.1.) r x, x rm + y, y 0 για κάθε r > 0. Παίρνοντας r = y, y / x, x έχουµε το Ϲητούµενο (η περίπτωση x = 0 ή y = 0 είναι προφανής). 17

2 18 ΚΕΦΑΛΑΙΟ 7. L -ΣΥΓΚΛΙΣΗ ΣΕΙΡΩΝ FOURIER ισχύει Στην περίπτωση που K = R, παρατηρούµε ότι για κάθε x, y X και για κάθε t R (7.1.3) 0 tx + y, tx + y = t x, x + t x, y + y, y. Η διακρίνουσα του τριωνύµου ως προς t πρέπει να είναι µικρότερη ή ίση από µηδέν. Άρα, 4 x, y 4 x, x y, y 0. Αυτό δίνει το Ϲητούµενο. Ορίζουµε : X R µε x = x, x. Η ανισότητα Cauchy-Schwarz µας επιτρέπει να δείξουµε ότι η είναι νόρµα : Πρόταση Εστω X χώρος µε εσωτερικό γινόµενο. Η συνάρτηση : X R, µε x = x, x είναι νόρµα. Απόδειξη. Αρκεί να ελέγξουµε την τριγωνική ανισότητα (οι άλλες ιδιότητες είναι απλές). Οµως, x + y = x + y, x + y = x + x, y + y, x + y = x + y + Re( x, y ) x + y + x, y x + y + x y = ( x + y ), από τις ιδιότητες του εσωτερικού γινοµένου και την ανισότητα Cauchy-Schwarz. Παρατήρηση Εστω X χώρος µε εσωτερικό γινόµενο και έστω η επαγόµενη νόρµα. Από την ανισότητα Cauchy-Schwarz έπεται εύκολα ότι το εσωτερικό γινόµενο είναι συνεχές ως προς την : Αν x n x και y n y ως προς την, τότε (7.1.4) x n, y n x, y. Για την απόδειξη γράφουµε x n, y n x, y = x n, y n y + x n x, y x n, y n y + x n x, y x n y n y + x n x y. Η (x n ) συγκλίνει άρα είναι ϕραγµένη, και y n y 0, x n x 0. Άρα, (7.1.5) x n, y n x, y. Ειδικότερα, για κάθε y X η απεικόνιση x x, y είναι ϕραγµένο γραµµικό συναρτησοειδές στον X.

3 7.1. ΧΩΡΟΙ HILBERT 19 Ορισµός Ενας χώρος Banach λέγεται χώρος Hilbert αν υπάρχει εσωτερικό γινό- µενο, στον X ώστε x = x, x για κάθε x X. Στη συνέχεια συµβολίζουµε τους χώρους Hilbert µε H. Κάθε χώρος Hilbert ικανοποιεί τον κανόνα του παραλληλογράµµου: για κάθε x, y H, (7.1.6) x + y + x y = x + y. Αντίστροφα, αν η νόρµα ενός χώρου Banach X ικανοποιεί τον κανόνα του παραλληλογράµµου, τότε προέρχεται από εσωτερικό γινόµενο το οποίο ορίζεται από την (7.1.7) x, y = 1 4 { x + y x y } στην περίπτωση K = R, και από την (7.1.8) x, y = 1 4 ( x + y x y + i x + iy i x iy ) στην περίπτωση K = C Καθετότητα Ορισµός (καθετότητα). Εστω X ένας χώρος µε εσωτερικό γινόµενο. Λέµε ότι τα x, y X είναι ορθογώνια (ή κάθετα) και γράφουµε x y, αν x, y = 0. Αν x X και M είναι ένα µη κενό υποσύνολο του X, λέµε ότι το x είναι κάθετο στο M και γράφουµε x M αν x y για κάθε y M. Παρατηρήσεις (α) Το 0 είναι κάθετο σε κάθε x X, και είναι το µοναδικό στοιχείο του X που έχει αυτήν την ιδιότητα. (ϐ) Αν x y, ισχύει το Πυθαγόρειο ϑεώρηµα: x + y = x + y. Ορισµός Εστω X ένας χώρος µε εσωτερικό γινόµενο και έστω M γραµµικός υπόχωρος του X. Ορίζουµε (7.1.9) M = {x X : y M, x, y = 0}. Ο M είναι κλειστός γραµµικός υπόχωρος του X Πρόταση Εστω H χώρος Hilbert, M κλειστός γραµµικός υπόχωρος του H, και x H. Υπάρχει µοναδικό y 0 M ώστε (7.1.10) x y 0 = dist(x, M) = inf{ x y : y M}. Το µοναδικό αυτό y 0 M συµβολίζεται µε P M (x), ονοµάζεται προβολή του x στον M και ικανοποιεί την x P M (x) M.

4 0 ΚΕΦΑΛΑΙΟ 7. L -ΣΥΓΚΛΙΣΗ ΣΕΙΡΩΝ FOURIER Απόδειξη. Θέτουµε δ = dist(x, M). Υπάρχει ακολουθία (y n ) στον M ώστε (7.1.11) x y n δ. Από τον κανόνα του παραλληλογράµµου, y n y m = (y n x) + (x y m ) = y n x + y m x (y n + y m ) x = y n x + y m x 4 y n + y m x. Οµως, yn+ym M, άρα yn+ym x δ. Εποµένως, (7.1.1) y n y m y n x + y m x 4δ δ + δ 4δ = 0 όταν m, n. Άρα, η (y n ) είναι ακολουθία Cauchy στον H. Ο H είναι πλήρης, άρα υπάρχει y 0 H ώστε y n y 0. Επεται ότι y 0 M (ο M είναι κλειστός) και x y 0 = lim n x y n = δ. Για τη µοναδικότητα, χρησιµοποιούµε και πάλι τον κανόνα του παραλληλογράµµου. Αν x y = δ = x y, τότε Άρα, y = y. 0 y y = x y + x y 4 y + y x δ + δ 4δ = 0. Για τον τελευταίο ισχυρισµό ϑέτουµε w = x P M (x). Εστω ότι το w δεν είναι κάθετο στον M. Τότε, υπάρχει z M ώστε w, z > 0. Για ε > 0 αρκετά µικρό, έχουµε w, z ε z > 0. Άρα, x (P M (x) + εz) = w εz = w εz, w εz το οποίο είναι άτοπο γιατί P M (x) + εz M. = w ε w, z + ε z = δ ε( w, z ε z ) < δ, Πόρισµα Αν H χώρος Hilbert και M κλειστός γνήσιος υπόχωρος του H, τότε υπάρχει z H, z 0, ώστε z M. Απόδειξη. Εστω x H \ M. Παίρνουµε z = x P M (x) 0.

5 7.1. ΧΩΡΟΙ HILBERT Ορθοκανονικές ϐάσεις Ορισµός Εστω X χώρος µε εσωτερικό γινόµενο. Μια πεπερασµένη ή άπειρη ακολουθία (e k ) X λέγεται ορθοκανονική, αν e i, e j = δ ij (1 αν i = j και 0 αν i j). Αν (e k ) είναι µια ορθοκανονική ακολουθία στον X, τότε το {e k : k N} είναι γραµµικά ανεξάρτητο σύνολο. Πράγµατι, αν n λ ke ik = 0, τότε για κάθε j = 1,..., n έχουµε n (7.1.13) 0 = λ k e ik, e ij = n λ k e ik, e ij = λ j. Ορισµός Εστω H χώρος Hilbert. ορθοκανονική ϐάση του H αν Μιά ορθοκανονική ακολουθία (e k ) λέγεται (7.1.14) H = span{e k : k N}. Πρόταση Εστω H ένας απειροδιάστατος διαχωρίσιµος χώρος Hilbert. ορθοκανονική ϐάση {e k : k N} του H. Υπάρχει Απόδειξη. Παρατηρούµε πρώτα ότι κάθε ορθοκανονική οικογένεια {e i : i I} του H είναι αριθµήσιµο σύνολο : πράγµατι, αν e i e j είναι στοιχεία µιας τέτοιας οικογένειας, τότε e i e j =. Την ίδια στιγµή, αφού ο χώρος είναι διαχωρίσιµος δεν γίνεται να υπάρχουν υπεραριθµήσιµα το πλήθος σηµεία του που να απέχουν ανά δύο απόσταση ίση µε. Θεωρούµε λοιπόν µια ορθοκανονική ακολουθία {e k : k N} του H (η διάταξη των στοιχείων της ϐάσης είναι τυχούσα) η οποία να είναι µεγιστική, δηλαδή να µην περιέχεται γνήσια σε κάποια άλλη. Αυτό γίνεται µε χρήση του λήµµατος του Zorn. Τότε, ο υπόχωρος span{e k : k N} είναι πυκνός στον H (αλλιώς, ϑα µπορούσαµε να ϐρούµε µοναδιαίο z e k για κάθε k, και η (e k ) δεν ϑα ήταν µεγιστική). Άρα, η (e k ) είναι ορθοκανονική ϐάση του H. Λήµµα Εστω X χώρος µε εσωτερικό γινόµενο και έστω (e n ) ορθοκανονική ακολουθία στον X. Για κάθε x H και κάθε n N, n (7.1.15) d(x, span{e 1,..., e n }) = x x, e k e k.

6 ΚΕΦΑΛΑΙΟ 7. L -ΣΥΓΚΛΙΣΗ ΣΕΙΡΩΝ FOURIER Απόδειξη. Εστω λ 1,..., λ n K και y = n λ ke k. Παρατηρούµε ότι n x n λ k e k = x x, e k e k + n ( x, e k λ k )e k n = x n x, e k e k + ( x, e k λ k )e k n n = x x, e k e k + λ k x, e k (χρησιµοποιήσαµε το γεγονός ότι το x n x, e k e k είναι κάθετο σε όλα τα e k, άρα και στο n ( x, e k λ k )e k, οπότε εφαρµόσαµε το Πυθαγόρειο ϑεώρηµα γι αυτά τα δύο διανύσµατα). Άρα, (7.1.16) n x n λ k e k x x, e k e k και ισότητα µπορεί να ισχύει µόνο αν λ k = x, e k για κάθε k = 1,..., n, δηλαδή αν y = n x, e k e k. Σηµείωση. Παρατηρήστε επίσης ότι x n = x n x, e k e k + x, e k e k n n = x x, e k e k + x, e k. Το επόµενο ϑεώρηµα δίνει ισοδύναµους χαρακτηρισµούς του ότι η (e n ) είναι ορθοκανονική ϐάση. Θεώρηµα Εστω (e k ) ορθοκανονική ακολουθία σε έναν χώρο Hilbert H. Τα εξής είναι ισοδύναµα : (α) Η (e k ) είναι ορθοκανονική ϐάση του H. (ϐ) Αν x H και x, e k = 0 για κάθε k, τότε x = 0. (γ) Αν x H και s n (x) = n x, e k e k, τότε s n (x) x. ηλαδή, (7.1.17) x = k x, e k e k.

7 7.1. ΧΩΡΟΙ HILBERT 3 (δ) Ισχύει η ισότητα του Parseval: για κάθε x H, (7.1.18) x, e k = x. Απόδειξη. (α) = (ϐ) Εστω x H. Αφού ο F = span{e k : k N} είναι πυκνός, υπάρχει ακολουθία (y n ) F µε y n x. Από την υπόθεση έχουµε x y για κάθε y F. Τότε, 0 = x, y n x, x. Άρα, x, x = 0, το οποίο σηµαίνει ότι x = 0. (ϐ) = (γ) Παρατηρούµε πρώτα ότι x s n (x) s n (x): πράγµατι, n (7.1.19) x, s n (x) = x, e k = s n (x) = s n (x), s n (x). Από το Πυθαγόρειο ϑεώρηµα παίρνουµε n (7.1.0) x = x s n (x) + s n (x) = x s n (x) + x, e k. n Συνεπώς. x, e k x για κάθε n, και αφήνοντας το n παίρνουµε την ανισότητα Bessel (7.1.1) x, e k x. Ειδικότερα, η σειρά x, e k συγκλίνει, και από την (7.1.) s m (x) s n (x) = m k=n+1 x, e k η οποία ισχύει για κάθε m > n, έπεται ότι η {s n (x)} είναι ακολουθία Cauchy. Αφού ο H είναι πλήρης, υπάρχει y H ώστε s n (x) y. Από την σύγκλιση αυτή ϐλέπουµε ότι x y, e k ]rangle = 0 για κάθε k, και η υπόθεσή µας (το (ϐ)) εξασφαλίζει ότι (7.1.3) x = y = lim s n(x) = lim n n n x, e k e k = x, e k e k. (γ) = (δ) Εστω x H. Ελέγξαµε ότι x = x s n (x) + n x, e k για κάθε n. Αφού x s n (x) 0, έπεται ότι (7.1.4) x, e k = x.

8 4 ΚΕΦΑΛΑΙΟ 7. L -ΣΥΓΚΛΙΣΗ ΣΕΙΡΩΝ FOURIER (δ) = (α) Εστω x H. Ελέγξαµε ότι x = x s n (x) + n x, e k για κάθε n. Αφού n x, e k x, έπεται ότι x s n (x) 0. ηλαδή, s n (x) x. Αφού κάθε s n (x) span{e k : k N}, έπεται ότι (7.1.5) H = span{e k : k N}. ηλαδή, η {e k } είναι ορθοκανονική ϐάση του H. 7. Σύγκλιση στον L (T) Εφαρµόζουµε τα αποτελέσµατα της προηγούµενης παραγράφου στην L -σύγκλιση των σειρών Fourier. Το ερώτηµα είναι αν για κάθε f L (T) ισχύει (7..1) s n (f) f 0 καθώς το n. Υπενθυµίζουµε ότι ο L (T) είναι χώρος Hilbert. Η επάγεται από το εσωτερικό γινόµενο (7..) f, g = 1 f(x)g(x) dx. π T Λήµµα Η ακολουθία {e ikx } είναι ορθοκανονική ϐάση στον L (T). Απόδειξη. Εχουµε δεί ότι (7..3) e ikx, e isx = δ k,s για κάθε k, s Z, και από το Θεώρηµα έχουµε ότι αν f L (T) και f(k) = 0 για κάθε k Z, τότε f 0. Ισοδύναµα, αν f, e ikx = 0 για κάθε k Z τότε f = 0. Το συµπέρασµα έπεται από το Θεώρηµα Άµεσο πόρισµα της γενικής ϑεωρίας των χώρων Hilbert είναι τώρα το εξής. Θεώρηµα 7... Εστω f L (T). Τότε, (7..4) s n (f) f 0 καθώς το n και (7..5) f = 1 f(x) dx = π T f(k).

9 7.. ΣΥΓΚΛΙΣΗ ΣΤΟΝ L (T) 5 Παρατήρηση Στην απόδειξη της f = f s n(f) + s n(f) χρησιµοποιήθηκε µόνο το γεγονός ότι το {e ikθ : k n} είναι ορθοκανονικό. Με το ίδιο επιχείρηµα µπορείτε εύκολα να ελέγξετε ότι : αν ϑεωρήσουµε οποιοδήποτε όρθοκανονικό σύνολο E = {e k : k Z} συναρτήσεων στον L (T) και αν, για τυχόν n, ϑεωρήσουµε τη συνάρτηση f n = n k= n f, e k e k, τότε n (7..6) f = f f n + f n = f, e k. k= n Συνεπώς, (7..7) f, e k f, για κάθε ορθοκανονικό σύνολο E = {e k : k Z} R. Αυτή είναι η (γενική) ανισότητα του Bessel. Ισότητα στην ανισότητα του Bessel ισχύει για κάθε f L (T), ακριβώς όταν το E είναι ορθοκανονική ϐάση του L (T), δηλαδή n (7..8) lim n f e k e k = 0 k= n f, για κάθε f L (T). Θεώρηµα 7..4 (Riesz-Fisher). Ο L (T) είναι ισοµετρικά ισόµορφος µε τον l (Z). Απόδειξη. Ορίζουµε T : L (T) l (Z µε (7..9) T (f) = { f(k)}. Ο T είναι καλά ορισµένος, γιατί (7..10) f(k) = f < + από την ταυτότητα του Parseval, άρα T (f) l (Z). εύκολα. Η ταυτότητα του Parseval δείχνει επιπλέον ότι Η γραµµικότητα του T ελέγχεται (7..11) T (f) l (Z = f για κάθε f L (T), άρα ο T είναι ισοµετρία (ειδικότερα, είναι ένα προς ένα).

10 6 ΚΕΦΑΛΑΙΟ 7. L -ΣΥΓΚΛΙΣΗ ΣΕΙΡΩΝ FOURIER είχνουµε τέλος ότι ο T είναι επί : έστω {a k } l (Z). Ορίζουµε f N (x) = N a ke ikx. Τότε, αν N > M έχουµε N (7..1) f N f M = a k 0 k=m+1 καθώς N, M, και αυτό δείχνει ότι η (f N ) είναι ακολουθία Cauchy στον L (T). Ο L (T) είναι πλήρης, άρα υπάρχει f L (T) ώστε f N f. Αφού (7..13) f f N 1 f f N 0, είναι εύκολο να δούµε (άσκηση του Κεφαλαίου 5) ότι (7..14) fn )(k) f(k) (και µάλιστα οµοιόµορφα ως προς k). Οµως, για κάθε N > k ισχύει f(k) = a k, από τον ορισµό των f N. Συνεπώς, (7..15) f(k) = ak, k Z το οποίο αποδεικνύει ότι T (f) = {a k }. Παρατήρηση Άµεση συνέπεια της ταυτότητας του Parseval είναι το Λήµµα Riemann- Lebesgue για τον L (T). Για κάθε f L (T) έχουµε (7..16) f(k) < +, άρα (7..17) lim f(k) = 0. k Συχνά, χρησιµοποιούµε το Λήµµα Riemann-Lebesgue στην εξής µορφή : αν η f L (T) είναι ολοκληρώσιµη, τότε (7..18) a k (f) = f(x) cos(kx) dλ(x) 0 και b k (f) = f(x) sin(kx) dλ(x) 0 T T όταν k. Από τις σχέσεις που συνδέουν τους f(k), a k (f) και b k (f), ελέγχουµε εύκολα ότι η πρόταση «a k (f) 0 και b k (f) 0 όταν k» είναι ακριβώς ισοδύναµη µε την «f(k) 0 όταν k» (εξηγήστε γιατί). Κλείνουµε αυτήν την παράγραφο µε µια γενίκευση της ταυτότητας του Parseval.

11 7.3. ΑΣΚΗΣΕΙΣ 7 Πρόταση Εστω f, g L (T). Τότε, (7..19) f, g = 1 f(x)g(x) dλ(x) = π T f(k)ĝ(k). Απόδειξη. Χρησιµοποιούµε την παρατήρηση ότι αν X είναι ένας γραµµικός χώρος πάνω από το C µε εσωτερικό γινόµενο,, τότε (7..0) x, y = 1 4[ x + y x y + i x + iy i x iy ]. Εχουµε (7..1) f, g = 1 f + g 4[ f g + i f + ig i f ig ] και (7..) f(k)ĝ(k) = 1 f(k)+ĝ(k) 4[ f(k) ĝ(k) +i f(k)+iĝ(k) i f(k) iĝ(k) ]. Το συµπέρασµα προκύπτει άµεσα, αν εφαρµόσουµε την ταυτότητα του Parseval για τις f + g, f g, f + ig και f ig. 7.3 Ασκήσεις Οµάδα Α 1. (α) Χρησιµοποιώντας τη συνάρτηση f : [ π, π] R µε f(x) = x και την ταυτότητα του Parseval, δείξτε ότι k=0 1 (k + 1) 4 = π4 96 και 1 k 4 = π4 90. (ϐ) Χρησιµοποιώντας την π-περιοδική περιττή συνάρτηση g : [ π, π] R µε g(x) = x(π x) στο [0, π] και την ταυτότητα του Parseval, δείξτε ότι k=0 1 (k + 1) 6 = π6 960 και 1 k 6 = π είξτε ότι : αν α / Z, τότε η σειρά Fourier της συνάρτησης f(x) = π sin πα ei(π x)α

12 8 ΚΕΦΑΛΑΙΟ 7. L -ΣΥΓΚΛΙΣΗ ΣΕΙΡΩΝ FOURIER στο [0, π], είναι η e ikx k + α. Εφαρµόζοντας την ταυτότητα του Parseval, συµπεράνατε ότι 1 (k + α) = π sin (πα). 3. Εστω 0 < a π. Θεωρούµε την συνάρτηση f : [ π, π] R µε f(x) = χ [ a,a] (x). (α) είξτε ότι f(0) = a π και f(k) = sin(ka) πk αν k 0. (ϐ) είξτε ότι για κάθε x [ π, π] \ { a, a} ισχύει f(x) = a π + k 0 sin(ka) e ikx. πk (γ) Υπολογίστε τα αθροίσµατα sin(ka) k και sin (ka) k. 4. Εστω f : R R συνεχώς παραγωγίσιµη π-περιοδική συνάρτηση. (α) είξτε ότι f s n (f) k=n+1 a k (f ) + b k (f ). k (ϐ) είξτε ότι lim n f sn (f) = 0. n 5. Εστω f : T C συνεχώς παραγωγίσιµη συνάρτηση. (α) είξτε ότι υπάρχει σταθερά C(f) > 0 ώστε k f(k) C(f) για κάθε k Z. (ϐ) Εξετάστε αν lim k k f(k) = 0. (γ) Εξετάστε αν f(k) < Εστω f : R R συνεχώς παραγωγίσιµη π-περιοδική συνάρτηση µε π π f(x) dx = 0.

13 7.3. ΑΣΚΗΣΕΙΣ 9 Χρησιµοποιώντας την ταυτότητα του Parseval για τις f και f δείξτε ότι π π f(x) dx π π f (x) dx, µε ισότητα αν και µόνο αν f(x) = a cos x + b sin x για κάποιους a, b R. 7. (α) Εστω f, g : T C π συνεχώς παραγωγίσιµες συναρτήσεις. Υποθέτουµε ότι 0 g(t) dt = 0. είξτε ότι π π π f(t)g(t) dt f(t) dt g (t) dt (ϐ) Εστω f : [a, b] C συνεχώς παραγωγίσιµη συνάρτηση µε f(a) = f(b) = 0. είξτε ότι b a f(t) dt (b a) π b a f (t) dt. Οµάδα Β 8. ώστε παράδειγµα ακολουθίας {f n } ολοκληρώσιµων συναρτήσεων f n : [0, π] R ώστε lim n 1 π f n (x) dx = 0, π 0 αλλά για κάθε x [0, π] η ακολουθία {f n (x)} δεν συγκλίνει. 9. είξτε ότι 0 sin t t dt = π. 10. Εστω f : R C συνάρτηση π-περιοδική, η οποία ικανοποιεί την συνθήκη Lipshitz για κάθε x, y R, όπου K > 0 σταθερά. f(x) f(y) K x y (α) Για κάθε t > 0 ορίζουµε g t (x) = f(x + t) f(x t). είξτε ότι 1 π g t (x) dx = π 0 4 sin kt f(k) και συµπεράνατε ότι sin kt f(k) K t.

14 30 ΚΕΦΑΛΑΙΟ 7. L -ΣΥΓΚΛΙΣΗ ΣΕΙΡΩΝ FOURIER (ϐ) Εστω p N. Επιλέγοντας t = π/ p+1, δείξτε ότι (γ) ώστε άνω ϕράγµα για το p 1 < k p f(k) p 1 < k p f(k) K π p+1. και συµπεράνατε ότι η σειρά Fourier της f συγκλίνει απολύτως, άρα οµοιόµορφα. 11. Εστω α > 1/ και f : R C συνάρτηση π-περιοδική, η οποία ικανοποιεί την συνθήκη Holder f(x) f(y) K x y α για κάθε x, y R, όπου K > 0 σταθερά. απολύτως, άρα οµοιόµορφα. είξτε ότι η σειρά Fourier της f συγκλίνει 1. Εστω f : R R συνεχής π-περιοδική συνάρτηση και έστω a k, b k οι συντελεστές Fourier της f. είξτε ότι 1 π π 0 (π x)f(x) dx = b k k. 13. Εστω f : R R συνεχής π-περιοδική συνάρτηση και έστω a k, b k οι συντελεστές Fourier της f. είξτε ότι a k k = 1 π ( f(x) ln sin x ) dx. π Εστω f L 1 (T). Υποθέτουµε ότι όπου είξτε ότι f L (T). [w 1 (f, π/n)] <, n=1 w 1 (f, x) = 1 f(x + t) f(t) dt. π T 15. Εστω f L (T). Ορίζουµε ( ) 1/ s n (f, x) σ n (f, x) F (x) =. n n=1

15 7.3. ΑΣΚΗΣΕΙΣ 31 είξτε ότι F L (T) και F f. Ειδικότερα, F (x) < σχεδόν παντού στο T. 16. Εστω x n, y m C, n, m 0. είξτε ότι ( x n y m ) 1/ ( n + m + 1 π ) 1/ x n y m. n,m=0 n=0 Υπόδειξη. Θεωρήστε την φ(t) = i(π t)e it. Παρατηρήστε ότι φ(k) = 1 k+1 και φ = π. m=0

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L p Σύγκλιση Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο. Κεφάλαιο 2 Ολοκλήρωµα Lebesgue 2.1 Οµάδα Α 1. Αν η f : (a, b) R είναι παραγωγίσιµη, τότε η f είναι µετρήσιµη. Υπόδειξη. Θεωρούµε την ακολουθία f : (a, b) R µε f (x) = [f(x + 1/) f(x)]. Εφόσον, η f είναι

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Προσεγγίσεις της µονάδας και Αθροισιµότητα

Προσεγγίσεις της µονάδας και Αθροισιµότητα Κεφάλαιο 6 Προσεγγίσεις της µονάδας και Αθροισιµότητα 6. Οικογένειες καλών πυρήνων και προσεγγίσεων της µονάδας Σε αυτήν την παράγραφο ϑα ασχοληθούµε µε µέσες τιµές µιας ολοκληρώσιµης συνάρτησης f οι οποίες

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

Σύγκλιση σειρών Fourier σε χώρους L p

Σύγκλιση σειρών Fourier σε χώρους L p Σύγκλιση σειρών Fourier σε χώρους L p Μιχάλης Σαράντης και Κωνσταντίνος Τσίνας Βασικά αποτελέσµατα από την ανάλυση Fourier Ορισµός.. Ο n-οστός πυρήνας του Dirichlet ορίζεται ως (.) D n (y) Πρόταση.. Για

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx. Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier - Ασκήσεις Αόστολος Γιαννόουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το αρόν εκαιδευτικό υλικό υόκειται σε άδειες χρήσης Creative Commons. Για εκαιδευτικό υλικό, όως εικόνες,

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2].

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2]. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riem Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).

Διαβάστε περισσότερα

Σειρές Fourier. Κεφάλαιο Σειρές Fourier ολοκληρώσιµων συναρτήσεων. f(x) dλ(x) u(x) dλ(x) + i. (tf(x) + sg(x)) dλ(x) = t. f(x) dλ(x) = Re ix 0

Σειρές Fourier. Κεφάλαιο Σειρές Fourier ολοκληρώσιµων συναρτήσεων. f(x) dλ(x) u(x) dλ(x) + i. (tf(x) + sg(x)) dλ(x) = t. f(x) dλ(x) = Re ix 0 Κεφάλαιο 5 Σειρές Fourier 5. Σειρές Fourier ολοκληρώσιµων συναρτήσεων Σε αυτό το κεφάλαιο ϑεωρούµε συναρτήσεις µε µιγαδικές τιµές. Αν f : [a, b] C είναι οποιαδήποτε συνάρτηση, τότε η f γράφεται στη µορφή

Διαβάστε περισσότερα

Πραγµατική Ανάλυση Ασκήσεις ( )

Πραγµατική Ανάλυση Ασκήσεις ( ) Πραγµατική Ανάλυση Ασκήσεις (205 6) Πρόχειρες Σηµειώσεις Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών 205-6 Περιεχόµενα Μετρικοί χώροι 2 Σύγκλιση ακολουθιών και συνέχεια συναρτήσεων 9 3 Τοπολογία µετρικών χώρων

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Alexandrov

1 Το ϑεώρηµα του Alexandrov Το ϑεώρηµα του Alexandrov Γιώργος Γιανναράκης και αυιδούλα ηµοπούλου Περίληψη Το 1939, ο Alexandr Alexandrov απέδειξε το ακόλουθο ϑεώρηµα : Εστω C R d ανοιχτό και κυρτό, f : C R µια κυρτή συνάρτηση. Τότε,

Διαβάστε περισσότερα

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3 Πραγµατική Ανάλυση (2015-16) Ασκήσεις - Κεφάλαιο 3 Οµάδα Α 1. Εστω (X, ρ) µετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το

Διαβάστε περισσότερα

Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων

Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων Πτυχιακη Εργασια Ιωσηφιδης Ηλιας Α.Μ: 311/2329 Επιβλεπων : Τσολοµυτης Αντωνης A Τµηµα Μαθηµατικων Πανεπιστηµιο Αιγαιου Σαµος 27 Εξεταστικη Επιτροπη : Τσολοµύτης

Διαβάστε περισσότερα

Πραγµατική Ανάλυση. Πέτρος Βαλέττας

Πραγµατική Ανάλυση. Πέτρος Βαλέττας Πραγµατική Ανάλυση Πέτρος Βαλέττας Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών Αθήνα 2015 Περιεχόµενα I Μετρικοί χώροι 1 1 Μετρικοί χώροι 3 1.1 Ορισµός και παραδείγµατα.......................... 3 1.2 Χώροι

Διαβάστε περισσότερα

Ολοκλήρωµα Lebesgue. Κεφάλαιο Μετρήσιµες συναρτήσεις Ορισµός και ϐασικές ιδιότητες

Ολοκλήρωµα Lebesgue. Κεφάλαιο Μετρήσιµες συναρτήσεις Ορισµός και ϐασικές ιδιότητες Κεφάλαιο 2 Ολοκλήρωµα Lebesgue 2.1 Μετρήσιµες συναρτήσεις Οι συναρτήσεις για τις οποίες ϑα επιχειρήσουµε να ορίσουµε το ολοκλήρωµα Lebesgue είναι συναρτήσεις µε πεδίο ορισµού κάποιο µετρήσιµο υποσύνολο

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1 Σημειώσεις για τους χώρους Hilbert και άλλα Αριστείδης Κατάβολος Από το βιβλίο «Εισαγωγή στη Θεωρία Τελεστών», εκδ. «Συμμετρία», 2008. Περιεχόμενα I Χώροι Hilbert 1 1 Εσωτερικά γινόμενα 1 1.0.1 Παραδείγματα.........................

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

Στοιχεία Συναρτησιακής Ανάλυσης. Σηµειώσεις

Στοιχεία Συναρτησιακής Ανάλυσης. Σηµειώσεις Στοιχεία Συναρτησιακής Ανάλυσης Σηµειώσεις σύντοµη εκδοχή Ε. Στεφανόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αιγαίου Καρλόβασι 2016 2 Περιεχόµενα 1 Γραµµικοι χωροι µε νορµα 5 1.1 Γραµµικοί χώροι......................................

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

n a n = 2. Θεωρούµε τα σύνολα a n = n2 n n 2 + n 1. n a n = a > 0, δείξτε ότι a n > 0 τελικά.

n a n = 2. Θεωρούµε τα σύνολα a n = n2 n n 2 + n 1. n a n = a > 0, δείξτε ότι a n > 0 τελικά. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α) Κάθε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Το ϑεώρηµα παραγώγισης του Lebesgue στο R

Το ϑεώρηµα παραγώγισης του Lebesgue στο R Το ϑεώρηµα παραγώγισης του Lebesgue στο R Μαρία Μαστροθεοδώρου και Αγγελική Χαντζηθάνου Περίληψη Το κεντρικό αποτέλεσµα της εργασίας είναι ότι µια συνάρτηση f είναι απόλυτα συνεχής στο [, b] αν και µόνο

Διαβάστε περισσότερα

G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1

G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Επαναληπτικές Εξετάσεις στη Θεωρία Μέτρου και Ολοκλήρωση Θέμα. Εστω R Lebesgue μετρήσιμο σύνολο. (αʹ) Να αποδειχθεί ότι για κάθε ε

Διαβάστε περισσότερα

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος Ανάλυση Fourier και Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών Αθήνα 2015 Περιεχόµενα 1 Μέτρο Lebesgue 3 1.1 Εξωτερικό µέτρο Lebesgue........................... 3

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Συντελεστές και σειρές Fourier

Συντελεστές και σειρές Fourier Κεφάλαιο 3 Συντελεστές και σειρές Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 22, Katznelson 24 και Stein and Shakarchi 211. 3.1 Συντελεστές Fourier μιας ολοκληρώσιμης

Διαβάστε περισσότερα

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών

Διαβάστε περισσότερα

Τριγωνομετρικά πολυώνυμα

Τριγωνομετρικά πολυώνυμα Κεφάλαιο Τριγωνομετρικά πολυώνυμα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund, Katznelson 4 και Stein and Shakarchi.. Μερικά βασικά περί μιγαδικών αριθμών Υποθέτουμε ως γνωστές

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

Θεωρία Προσέγγισης και Εφαρµογές

Θεωρία Προσέγγισης και Εφαρµογές Θεωρία Προσέγγισης και Εφαρµογές Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών, Πανεπιστήµιο Κρήτης, Βούτες, 70013 Ηράκλειο, E-mail: kolount AT gmail.com Ανοιξη 2013-14 Περιεχόµενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier

Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier Κεφάλαιο 6 Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 2002, Katznelson 2004 και Stein and Shakarchi 20. 6. Όχι σύγκλιση σε

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Young

Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Young Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Youg Ασπασία Κωτσογιάννη Περίληψη Ο µετασχηµατισµός Fourier Εστω f L. Ορίζουµε. fξ = π fxe ix ξ dx, ξ. Το ολοκλήρωµα Lebesgue στη σχέση. συγκλίνει για κάθε ξ

Διαβάστε περισσότερα

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x)

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x) Τελεστές σε χώρους Hilbert Γεωργάτος Σπυρίδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Επιτροπή Επιβλέπων: Φελουζής Ευάγγελος - Αναπληρωτής Καθηγητής Μέλη : Τσολομύτης Αντώνιος - Καθηγητής Νικολόπουλος Χρήστος

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης Αριθµοί Liouville Ιωάννης Μπαρµπαγιάννης Εισαγωγή Η ϑεωρία των υπερβατικών αριθµών έχει ως αφετηρία µια ϕηµισµένη εργασία του Liouville, το 844, ο οποίος περιέγραψε µια κλάση πραγµατικών αριθµών οι οποίοι

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Απλές επεκτάσεις και Αλγεβρικές Θήκες

Απλές επεκτάσεις και Αλγεβρικές Θήκες Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις

Διαβάστε περισσότερα

Μέτρο Lebesgue. Κεφάλαιο Εξωτερικό µέτρο Lebesgue

Μέτρο Lebesgue. Κεφάλαιο Εξωτερικό µέτρο Lebesgue Κεφάλαιο 1 Μέτρο Lebesgue 1.1 Εξωτερικό µέτρο Lebesgue Θα ϑέλαµε να ορίσουµε το «µήκος» κάθε υποσυνόλου A του R, δηλαδή να αντιστοιχίσουµε σε κάθε A R έναν µη αρνητικό αριθµό λ(a) (ή το + ). Είναι λογικό

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Κατασκευή νέων τοπολογικών χώρων Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Ελλειπτικές Καµπύλες υπέρ του σώµατος C

Ελλειπτικές Καµπύλες υπέρ του σώµατος C Ελλειπτικές Καµπύλες υπέρ του σώµατος C Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 11 Νοεµβρίου 2014, 1/18 ιακριτές υποοµάδες του C Ορισµός Εστω ω 1, ω 2 δύο µιγαδικοί αριθµοί µε Im(ω

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)]. 3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και

Διαβάστε περισσότερα

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε Κεφάλαιο 3 Συµπαγείς τελεστές 3.1 Τελεστές πεπερασµένης τάξης Ορισµός 3.1.1 Μια γραµµική απεικόνιση T : E F µεταξύ δύο γραµµικών χώρων E, F λέγεται τάξης n (n N) αν ο υπόχωρος T (E) = im T έχει διάσταση

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Riemann και ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Riemann και ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Riemnn και ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l.

f (x) = l R, τότε f (x 0 ) = l. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Ι ικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 207 Περιεχόµενα Κεφάλαιο. Επισκόπηση γνωστών εννοιών. -8. Σειρές πραγµατικών αριθµών..2 Σειρές συναρτήσεων..3 Γενικευµένα ολοκληρώµατα. Κεφάλαιο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 ιανυσµατικοι Υποχωροι και Κατασκευες Το παρόν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα