ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ"

Transcript

1 ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας. Τότε λέµε ότι έχει αληθοτιµή ή αλλιώς τιµή αληθείας. 3. Μια αποφαντική πρόταση χαρακτηρίζεται ψευδής όταν περιγράφει µια µη υπαρκτή κατάσταση του κόσµου µας. Τότε λέµε ότι έχει αληθοτιµή ή αλλιώς τιµή αληθείας. 4. Π Ρ ούτε Π ούτε Ρ 5. Π Ρ είτε Π είτε Ρ 6. Η διαδοχή «και» είναι ένας σύνδεσµος τον οποίο καλούµε σύζευξη. Κάθε πρόταση που προκύπτει µε την πλήρωση των κενών καλείται συζευκτική πρόταση.για τον σύνδεσµο αυτό χρησιµοποιούµε το σύµβολο. 7. Η σύζευξη δύο προτάσεων είναι αληθής πρόταση στην περίπτωση όπου και οι δύο προτάσεις είναι αληθείς. Π Ρ Π Ρ 8. Η διαδοχή «ή» είναι ένας σύνδεσµος τον οποίο καλούµε διάζευξη. Κάθε πρόταση που προκύπτει µε την πλήρωση των κενών καλείται διαζευκτική πρόταση. Για τον σύνδεσµο αυτό χρησιµοποιούµε το σύµβολο. 1

2 ΧΛΤΖΙΝ ΠΥΛΟΣ 9. Η διάζευξη δύο προτάσεων είναι αληθής πρόταση όταν και µόνο όταν τουλάχιστον µια από τις δύο προτάσεις είναι αληθής. Π Ρ Π Ρ 10. ποκλειστική διάζευξη λέγεται αυτή στην οποία οι δύο προτάσεις που συνδέονται δε µπορεί να είναι ταυτόχρονα αληθείς. Άρα όταν και οι δύο προτάσεις που συνδέονται είναι αληθείς τότε η σύνθετη πρόταση είναι ψευδής Για τον σύνδεσµο αυτό χρησιµοποιούµε το σύµβολο. Π Ρ Π Ρ 11. Ο σύνδεσµος «όχι» λέγεται άρνηση. Για τον σύνδεσµο αυτό χρησιµοποιούµε το σύµβολο. Η άρνηση µιας πρότασης είναι αληθής όταν και µόνον όταν αυτή είναι ψευδής. Π Π 12. Ο σύνδεσµος «εάν τότε» λέγεται συνεπαγωγή. Η συµπλήρωση των κενών µε προτάσεις παράγει µια πρόταση που λέγεται υποθετική. Η πρόταση που τοποθετείται στο πρώτο κενό λέγεται ηγούµενος όρος και η πρόταση που τοποθετείται στο δεύτερο κενό λέγεται επόµενος όρος. Για τον σύνδεσµο αυτό χρησιµοποιούµε το σύµβολο. Μια υποθετική πρόταση είναι ψευδής µόνο στην περίπτωση όπου ο ηγούµενος όρος είναι αληθής και ο επόµενος ψευδής. Π Ρ Π Ρ 2

3 ΧΛΤΖΙΝ ΠΥΛΟΣ 13. Όταν οι δύο καταστάσεις που περιγράφουν οι συνδεόµενες προτάσεις είναι τέτοιες ώστε δεν είναι δυνατόν η µια να υφίσταται και η άλλη όχι, τότε η πρόταση αυτή λέγεται διπλή συνεπαγωγή ή ισοδυναµία. Το σύνδεσµο αυτό το συµβολίζουµε µε Η ισοδυναµία είναι αληθής µόνο στην περίπτωση όπου οι δύο συνδεόµενες προτάσεις έχουν την ίδια αληθοτιµή. Π Ρ Π Ρ 14. Να συµπληρωθεί ο πίνακας αληθείας: Π Ρ Τ Π Τ Ρ ( Π Τ ) 15. Να συµπληρωθεί ο πίνακας αληθείας: Π Ρ Τ Ρ Π ( Ρ Π) Τ 16. Κάθε τύπος στον οποίο αντιστοιχεί η αληθοτιµή για κάθε δυνατό συνδυασµό των αληθοτιµών των προτάσεων που τον συγκροτούν λέγεται ταυτολογία. (για παράδειγµα ο τύπος Π Π ) 17. Κάθε τύπος στον οποίο αντιστοιχεί η αληθοτιµή για κάθε δυνατό συνδυασµό των αληθοτιµών των προτάσεων που τον συγκροτούν λέγεται αντίφαση. (για παράδειγµα ο τύπος Π Π ) 18. Κάθε τύπος που δεν είναι ταυτολογία ή αντίφαση λέγεται ενδεχόµενος. 3

4 ΧΛΤΖΙΝ ΠΥΛΟΣ 19. Νόµος αντιθετοαντιστροφής ( ) ( Ρ Π ) 20. Νόµος διπλής άρνησης ( Π) Π 21. Νόµος συµπληρώµατος ή αποκλείσεως τρίτου Π ( Π ) 22. ύο τύποι φ και χ λέγονται λογικά ισοδύναµοι όταν και µόνον όταν ο τύπος είναι ταυτολογία. ( για παράδειγµα οι τύποι ϕ : και χ : Ρ Π ) Να συµπληρωθεί ο πίνακας αληθείας: Π Ρ Π Ρ ϕ : χ : Ρ Π 23. Να συµπληρωθεί ο πίνακας αληθείας: Π Ρ Π ϕ : χ : Π Ρ 24. Να συµπληρωθεί ο πίνακας αληθείας: Π Ρ ϕ : ( ) χ : Π Ρ 25. Να συµπληρωθεί ο πίνακας αληθείας: Π Ρ Π Ρ Π Ρ ϕ : ( Π Ρ ) χ : Ρ Π 26. Να γίνουν πίνακες αληθείας για τους τύπους: ( ) ( ) 1) Π ( ) Ρ 2) ( Π Ρ) ( ) 4

5 ΧΛΤΖΙΝ ΠΥΛΟΣ 27. Να συµπληρωθούν τα κενά: 1) ν ένας τύπος φ είναι ταυτολογία τότε ο τύπος ϕ είναι.. 2) ν ο τύπος φ είναι ταυτολογία και χ ένας οποιοδήποτε τύπος τότε ο τύπος ϕ χ είναι.. 3) ν ο τύπος φ είναι ταυτολογία και χ ένας οποιοδήποτε τύπος τότε ο τύπος χ ϕ είναι.. 4) ν φ και χ ταυτολογίες τότε ο τύπος ϕ χ είναι. 5) ν ο τύπος φ είναι αντίφαση και χ ένας οποιοδήποτε τύπος τότε ο τύπος ϕ χ είναι.. 6) ν ο τύπος φ είναι αντίφαση και χ ένας οποιοδήποτε τύπος τότε ο τύπος ϕ χ είναι.. 7) ν φ και χ ταυτολογίες τότε ο τύπος είναι. 8) ν φ και χ αντιφάσεις τότε ο τύπος είναι. 28. Συλλογισµός είναι µια νοητική διαδικασία µε βάση την οποία ξεκινώντας από µια οµάδα γνωσιακών δεδοµένων που εκφράζονται µε τη µορφή προτάσεων (υποθέσεις), καταλήγουµε σε ένα νέο γνωσιακό στοιχείο που επίσης εκφράζεται µε τη µορφή πρότασης (συµπέρασµα). Το σύνολο των προτάσεων που εµφανίζονται σε έναν συλλογισµό καλείται επιχείρηµα. Σχήµα επιχειρήµατος: υ, υ, υ,..., υ, σ ( όπου σ το συµπέρασµα και υ, υ, υ,..., υ οι υποθέσεις) ν 29. Ένα επιχείρηµα είναι έγκυρο όταν είναι τέτοιο ώστε σε κάθε περίπτωση κατά την οποία όλες οι υποθέσεις του είναι αληθείς και το συµπέρασµα είναι αληθές. 30. Όταν όλες οι υποθέσεις σε ένα σχήµα επιχειρήµατος έχουν αληθοτιµή και το συµπέρασµα έχει αληθοτιµή τότε αυτό καλείται αντιπαράδειγµα. Ένα σχήµα επιχειρήµατος είναι έγκυρο όταν δεν έχει κανένα αντιπαράδειγµα. Προφανώς ένα σχήµα επιχειρήµατος είναι µη έγκυρο όταν έχει τουλάχιστον ένα αντιπαράδειγµα. 31. Modus Ponens: πό µια συνεπαγωγή και τον ηγούµενο όρο της συνεπάγεται ο επόµενος όρος της. ν Modus Ponens Π Ρ 5

6 ΧΛΤΖΙΝ ΠΥΛΟΣ 32. Modus Tollens: πό µια συνεπαγωγή και την άρνηση του επόµενου όρου της συνεπάγεται η άρνηση του ηγούµενου όρου της. Modus Tollens Ρ Π 33. Υποθετικός συλλογισµός: από δύο συνεπαγωγές στις οποίες ο επόµενος όρος της πρώτης είναι ηγούµενος όρος στη δεύτερη, προκύπτει µια νέα συνεπαγωγή στην οποία ηγούµενος όρος είναι αυτός της πρώτης και επόµενος όρος είναι αυτός της δεύτερης. Υποθετικός συλλογισµός Ρ Π 34. ιαζευκτικός συλλογισµός: ιαζευκτικός συλλογισµός Ρ Π 35. Να αποδειχθεί ότι τα παρακάτω σχήµατα επιχειρήµατος είναι έγκυρα: 1) 2) 3) 4) 6

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Λογική και Προτασιακός Λογισµός ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 16 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Λογική

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη) Εισαγωγή στις βασικές έννοιες των Μαθηματικών 5 ο Μάθημα Μαθηματική Λογική (επανάληψη) Προτάσεις Η πρόταση είναι μια γλωσσική ενότητα, η οποία εκφράζει κάποιο νόημα. Παραδείγματα: Η Μαρία σχεδιάζει ένα

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2 A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασικά Στοιχεία Λογικής 2 Η Πριγκίπισσα και το Κάστρο Αν ρώταγα ένα μέλος της φυλής που δεν ανήκεις για το ποιον δρόμο πρέπει να πάρω για το κάστρο τι θα μου έλεγε; Μία πριγκίπισσα

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Aλγεβρα A λυκείου α Τομος

Aλγεβρα A λυκείου α Τομος Aλγ ε β ρ α A Λυ κ ε ί ο υ Α Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο, Θετικές Επιστήμες Άλγεβρα Α Λυκείου, Α Τόμος Παναγιώτης Γριμανέλλης Στοιχειοθεσία-σελιδοποίηση,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία: 1 Επικοινωνία: spzygouris@gmail.com 2 Ποιοι είναι οι τελεστές σύγκρισης; Απάντηση Οι τελεστές σύγκρισης είναι: Ίσον = Διάφορο Μικρότερο < Μικρότεροήίσο Μεγαλύτερο > Μεγαλύτερο ή ίσο Που χρησιμοποιούνται

Διαβάστε περισσότερα

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης

Διαβάστε περισσότερα

Ask seic Majhmatik c Logik c 2

Ask seic Majhmatik c Logik c 2 Ask seic Majhmatik c Logik c 2 1. Να δειχτεί με πίνακες αλήθειας ότι οι παρακάτω προτάσεις είναι λογικά ισοδύναμες. (αʹ) (A B) και A B. (βʹ) A (B C) και (A B) (A C). (γʹ) A B και B A. (δʹ) A B και B A.

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 8 ης διάλεξης

Ασκήσεις μελέτης της 8 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2017 Οργάνωση Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες Συνεπαγωγή Αποδείξεις

Διαβάστε περισσότερα

ΛΟΓΙΚΗ - ΣΥΝΟΛΑ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΛΟΓΙΚΗ - ΣΥΝΟΛΑ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ΛΟΓΙΚΗ - ΣΥΝΟΛ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Η συνεπαγωγή ν P και Q είναι δύο ισχυρισμοί τέτοιοι ώστε όταν αληθεύει ο P να αληθεύει και ο Q τότε λέμε ότι το P συνεπάγεται το Q και γράφουμε P Q Π.χ, όταν α=β

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης). Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Υπολογιστική Λογική και Λογικός Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Μάθηµα 1 Κεφάλαιο: Εισαγωγικό Θεµατικές Ενότητες: A. Το Λεξιλόγιο της Λογικής B. Σύνολα A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Ορισµός Πρόταση λέµε κάθε φράση που µε βάση το νοηµατικό της περιεχόµενο µπορούµε να

Διαβάστε περισσότερα

Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF

Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ MYY204 Διακριτά Μαθηματικά Μθ άii Προτασιακή Λογική ιδακτικές Σημειώσεις EPP : Παράγραφοι 1.1 1.2 Rosen: Παράγραφοι 1.1 1.3 1 η +2 η Εβδομάδα Άνοιξη 2015 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017 HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο Λογική Πρώτης Τάξης Γιώργος Κορφιάτης Εθνικό Μετσόβιο Πολυτεχνείο Νοέµβριος 2008 Σύνταξη Ορισµός (Σύνταξη της λογικής πρώτης τάξης) Λεξιλόγιο Σ = (Φ, Π, r) Συναρτήσεις f Φ Σχέσεις R Π r( ) η πληθικότητα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σημεία Προσοχής στην Παράγραφο Ε1.

Σημεία Προσοχής στην Παράγραφο Ε1. Σημεία Προσοχής στην Παράγραφο Ε1. 1. Πότε μια πρόταση που περιέχει το ή είναι αληθής; Μια πρόταση που περιέχει τον σύνδεσμο "ή", ουσιαστικά αποτελείται από δύο ισχυρισμούς. Μπορεί και οι δύο ισχυρισμοί

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις έννοιες της Προτασιακής Λογικής. Η εργασία πρέπει να γραφεί ηλεκτρονικά

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen Τι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Προτασιακός Λογισµός (συνέχεια...) Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από

Διαβάστε περισσότερα

Κεφάλαιο 4 : Λογική και Κυκλώματα

Κεφάλαιο 4 : Λογική και Κυκλώματα Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα

Διαβάστε περισσότερα

Κανονικές μορφές - Ορισμοί

Κανονικές μορφές - Ορισμοί HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΛΟΓΙΚΗΣ. για το μάθημα ΕΙΣΑΓΩΓΗ ΣΤΗ ΛΟΓΙΚΗ ΚΑΙ ΤΗΝ ΚΡΙΤΙΚΗ ΣΚΕΨΗ. (ακ. έτος ) Κώστας Χατζηκυριάκου

ΣΗΜΕΙΩΣΕΙΣ ΛΟΓΙΚΗΣ. για το μάθημα ΕΙΣΑΓΩΓΗ ΣΤΗ ΛΟΓΙΚΗ ΚΑΙ ΤΗΝ ΚΡΙΤΙΚΗ ΣΚΕΨΗ. (ακ. έτος ) Κώστας Χατζηκυριάκου 1 ΣΗΜΕΙΩΣΕΙΣ ΛΟΓΙΚΗΣ για το μάθημα ΕΙΣΑΓΩΓΗ ΣΤΗ ΛΟΓΙΚΗ ΚΑΙ ΤΗΝ ΚΡΙΤΙΚΗ ΣΚΕΨΗ (ακ. έτος 2012-13) Κώστας Χατζηκυριάκου Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πανεπιστήμιο Θεσσαλίας 2 1. Τι είναι η Λογική;

Διαβάστε περισσότερα

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Πολύ καλή εικόνα με εξαιρετική βαθμολογία

Διαβάστε περισσότερα

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», « .1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ

ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ Έστω L, η γλώσσα της αριθµητικής και Ν η στάνταρτ ερµηνεία της. Για µια πρόταση της L αντί να λέµε 'αληθής' στην στάνταρτ ερµηνεία θα λέµε για συντοµία ότι η πρόταση είναι ορθή.

Διαβάστε περισσότερα

ΤΡΟΠΟΙ ΠΕΙΘΟΥΣ. Επίκληση στη λογική Επίκληση στο συναίσθημα Επίκληση στο ήθος

ΤΡΟΠΟΙ ΠΕΙΘΟΥΣ. Επίκληση στη λογική Επίκληση στο συναίσθημα Επίκληση στο ήθος ΤΡΟΠΟΙ ΠΕΙΘΟΥΣ Επίκληση στη λογική Επίκληση στο συναίσθημα Επίκληση στο ήθος ΕΠΙΧΕΙΡΗΜΑΤΑ ΚΑΙ ΤΕΚΜΗΡΙΑ (ΜΕΣΑ ΠΕΙΘΟΥΣ ΕΠΙΚΛΗΣΗ ΣΤΗ ΛΟΓΙΚΗ) Όταν θέλουμε να πείσουμε με λογικές αποδείξεις, τότε χρησιμοποιούμε:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 1ο μέρος σημειώσεων: Προτασιακός Λογισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017

Διαβάστε περισσότερα

Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα»

Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα» Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα» Α] Ασκήσεις κλειστού τύπου (Σωστό Λάθος) Για τον Πλάτωνα οι καθολικές έννοιες, τα «καθόλου», δεν είναι πράγματα ξεχωριστά

Διαβάστε περισσότερα

Μαθηματικά. Α' Λυκείου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Α' Λυκείου. Μαρίνος Παπαδόπουλος Μαθηματικά Α' Λυκείου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Α Λυκείου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν µια εισαγωγή σε βασικές µαθηµατικές

Διαβάστε περισσότερα

Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου.

Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου. Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου. Η προσέγγιση των εννοιών αυτών θα γίνει με τη βοήθεια απλών παραδειγμάτων,

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης.

! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης. Αποδείξεις (1/2)! Χρησιµοποιούµε τις συνεπαγωγές της βάσης γνώσης για να βγάλουµε νέα συµπεράσµατα. Για παράδειγµα:! Από τις προτάσεις:! Ακαι Α Β! µπορούµε να βγάλουµε το συµπέρασµα (τεχνική modus ponens

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και» Η συνεπαγωγή ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Αν P και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε, όταν αληθεύει ο P να αληθεύει και ο Q, τότε λέμε ότι: «ο P συνεπάγεται τον Q» και γράφουμε P Q. Παράδειγμα: x=3 x 2 =9. Ο

Διαβάστε περισσότερα

Στοιχεία προτασιακής λογικής

Στοιχεία προτασιακής λογικής Σ. Κοσμαδάκης Στοιχεία προτασιακής λογικής Λογικές πράξεις and, or, not Για οποιεσδήποτε τιμές αλήθειας s, t στο σύνολο {true, false}, οι γνωστές πράξεις s and t, s or t, not s δίνουν αποτελέσματα στο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο.

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. Όταν γράφουμε

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα (μ.ο.: 7.09). Πολλά

Διαβάστε περισσότερα

. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι.

. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι. Boolean Logic Ορισµός: Προτασιακοί τύποι είναι οι εκφράσεις που ορίζονται επαγωγικά ως εξής: (i) Τα σύµβολα προτάσεων είναι προτασιακοί τύποι. (ii) Αν φ και ψ είναι προτασιακοί τύποι τότε οι ( φ ψ ),(

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017 HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30

NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30 NP-complete problems IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH Καλογερόπουλος Παναγιώτης (ΜΠΛΑ) NP-complete problems 1 / 30 Independent Set is NP-complete Ορισμός. Εστω

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Στοιχεία Λογικής. 1. Λογική, Κριτική Σκέψη και Φιλοσοφία. 2. Επιχειρήματα. ΕΜΠ, Σχολή ΕΜΦΕ, Τομέας ΑΚΕΔ

Στοιχεία Λογικής. 1. Λογική, Κριτική Σκέψη και Φιλοσοφία. 2. Επιχειρήματα. ΕΜΠ, Σχολή ΕΜΦΕ, Τομέας ΑΚΕΔ Φιλοσοφία Α. Αραγεώργης ΕΜΠ, Σχολή ΕΜΦΕ, Τομέας ΑΚΕΔ Στοιχεία Λογικής 1. Λογική, Κριτική Σκέψη και Φιλοσοφία Η λογική περιγράφεται συνήθως ως το σύνολο των αρχών, μεθόδων και κανόνων που χρησιμοποιούνται

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογικοί Πράκτορες Προτασιακή Λογική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς

Διαβάστε περισσότερα

x < y ή x = y ή y < x.

x < y ή x = y ή y < x. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά: πυλώνες Image source: http://www.patrasevents.gr Διακριτά Μαθηματικά: λογική Διακριτά Μαθηματικά: αποδείξεις Διακριτά Μαθηματικά:

Διαβάστε περισσότερα

Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1 Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ΘΕΩΡΙΑ 1. Η συνεπαγωγή Η πρόταση P Q σηµαίνει ότι, όταν αληθεύει (ισχύει) ο ισχυρισµός P, θα αληθεύει (ισχύει) και o Q. Το σύµβολο διαβάζεται : άρα τότε συνεπάγεται.. Η ισοδυναµία

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2016 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Μαθηματική Λογική Εξέταση Σεπτέμβριος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα