p a D, k Q A D, k Q max D, k Q P z=0 ρ,ν Rješenje: Linijski gubici u dijelu cjevovoda od točke 1 do točke 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "p a D, k Q A D, k Q max D, k Q P z=0 ρ,ν Rješenje: Linijski gubici u dijelu cjevovoda od točke 1 do točke 2"

Transcript

1 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA. ri maksimalnoj potrošnji max = 00 l/s u odoodnom sustau prema slici pumpa dobalja 7% protoka, a akumulacijsko jezero %. Stupanj djeloanja pumpe je η =0,8, a lokalni ubici su ranomjerno rasporeñeni po mreži i iznose 6% od linijski ubitaka. Odredite pretlak u točki 4, snau pumpe i snau koja se troši na sladaanje ubitaka. Koliki je stupanj djeloanja cjeooda? Zadano je: ρ=000 k/m, ν =, 0-6 m /s, =68 m, L =890 m, L =6 m, L =4 m, =40 mm, k=0,04 mm., k z=0 0, k A, k max 4 A ρ,ν Rješenje: max = 0, m s = 0, =0,07 m s A = max 0, 7 max =0, m s Linijski ubici u dijelu cjeooda od točke do točke L 8 L 8 π π f -= λ = λ 4 Linijski +lokalni ubici u dijelu cjeooda od točke do točke L 8 F-= f -+ 0,06 f -=,06 λ π

2 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA Re πν = = 4,9 0 k = 0, 000 F-= 6,70 m λ = 0, 047 Linijski +lokalni ubici u dijelu cjeooda od točke do točke 4 L 8max F -4=,06 λ π Re πν,8 0 max = = k = 0, 000 λ = 0, 04 = 9,49 m F -4 Linijski +lokalni ubici u dijelu cjeooda od točke do točke L 8A F -=,06 λ π Re πν A = =,9 0 k = 0, 000 λ = 0, 074 = 0,0994 m F - M.B.J. -4 p/ M p M4 4 + = ρ ρ F - F -4 8ρ p ( ) π p = 70, a =,7 bar max M4= ρ F -+ F -4 4 M4

3 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA M.B.J. 0-4 (uz zanemarenje ubitaka u usisnom dijelu cjeooda-od usisa do pumpe) p ρ = 74,6 m M4 4 = + + F-+ F -4 = ρ = 6460,9 W=64,6 kw M η = = 0,76 kw Snaa za saladaanje ubitaka cjeooda = ρ + ρ + ρ F F F- max F-4 A F- = 4,8 kw Stupanj djeloanja cjeooda η p + ρ 4 max M4 4 u točki 4 c = = + A + A ρ η c = 0,8007

4 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 4. Treba odrediti isinu, protok i snau F koja se troši na sladaanje trenja, u situaciji prema slici. Koliku bi isinu id doseao mlaz i koliki bi bio protok id da je fluid idealan. Zadano je: ρ=999 k/m, ν=,. 0-6 m /s, =6 mm, d=0 mm, L uk =9,9 m, k=0,04 mm, =,4 m, K k =0,9, K u =0,, K m =0,0 (uz izlaznu brzinu), p M0 =0,86 bar. p M0 K u ρ, ν, k =? K m d K k L uk K k Rješenje: Osnoni zadatak u oom primjeru je naći protok, odnosno brzinu na izlazu iz mlaznice jer je tada jednostano odrediti isinu koju će dosenuti mlaz. Zadatak se kao i uijek rješaa primjenom modificirane Bernoullijee jednadžbe i jednadžbe kontinuiteta. Na slici (a) su ucrtane karakteristične točke sustaa. Točka p M0 0 0 se nalazi na slobodnoj poršini fluida u elikom spremniku, tako da ρ, ν =? je brzina u točki 0 jednaka nuli. K u d Neka je izlazna brzina u točki označena sa, a brzina strujanja u cijei s. Ukupni lokalni i linijski z=0 ubici meaničke enerije su, k K m K k K k Slika (a) L uk F = ( Ku + Kk ) + K L m + λ (a) dje je lokalni ubitak u mlaznici izračunat s izlaznom brzinom. Modificirana Bernoullijea jednadžba od točke 0 do točke lasi pm0 F ρ + = + (b) a jednadžba kontinuiteta π d π = = (c) 4 4 Ako se brzine i u jednadžbama (a) i (b) izraze s pomoću protoka, te jednadžba (a) ursti u jednadžbu (b), slijedi izraz

5 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA L u k 8 + K K + K + λ m p M = + (d) π d ρ U ornjem su izrazu nepoznati protok i koeficijent trenja λ, koji zaisi od protoka, te će za odreñianje protoka trebati primijeniti iteratini postupak. Za tu sru će se u izraz (d) urstiti se poznate eličine, nakon čea se dobia,6 { } = (e) m s 6 6, , 0 λ Reynoldso broj izražen s pomoću protoka je 6 Re = 7, 0 { } m s π ν = (f) U izrazima (e) i (f) se konstante su dimenzijske, a s obzirom da su se eličine urštaane u SI sustau jedinica, protok će biti izražen u m /s. Koeficijent trenja λ za turbulentno strujanje se računa iz izraza, λ = () k,74 ln +,7 0,9 Re Iteratini postupak započinje s pretpostaljenom rijednošću koeficijenta trenja λ u režimu potpuno izražene rapaosti, koja se dobije iz izraza () za Re. Nakon toa se iz izraza (e) računa protok, a iz izraza (f) Reynoldso broj koji uršten u izraz () daje koriiranu rijednost koeficijenta trenja λ, s kojom započinje noa iteracija. Rezultati iteratino postupka su sumirani u sljedećoj tablici Broj iteracije λ, m /s Re 0 0,080 0,00 0,00 0,0096 0, ,00900,60. 0,9. 0 Očito se protok u posljednje dije iteracije slaže u pre četiri sinifikantne znamenke te se iteratini postupak prekida i usaja =9, l/s. Iz jednadžbe (c) slijede brzine =,77 m/s i =,0 m/s, a iz jednadžbe (a) uz λ=0,00 prema ornjoj tablici F =,4 m. Snaa koja se troši na sladaanje ubitaka je F = ρ F = 9 W. Visina koju dosene mlaz se odreñuje iz Bernoullijee jednadžbe od točke do točke prema slici (a). U obje točke lada atmosferski tlak, a s obzirom da je točka najiša točka mlaza, u njoj je brzina jednaka nuli. Ako se zanemari utjecaj sile trenja izmeñu mlaza i okolne atmosfere, može se trditi da od točke do točke nema ubitaka meaničke enerije, te rijedi 8,64 m = = () Kada bi fluid bio idealan, tj. strujanje bez ubitaka meaničke enerije, brzina strujanja bi se računala na temelju Bernoullijee jednadžbe koja ima oblik jednadžbe (b) uz F =0, odnosno id = pm0 + = 4,8 m s (i) ρ rotok bi bio id =0, l/s, a mlaz bi dosenuo isinu id =,8 m. Napomena: Kao što je kod istjecanja fluida kroz otor na elikom spremniku ueden koeficijent korekcije brzine C, tako bi se i u oom slučaju moao definirati isti taj koeficijent kao odnos starne i idealne brzine strujanja što bi u oom slučaju bilo

6 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 6 C = = 0,878 (j) id U oom slučaju koeficijent C obuaća se lokalne i linijske ubitke meaničke enerije, koji se takoñer mou pokazati jednim jedinstenim koeficijentom lokalno ubitka uz izlaznu brzinu Kuk = = 0, 94 (k) C Isti taj koeficijent se može izračunati iz izraza (a) uz ujet uk m u k =, tj. F K uk L K = K + K + K + λ = 0, 94. (l)

7 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 7. Odredite promjer cjeooda da bi razina fluida u spremniku prema slici ostala konstantna. Zadano je: ρ=997 k/m, ν =0, m /s, =8, m, =,4 m, L =898 m, =00 mm, k =k =0,0 mm i L =60 m. ρ L,, k =? ρ L, k, =? Rješenje: U oom primjeru imamo istjecanje fluida iz eliko spremnika, u spremnik konačni dimenzija, iz koje fluid istječe u atmosferu. Traži se da razina fluida u spremniku ostane konstantna, te je prema jednadžbi kontinuiteta jasno da protok kojim fluid utiče u spremnik mora biti jednak protoku kojim fluid iz njea istječe. Budući je zadana isinska razlika, te si podaci za cjeood izmeñu spremnika i, mouće je izračunati protok, kojim fluid utiče u spremnik, a zatim se treba odrediti promjer, da bi fluid istim tim protokom istjecao iz spremnika. rotok će se odrediti iz modificirane Bernoullijee jednadžbe, koja postaljena od točke na slobodnoj poršini u spremniku, do točke na slobodnoj poršini u spremniku. Uzimajući u obzir da su brzine na obje slobodne poršine jednake nuli, te da izmeñu točaka i imamo lokalni ubitak utjecanja u spremnik (K=) modificirana Bernoullijea jednadžba lasi: pa pa L + = + K + λ (a) ρ ρ a brzina u cjeoodu izmeñu spremnika i se može izraziti preko protoka u obliku = (b) π Kombinacijom izraza (a) i (b) slijedi 8 = ( + λl ), π odnosno traženi protok je = π 8( + λ L ) Urštaanjem zadani eličina iz ornje izraza slijedi 0, 64 { } = m /s 0, + 898λ dje je (c) (d)

8 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 8 i, λ = k,74 ln +,7 0,9 Re Re e 4 7, 4 0 { } 6 = = = (f) m /s ν π υ rotok se odreñuje iteratino iz izraza (d), (e) i (f), s tim da iteratini postupak započinjemo s izrazom (e) uz pretpostaku Re =. Nakon odreñianja λ, odreñuje se protok prema izrazu (d), a zatim Reynoldso broj prema izrazu (f), nakon čea se ponoo može izračunati λ prema izrazu (e). Tablica se popunjaa se dok se protok ne prestane mijenjati u pre tri znamenke. (e) Iteracije λ [m /s] Re 0 0,09 0,080, ,04 0,079, ,04 0,07,44 0 0,04 0,07 Iz tablice je očito da je strujanje turbulentno jer je Reynoldso broj daleko eći od kritične rijednosti 00, što opradaa i pretpostaku da je koeficijent ispraka kinetičke enerije približno jednak jedinici. Budući se protok prestao mijenjati u pre tri znamenke nakon drue iteracije, za rješenje se uzima konačna rijednost =7, l/s. Nakon što je odreñen protok kroz pru cije, traži se promjer drue cijei da bi kroz nju fluid strujao jednakim protokom. romjer će se odrediti iz modificirane Bernoullijee jednadžbe (M.B.J.) postaljene od točke na slobodnoj poršini spremnika, dje lada atmosferski tlak, a brzina strujanja je nula, do točke u mlazu, na izlazu iz cjeooda, dje je tlak jednak atmosferskom tlaku, a brzina mlaza jednaka brzini u cjeoodu =. Uzimajući u obzir linijske ubitke π M.B.J. lasi 8 = + λ L = ( λl + ) () π odakle je 8 = ( + λl ) () π Urštaanjem si zadani rijednosti u izraz () slijedi: { } { } = 0,4 ( + 60 λ ) (i) m m dje je, λ = (j) k,74 ln +,7 0,9 Re i Reynoldso broj 0887 Re = = (k) πν { } m

9 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 9 romjer će se takoñer odrediti iteratino iz izraza (i), (j) i (k), pri čemu je iteratini postupak mouće započeti pretpostakom bilo koje eličine. Sljedeća tablica prikazuje rezultate dobiene u iteratinom postupku koji započinje s pretpostakom = =0, m. Na kraju bi dobili isti rezultat da se krenulo i s nekom druom rijednošću promjera. Iteracije [m] k / Re λ 0 0,000 0,000,40 0 0,00 0,80 0, ,99 0 0,0446 0,7 0,000074, ,040 0,7 Iz tablice je očito da se nakon drue iteracije promjer prestao mijenjati u pre četiri znamenke, pa se za konačno rješenje usaja =7 mm.

10 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 0 4. Treba odrediti snau koju pumpa predaje fluidu u sustau za lañenje kada je izeden kao otoreni, prema slici (a), te kao zatoreni prema slici (b). U oba je slučaja protok u sustau = l/s, a promjenu ustoće i iskoznosti s temperaturom se može zanemariti. Zadano je: ρ=998, k/m, ν=,. 0-6 m /s, L a =0,4 m, =80 mm, k=0,0 mm, =,4 m, =0, m, si lokalni ubici u otorenom sustau ΣK a =4,, a u zatorenom ΣK b =4,8, L b =L a +. lañeni objekt lañeni objekt L a L b=l a+ k k ladnjak pumpa ρ, ν pumpa = a? = b? (a) (b) Rješenje: lañeni objekt z=0 0 ρ, ν Slika (a) Otoreni susta roblem strujanja u otorenom sustau će se riješiti postaljanjem modificirane Bernoullijee jednadžbe od točke 0 na slobodnoj poršini spremnika do točke na izlazi iz cijei sustaa za lañenje, kao što je prikazano na slici (a). U otorenom sustau za lañenje cirkulira stalno jedan te isti fluid, te se može pretpostaiti da je razina fluida u spremniku stalno na istoj isini te da je brzina strujanja u točki 0 približno jednaka nuli. rema tome je očito da je kinetička enerija mlaza u točki sa stajališta strujanja izubljena. Ako se usoji da se ranina z=0 poklapa sa slobodnom poršinom u spremniku, modificirana Bernoullijea jednadžba od točke 0 do točke lasi La p = + + Ka + λ (a)

11 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA iz koje je očito da će se isina dobae pumpe trošiti na sladaanje eodetske isine, lokalni i linijski ubitaka, a da će se dio isine dobae pretoriti u kinetičku eneriju izlazno mlaza. Tražena se isina dobae pumpe može izračunati direktno iz izraza (a) jer su poznati i protok i promjer cjeooda. Brzina strujanja fluida je = = 0,99 m s (b) π Reynoldso broj je 4 Re = = 6,6 0 (c) ν iz čea se zaključuje da je strujanje u cijei turbulentno, te se koeficijent trenja λ računa iz izraza, λ = (d) k,74 ln +,7 0,9 Re što uršteno u izraz (a) daje isinu dobae pumpe p =,8 m. Snaa koju pumpa predaje fluidu je tada a = ρp = 7,4 W (e) lañeni objekt ladnjak Slika (b) prikazuje zatoreni susta lañenja u kojem cirkulira jedan te isti rasladni fluid. U oom su slučaju strujnice zatorene kriulje, te se modificirana Bernoullijea jednadžba može postaiti npr. od ulaza u pumpu, točka na slici (b), duž strujnice kroz pumpu, lañeni objekt i ladnjak ponoo do točke na ulazu u pumpu. S obzirom da polazna točka odoara dolaznoj u Bernoullijeoj jednadžbi se izjednačuju doedena enerija i enerija ubitaka, tj. rijedi Lb p = K + λ (f) b Iz ornje je jednadžbe očito da će se isina dobae pumpe trošiti samo na sladaanje lokalni i linijski ubitaka trenja. Brzina i koeficijent trenja λ su jednaki kao i u pretodnom slučaju, te je p = 0,4 m. Slika (b) Zatoreni susta Snaa pumpe u oom slučaju je b = ρp = 0,6 W () Očito je u zatorenom sustau potrebna puno manja snaa pumpe neo u otorenom jer u zatorenom sustau nije potrebno sladaati eodetsku isinu, a nema ni ubitka kinetičke enerije.

12 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA. Treba odrediti promjer cjeooda da bi se na izlazu iz mlaznice dobilo 9% raspoložie potencijalne enerije u obliku kinetičke enerije izlazno mlaza uz protok od =0, m /s. Koliki je promjer mlaznice. Zadano je: ρ=998, k/m, ν=, m /s, L=90 m, k=0, mm, =74 m, K u =0,, K m =0,06. ρ,ν K u =? L, k K m Rješenje: Odje se radi o cjeoodu koji doodi fluid iz akumulacijsko jezera do elton turbine, dje se traži da se turbini priede što iše raspoložie enerije. Zbo toa će se fluid transportirati kroz cjeood eliko promjera, u kojem će strujanje biti malom brzinom, te će i ubici meaničke enerije biti mali. red mlaznicom će tlak biti isok, a u mlaznici će se ta enerija tlaka pretoriti u kinetičku eneriju mlaza. ρ,ν K u 0 Slika (a) K m Slika (a) prikazuje cjeood s ucrtanim karakterističnim točkama. U točki na ulazu u cjeood nastaje lokalni ubitak meaničke enerije koji se obračunaa kroz koeficijent lokalno ubitka K u, od točke do točke postoje linijski ubici, a od točke do točke, ponoo lokalni ubitak u mlaznici koji je zadan koeficijentom K m lokalno ubitka. S obzirom da nije nalašeno uz koju se isinu brzine računa oaj lokalni ubitak, podrazumijea se eća isina brzine, a u oom slučaju to je izlazna brzina. Visinska razlika označuje raspoložiu potencijalnu eneriju po jedinici težine fluida, a kinetička enerija mlaza po jedinici težine fluida je, dje je brzina mlaza. Traži se da kinetička enerija mlaza bude 9% raspoložie potencijalne enerije, tj. 0,9 = (a) odakle je brzina =70, m/s. romjer mlaznice koji će osiurati traženu brzinu kod zadano protoka slijedi iz jednadžbe kontinuiteta = = 00 mm (b) π romjer cjeooda će se odrediti iz modificirane Bernoullijee jednadžbe, koja postaljena od točke 0 do točke lasi

13 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA L = + Km + Ku + λ (c) i jednadžbe kontinuiteta π π = = (d) 4 4 dje je sa označena brzina u cijei promjera. Urštaanjem jednadžbe (d) u (c) se dobia 8 = ( + Km ) + ( Ku + λl) (e) π iz koje se može izraziti promjer u obliku ( + λ ) 8 Ku L { } { } m m π ( + Km ) = = 0,6 0, + 90λ Reynoldso broj je 6,7 0 Re = = π ν () { } m Iz jednadžbe (f) je očito da za odreñianje promjera treba poznaati koeficijent trenja λ koji je funkcija Reynoldsoa broja, a za čije je odreñianje potrebno poznaati promjer, te je očito nužan iteratini postupak. Iteratini postupak započinje pretpostaljanjem promjera. Jedan od načina je da se u jednadžbi (f) pretpostai koeficijent trenja λ=0,0, a da se član 0, zanemari. Tada je 0 = 0,6 90 0,0 = 0, 49 m () Sljedeća tablica prikazuje rezultate iteratino postupka koji započinje s rijednošću 0. Broj iteracije, m k Re λ 0,000407, ,06 0,0004, , ,49 0,479 0,474 U ornjoj tablici je koeficijent trenja λ izračunat iz izraza (7.6) jer se očito radi o turbulentnom strujanju. Vrijednost promjera u ornjoj tablici se prestala mijenjati u pre tri znamenke te se može usojiti da je konačna rijednost =474 mm. Isti bi se rezultat dobio da se krenulo od neke drue rijednosti promjera 0. Za kontrolu se može izračunati brzinu = π =, m s, koja urštena u polaznu modificiranu Bernoullijeu jednadžbu (c) daje isinu =7,9 m, što se rlo dobro slaže sa zadanom rijednošću =74 m, te je time dokazana točnost rezultata. (f)

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Stacionarno tečenje u sustavu pod tlakom

Stacionarno tečenje u sustavu pod tlakom Praktikum iz hidraulike Str. 6-1 VI ježba Stacionarno tečenje u sustau pod tlakom Primjena Bernoullijee jednadžbe za strujanje realne tekućine u sustau pod tlakom je prikazana na modelu koji se sastoji

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Infimum i supremum skupa Zadatak 1. Neka je S = (, 1) [1, 7] {10}. Odrediti: (a) inf S, (b) sup S. (a) inf S =, (b) sup S = 10.

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

MEHANIKA FLUIDA HIDROSTATIKA 5. Osnovna jednadžba gibanja (II. Newtonov zakon) čestice idealnog fluida i realnog fluida u relativnom mirovanju

MEHANIKA FLUIDA HIDROSTATIKA 5. Osnovna jednadžba gibanja (II. Newtonov zakon) čestice idealnog fluida i realnog fluida u relativnom mirovanju MENIK LUID IDTTIK 5. IDTTIK snovna jednadžba ibanja (II. Newtonov akon) čestice idealno fluida i realno fluida u relativnom mirovanju σ d av d fdv+ σd n V V t av d fdv+ ( pn+ σ ) V V d U anemarenje viskoni

Διαβάστε περισσότερα

MEHANIKA FLUIDA dio 5

MEHANIKA FLUIDA dio 5 MEHANIKA FLUIDA dio 5 prof. Željko Andreić Rudarsko-geološko-naftni fakultet Sveučilište u Zagrebu zandreic@rgn.hr http://rgn.hr/~zandreic/ Željko Andreić Mehanika fluida P5 1 sadržaj 1-2-3! Tečenje kroz

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016. 12 SKUPIN ZDK IZ FIZIKE I 6 linja 2016 Zadatak 121 U osudi - sremniku očetnog volumena nalazi se n molova dvoatomnog lina na temeraturi rema slici) Plin izobarno ugrijemo na temeraturu, adijabatski ga

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (1. dio) (2. izdanje)

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (1. dio) (2. izdanje) ZADACI IZ FIZIKE Riješeni ispitni zadaci, riješeni prijeri i zadaci za ježbu (. dio) (. izdanje) Zadaci iz fizike (. dio). izdanje. Izeđu dije točke koje se nalaze sa iste strane obale, na eđusobno rastojanju

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

KLASIFIKACIJA STRUJANJA FLUIDA

KLASIFIKACIJA STRUJANJA FLUIDA MEHANIKA FIA II Što valja zapamtiti 47 KASIFIKACIJA STRJANJA FIA Treba naglasiti da se prije izvedene Navier-Stokesove jednadžbe odnose na strujanje newtonskog, jedno-komponentnog jednofaznog fluida (dakle

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

[ρ] = [ ] ρ= V = kg [ ] [p] = A = N

[ρ] = [ ] ρ= V = kg [ ] [p] = A = N FIZIK podloge za studij strojarsta 08. Fluidi 8. Sojsta i osnne eličine stanja fluida Tekućine popriaju oblik sprenika dok ga plini u cjelini ispunjaaju (diskusija: E p i E k olekula, F g ). Najčešće sretana

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Matematika 1. kolokviji. Sadržaj

Matematika 1. kolokviji. Sadržaj Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Parne turbine) List: 1 PARNE TURBINE Parne turbine su toplinski strojevi u kojima se toplinska energija, sadržana u pari, pretvara najprije u kinetičku energiju, a nakon toga u mehanički rad. Podjela

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

ALFA List - 1. Festival matematike Split 2013. Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013. ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Zakon o količini kretanja

MEHANIKA FLUIDA. Zakon o količini kretanja MEHANIKA FLUIDA Zakon o količini kretanja zadatak Odrediti intenzitet sile kojom mlaz vode deluje na razdelnu račvu cevovoda hidroelektrane koja je učvršćena betonskim blokom (vsl) Prečnik dovodnog cevovoda

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

1.3. Rješavanje nelinearnih jednadžbi

1.3. Rješavanje nelinearnih jednadžbi 1.3. Rješavanje nelinearnih jednadžbi Rješavanje nelinearnih jednadžbi sastoji se od dva bitna koraka: nalaženja intervala u kojem se nalazi nultočka (analizom toka), što je teži dio posla, nalaženja nultočke

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα