TEOREME O SREDNJOJ VRIJEDNOSTI

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TEOREME O SREDNJOJ VRIJEDNOSTI"

Transcript

1 TEOREME O SREDNJOJ VRIJEDNOSTI Rolova teorema: Ako je y f(x) fnkcija neprekidna na interval [a,b] i diferencijabilna na interval (a,b) i ako je f(a) f(b) 0, onda postoji bar jedna tačka c (a,b) takva da je f'(c) 0. Dokaz: (nije obavezan!) f diferencijabilna f neprekidna postojanje najmanje i najveće vrijednosti m i M fnkcije f(x) na interval [a,b]. Ako je m M fnkcija je konstantna: f(x) k, x (a,b) pa je za svako x (a,b), f'(x) 0, tj. za tačk c možemo zeti proizvoljn tačk iz (a,b). 1

2 Neka je m M. Tada je M 0 ili m 0. Neka je M 0. Označimo sa c on vrijednost argmenta x za koj je f(x) M. Kako je f(a) f(b) 0 i M 0, to je c a i c b, dakle c (a,b). U tački x c fnkcija ima najveć vrijednost na interval [a,b], pa je, za c + Dx (a,b), f(c+dx) f(c), i, ako je Dx > 0: f ( c + D x ) f ( c ) 0 Dx Prema pretpostavci, postoji granična vrijednost izraza na lijevoj stani kad Dx 0 i ta granična vrijednost je f'(c). Iz osobina granične vrijednosti slijedi da je f'(c) 0 (1). Za Dx < 0 isti količnik nije negativan pa nije negativna ni njegova granična vrijednost, tj. f'(c) 0 (2) Iz (1) i (2) slijedi tvrđenje, tj. postojanje tačke c kojoj je f'(c) 0. 2

3 Geometrijsko tmačenje Rolove teoreme je sledeće: U bar nekoj tački grafika fnkcije y f(x) koja se anlira tačkama a i b i koja je neprekidna na interval [a,b] i diferencijabilna na interval (a,b) tangenta je paralelna x-osi. NAPOMENA: Rolova teorema važi i ako se pretpostavci slov f(a) f(b) 0 zamijeni slovom f(a) f(b). 3

4 Lagranžova teorema: Ako je y f(x) fnkcija neprekidna na interval [a,b] i diferencijabilna na interval (a,b), onda postoji tačka c (a,b): f ( c) f( b) f( a) b a Dokaz: (nije obavezan!) Označimo sa g(x) sledeć fnkcij: g(x) [f(x) f(a)](b a) [f(b) f(a)](x a). Fnkcija g(x) je diferencijabilna na interval (a,b) (kao zbir proizvoda diferencijabilnih fnkcija) i još je g(a) g(b) 0, što znači da ispnjava slove Rolove teoreme. Postoji, dakle, tačka c (a,b) takva da je f( b) f( a) g'(c) f'(c)(b a) [f(b) f(a)] 0, tj. f ( c) b a 4

5 Geometrijski: U bar jednoj tački c (a,b) tangenta grafika fnkcije neprekidne na interval [a,b] i diferencijabilne na interval (a,b) paralelna je sječici određenoj tačkama (a, f(a)) i (b, f(b)) 5

6 Košijeva teorema: Ako s f(x) i g(x) fnkcije neprekidne na interval [a,b] i diferencijabilne na interval (a,b) i ako je g'(x) 0, onda postoji tačka c (a,b) takva da je f( b) f( a) f ( c) g( b) g( a) g ( c) Primjer. Primjenom Lagranžove teoreme, lako se dokazje da ako je prvi izvod f-je jednak 0, tada je ta fnkcija konstantna! (lijeva strana relacije na slajd 4 je 0 pa je f(x)f(a)- const, za svako x sa intervala (a,b)). 6

7 Tajlorova formla (bez dokaza): f ( x) f ( a) + f ( a) ( x a) + 1! f ( a) ( x a) 2! f ) ( a) ( x a) n! ( n+ 1) f ( c) ( x a) ( n + 1)! ( n 2 n n+ 1 +, gdje je c neki broj iz intervala (a,x). Izraz G f ( n+ 1 ) ( c ) x a ( n + 1)! ( ) n+ 1 zove se ostatak. Primjer. Primjenjjći Tajlorov forml na fnkcij f(x) e x, za a 0 i n 7, imaćemo 2 7 c x x x x e e x ! 2! 7! 8! Za x 1, odbacjći poslednji sabirak, dobijamo da je e ! 2! 3! 4! 5! 6! 7! 7 2,

8 f ( x) f (0) + f (0) 1! x + f (0) 2! x f ) (0) n! ( n x n + G Maclarinov red- prikazje razvoj fnkcije f(x) oko nle (a0) 8

9 Lopitalovo pravilo (bez dokaza): Neka s f(x) i g(x) diferencijabilne fnkcije čija je granična vrijednost, kad x a, nla i neka količnik njihovih izvoda ima granic A kad x a. Tada je f ( x) f ( x) lim lim A x a g( x) x a g ( x ) Napomena. Pravilo se primjenjje i na oblik /. Ostali neodređeni izrazi se svode na 0/0 ili /.. Primjer. Primjenjjći Lopitalovo pravilo ( oblik 0(- ) sveli smo na - /!) dobijamo da je 1 lim ln lim ln x x x lim x x 0 x 0 1 x 0 1 x x 2 0 9

10 ODREĐIVANJE INTERVALA MONOTONOSTI Za fnkcij y f(x) kažemo da raste, oznaka y, na interval (a,b) D ako je za svako x 1 < x 2, x 1,x 2 (a,b) ispnjena nejednakost f(x 1 ) < f(x 2 ) Ako je, z iste pretpostavke f(x 1 ) f(x 2 ), kažemo da, na interval (a,b) D, fnkcija f(x) ne opada. Analgono se definiš opadanje (y ) i nerašćenje fnkcije na nekom interval. Intervale rašćenja i intervale opadanja zovemo intervalima monotonsosti fnkcije. Određivanje intervala monotonosti zovemo još i ispitivanje toka fnkcije. 10

11 Neka je y f(x) fnkcija diferencijabilna na interval [a,b] i neka na tom interval raste. Tada z slove, x 0 (a,b), Dx 0 > 0 i x 0 +Dx 0 (a,b) važi jednakost f(x 0 + Dx 0 ) > f(x 0 ), odnosno Dy 0 f(x 0 + Dx 0 ) f(x 0 ) > 0. No, tada je i količnik Dy Dx vrijednost kad Dx 0 0 nenegativna, tj. Dy. 0 lim f ( x 0 ) 0 Dx0 0 Dx pozitivan, a njegova granična Iz pretpostavke da diferencijabilna fnkcija raste, slijedi 11 nenegativnost izvoda.

12 Geometrijski: Tangenta grafika diferencijabilne fnkcije koja raste na interval [a,b] je ili paralelna x-osi ili sa njom gradi oštar gao (slika 1). Slika 1. 12

13 Pretpostavimo, sada, da je na interval [a,b] fnkcija f(x) diferencijabilna i da je f'(x) > 0, x [a,b]. Ako s x 1 i x 2, x 1 < x 2 proizvoljne tačke intervala [a,b], onda, prema Lagranžovoj teoremi, postoji tačka c (x 1,x 2 ) takva da je f(x 2 ) - f(x 1 ) f'(c)(x 2 - x 1 ). Kako je, po pretpostavci, f'(c) > 0 i x 2 > x 1, to je f(x 2 ) > f(x 1 ) za svako x 1, x 2 iz intervala [a,b], što znači da na interval [a,b] fnkcija raste. Geometrijski: Ako tangenta grafika fnkcije y f(x) proizvoljnoj tački x [a,b] gradi sa x-osom oštar gao, onda na interval [a,b] fnkcija raste (slika 1). 13

14 Na interval na kome je prvi izvod pozitivan fnkcija raste; na interval na kome je prvi izvod negativan - fnkcija opada. 14

15 EKSTREMNE VRIJEDNOSTI FUNKCIJE Važn log ispitivanj fnkcije imaj one tačke iz intervala definisanosti kojima fnkcija prelazi iz rašćenja opadanje ili iz opadanja rašćenje. Na slici 2. s to tačke x 1 i x 3 odnosno x 2 i x 4. Slika 2. 15

16 Kažemo da tački x a D f fnkcija f(x) ima maksimm ako postoji neka okolina tačke a kojoj je f(a) najveća vrijednost. Tako, fnkcija čiji je grafik dat na sl. 2 za x x 3 ima maksimm jer je na interval (x 2,x 4 ) koji sadrži tačk x 3, f(x 3 ) najveća vrijednost. Vrijednost f(a) se zove maksimm fnkcije. Simbolički: fnkcija y f(x) za x a ima maksimm f(a), ako postoji neka okolina tačke a takva da je f(a) > f(x) za svako x a iz te okoline (sl. 3.). Slika 3. 16

17 Analogno se definiše i minimm fnkcije sl. 4. Minimm i maksimm zovemo ekstremnim vrijednostima. Slika 4. Teorema (potreban slov): Ako tački x a diferencijabilna fnkcija ima ekstremn vrijednost, onda je toj tački prvi izvod jednak nli. Teorema (dovoljan slov): Ako je stacionarnoj tački xa drgi izvod različit od 0, onda toj tački f-ja ima ekstremn vrijednost, i to: ako je drgi izvod stacionarnoj tački pozitivan- minimm, sprotnom (drgi izvod negativan)- maksimm 17

18 POTREBAN I DOVOLJAN USLOV: Diferencijabilna fnkcija tački x a ima ekstremn vrijednost ako i samo ako je x a nla prvog izvoda i ako, prolazeći kroz t tačk, prvi izvod mijenja znak. Pritom, ako prvi izvod mijenja znak sa + na - fnkcija ima maksimm, ako mijenja sa - na + ima minimm. Nle prvog izvoda zov se stacionarne ili kritične tačke. Primjer. Odrediti ekstremne vrijednosti fnkcije y x 3 3x + 1. Rešenje: Nle prvog izvoda (stacionarne-kritične tačke) s rješenja jednačine 3x 2 3 0, tj. x 1 1 i x 2 1. Prolazeći kroz tačk x 1 prvi izvod mijenja znak (i to sa + na pa toj tački data fnkcija ima maksimm: y max y( 1) ( 1) 3 3( 1) Prolazeći kroz tačk x 1 prvi izvod mijenja znak i to sa na +, pa ovoj tački data fnkcija ima minimm: 18 y min y(1) 1.

19 KONVEKSNOST I KONKAVNOST. PREVOJNE TAČKE Ako s ordinate proizvoljne tačke grafika fnkcije y f(x) čije apscise pripadaj interval (a,b) manje ili jednake od odgovarajćih ordinata tangente t, onda kažemo da je na interval (a,b) grafik fnkcije y f(x) konkavan (sl. 5.). Ako s, z iste pretpostavke, ordinate tangente manje ili jednake od odgovarajćih ordinata grafika fnkcije, kažemo da je na interval (a,b) grafik fnkcije konveksan (sl. 6.). Slika 5. Slika 6. 19

20 Ako je grafik fnkcije konkavan y f(x), drgi izvod je nepozitivan; ako je drgi izvod negativan, grafik je konkavan. Na interval konveksnosti drgi izvod fnkcije y f(x) je nenegativan; na interval na kome je drgi izvod pozitivan, grafik fnkcije je konveksan. Tačka P(a,f(a)) je prevojna tačka (tj. tačka koja razdvaja konveksan od konkavnog dijela) grafika f-je y akko je drgi izvod toj tački jednak 0, i prolazeći kroz t tačk drgi izvod mijenja znak. 20

21 Uslov maksimizacije profita Da bi maksimiziralo profit predzeće mora da izjednači granični trošak i granični prihod. Kako? RR(Q) fnkcija kpnog prihoda CC(Q) fnkcija kpnih troškova ( Q) R( Q) C( Q) Fnkcija profita (fnkcija cilja) je. Da bi dobili nivo proizvodnje koji maksimizira profit, moramo zadovoljiti slov dπ/dq0. d ( Q) R ( Q) C ( Q) 0 ako i samo ako R (Q)C (Q). dq Međtim, da bi imali maksimm moramo provjeriti slov drgog reda: 2 d ( Q) R ( Q) C ( Q) 0 ako i samo ako R (Q)<C (Q). 2 dq Ekonomski, to znači, ako je stopa promjene MR manja od stope promjene MC pri proizvodnji za koj je MCMR, tada će proizvodnja maksimizirati profit. 21

22 Koeficijenti kbne fnkcije kpnih troškova kbna fnkcija vijek sadrži dva ili jedan prevoj prevoja kbna fnkcija može na svom grafik imati dio nagnt prema dolje, dok bi fnkcija kpnih troškova, da bi imala ekonomskog smisla, morala biti svda nagnta prema gore (rastća!) (veća proizvodnja, veći kpni trošak). CC(Q)aQ 3 +bq 2 +cq+d Kako ograničiti parametre tako da spriječimo da kriva C opada? MCC (Q)3aQ 2 +2bQ+c Da bi MC bila svda pozitivna, nžno je da je parabola U-oblikovana tj a>0, ali to nije dovoljno jer minimalna vrijednost U-oblikovane krive MC, MC min može pasti ispod vodoravne ose. Pa, mora biti: MC 6aQ+2b0, a nivo proizvodnje koji zadovoljava ovaj slov je a bdći da se negativan obim proizvodnje iskljčje, to je b<0. MC min 2 2 b b 3ac b 3a + 2b + c 0 b 3a 3a 3a 2 <3ac, pa c>0. Takođe, d>0. Q 2b 6a * 22 b 3a

23 Brzina rasta neprekidne fnkcije: F-ja y f(x) koja raste na interval (a,b) kažemo da, na tom intrval, raste sve brže ili da raste progresivno, ako jednakim priraštajima argmenta odgovaraj sve veći priraštaji fnkcije. Iz definicije slijedi da, za fnkcij koja raste sve brže: 0 < Δx 1 Δx 2 Δx 3... Δy 1 < Δy 2 < Δy 3 <... Na interval (a,b) fnkcija y f(x) koja ima drgi izvod raste sve brže ako i samo ako je f'(x) > 0 i f"(x) > 0, za svako x (a,b). 23

24 Za fnkcij y f(x) koja raste na interval (a,b) kažemo da, na tom interval, raste sve sporije (degresivno) ako jednakim priraštajima argmenta odgovaraj sve manji priraštaji fnkcije, tj.: 0 < Δx 1 Δx 2 Δx 3... Δy 1 > Δy 2 > Δy 3 >... na interval (a,b), fnkcija y f(x) raste sve sporije ako i samo ako je f'(x) > 0 i f"(x) < 0. 24

25 Nalaženje stope rasta Trentna stopa rasta od f-je vremena yf(t): r y dy/ dt y ' f ( t) f ( t) granicna_ fnkcija kpna_ fnkcija To je izvod od lnf(t)lny logaritmovati f-j i onda naći izvod lnf(t) odnos na vrijeme! Pr. Naći stop rasta od VAe rt lnvlna+rtlnelna+rt d d r V lnv 0 + rt dt dt r 25

26 Stopa rasta kombinacije f-ja y v v f ( t) g( t) ln y ln + lnv d d d r y ln y ln + lnv dt dt dt Trentna stopa rasta proizvoda je sma trentnih stopa rasta komponenata: r v r + rv Trentna stopa rasta količnika je razlika trentnih stopa rasta komponenata: r ( / v) Pr. Ako potrošnja C raste stopom a i ako stanovništvo H raste stopom b, kolika je stopa rasta potrošnje po glavi (per capita) (C/H)? r (C/H) r C -r H a-b r r v 26

27 27 Stopa rasta zbira je ponderisana sredina stopa rasta komponenata + ) ( ) ( t g v t f v z ) ln( ln v z + ) ( ) ( 1 ) ( 1 ) ln( ln ' ' t g t f v v dt d v v dt d z dt d r z ) ( ) / ( ' t f t f r r r t f t f ) ( ) ( ' v v r v v r v r ) ( v v r v v r v r ) (

28 KARAKTERISTIKE FUNKCIJE. GRAFIK Ispitati fnkcij znači odrediti: 1.Oblast definisanosti D f 2.Parnost, neparnost, periodičnost 3.Nle fnkcije 4.Neprekidnost, ponašanje prekidnim tačkama, vertikalne asimptote 5.Horizontalne i kose asimptote 6.Znak fnkcije 7.Tok, ekstremne vrijednosti 8.Konveksnost, konkavnost, prevojne tačke 9.Grafik 28

29 Ako je lim x + f ( x) A ili lim x f ( x) onda se prava y A zove horizontalna asimptota grafika fnkcije f(x). A 29

30 Ako je fnkcija f(x) kad x a ili x a+0, ili x a-0, beskonačno velika veličina, onda se prava x a zove vertikalna asimptota grafika te fnkcije. Iz definicija granične vrijednosti i vertikalne asimptote slijedi da grafik fnkcije može da ima vertikaln asimptot x a samo ako je tačka a kraj otvorenog intervala na kome je fnkcija definisana. 30

31 Za prav y kx + n kažemo da je kosa asimptota grafika fnkcije y f(x) ako je lim[f(x) - (kx + n)] 0, kad x + ili x - Otda se dobija da je k f x lim ( ) x n lim[f(x) - kx], kad x + ili x - kad x + ili x - i 31

32 Ispitati fnkcij i nacrtati njen grafik y ( 1 x) ( 1 + x) 3 2 Rešenje. 1.Domen: x 1. 2.Zbog nesimetričnosti domena nema smisla ispitivati parnost i neparnost. 3.y 0 za x 1 - trostrka nla lim x 1 0 lim x y y , lim y x pa x 1 je dvostrana vertikalna asimptota. grafik nema horizontaln asimptot. 32

33 k lim x (1 x) (1 + x) x 3 2 lim x 3 (1 x) x(1 + x) 2 1 n lim x lim x 1 2x (1 + (1 (1 + x) x) + 5x 2 x) x 5 lim x 1 3x + 3x 2 x (1 + + x 2 x) x 2 + x Isto se dobija i za +, pa je y -x + 5 kosa asimptota 6. Znak: za x < 1 y > 0, a za x > 1 y < 0. 33

34 2 ( x 1) ( x 7. y 3 ( x + 1) + 5) 0 za x 1 x 5. x (, 5) 5 ( 5, 1) 1 ( 1, 1) 1 (1, + ) y' y 27/2 0 y min ( 5) 27/2. x 1 nije apscisa ekstrema. 1 x 8. y 24 0 x 1 4 ( x + 1) x (, 1) 1 ( 1, 1) 1 (1, + ) y" y 0 P(1,0) je prevojna tačka (nije ekstremm). 34

35 9. Grafik: Napomena. Primjetimo da je x -1/3 presjek kose asimptote i grafika date fnkcije 35

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

y x = k = const, gde je x bilo koja promena veličine x, a y odgovarajuća promena y. Ako je = k za svako x i svako h 0.

y x = k = const, gde je x bilo koja promena veličine x, a y odgovarajuća promena y. Ako je = k za svako x i svako h 0. 73 7 Diferenciranje 7. Marginalna funkcija i izvod Ako su dve veličine, y i x, povezane linearnom funkcijom, y = f(x) = kx + n, onda se y menja ravnomerno u odnosu na x, tj. važi formula (43) y x = k =

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu Elektrotehnički fakultet Univerziteta u Sarajevu P R I P R E M N I Z A D A C I za DRUGI PARCIJALNI ISPIT IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Š.G. 005 / 006. UPUTSTVO: 1. Za svaki od prva četiri zadatka

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

IspitivaƬe funkcija. Teorijski uvod

IspitivaƬe funkcija. Teorijski uvod IspitivaƬe funkcija Teorijski uvod IspitivaƬe funkcija je centralni i svakako najbitniji deo svakog kursa matematike. On daje matematiqku osnovu za skiciraƭe grafika na osnovu matematiqke formule određenih

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

1. Funkcije više promenljivih

1. Funkcije više promenljivih 1. Funkcije više promenljivih 1. Granične vrednosti funkcija više promenljivih Definicija 1. Funkcija f : D( R n R ima graničnu vrednost u tački (x 0 1, x 0 2,..., x 0 n D i jednaka je broju α R ako važi

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

KONVEKSNA OPTIMIZACIJA. (zadaci) Milan Jovanović

KONVEKSNA OPTIMIZACIJA. (zadaci) Milan Jovanović KONVEKSNA OPTIMIZACIJA (zadaci) Milan Jovanović 1 Osnovu ove zbirke čine zadaci sa ispita iz Matematičkog programiranja, predmeta koji se predaje na PMF BL od 1998\1999 školske godine. To su zadaci označeni

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 2

ELEMENTARNA MATEMATIKA 2 ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Osnovni teoremi diferencijalnog računa

Osnovni teoremi diferencijalnog računa Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Tena Pavić Osnovni teoremi diferencijalnog računa Završni rad Osijek, 2009. Sveučilište J.J. Strossmayera u Osijeku

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA I N Ž E N J E R S K A M A T E M A T I K A 64 Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA 4 Osnovni pojmovi Činjenica da se mnogi zakoni fizike i drugih nauka iskazuju uz pomoć diferencijalnih jednačina

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 1. P r e d a v a n j a z a d e v e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010.

I N Ž E N J E R S K A M A T E M A T I K A 1. P r e d a v a n j a z a d e v e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010. I N Ž E N J E R S K A M A T E M A T I K A Verba volant, scripta manent. [Riječi odlijeću, pisano ostaje. Ono što se kaže lako je zaboraviti, ali ono što je napisano ne može se poreći.] ( Latinska izreka

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014 Nermin Okičić Vedad Pašić MATEMATIKA II 014 Sadržaj 1 Funkcije više promjenljivih 1 1.1 Pojam funkcije više promjenljivih................ 1.1.1 Osnovni elementi preslikavanja.............. 1.1. Grafičko

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu 2 O TROUGLU Trougao je nezaobilazna tema kako osnovne tako i srednje škole. O trouglu se skoro sve zna. Navodimo te činjenice.

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

1 Limesi, asimptote i neprekidnost funkcija

1 Limesi, asimptote i neprekidnost funkcija Slika Limesi, asimptote i neprekidnost funkcija. Limesi funkcija Zajedni ko svim varijantama esa funkcije je da se opisuju (procjenjuju) vrijednosti zadane funkcije u okolini neke vrijednost varijable.

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα