ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš"

Transcript

1 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje (pravilo) koje svakom elementu x skupa X dodeljuje tačno jedan element y skupa Y. U tom slučaju, simbolički pišemo f : X Y ili X f Y, odnosno y = f(x). Skup X naziva se domen i označava se sa D(f) ili Dom(f), a skup Y kodomen funkcije f. Element x X naziva se nezavisno promenljiva, a y Y se naziva zavisno promenljiva. Skup G tačaka u Dekartovom koordinatnom sisitemu sa koordinatama ( x, f(x) ), x D(f) naziva se grafik funkcije y = f(x), x D(f), tj. G = { ( x, f(x) ) x D(f)}. (i) Grafik funkcije y = f(x) + a može se dobiti translacijom grafika funkcije y = f(x) duž y-ose za vrednost a. (ii) Grafik funkcije y = f(x b) može se dobiti translacijom grafika funkcije y = f(x) duž x-ose za vrednost b. (iii) Grafik funkcije y = f( x) je simetričan u odnosu na y-osu sa grafikom funkcije y = f(x). (iv) Grafik funkcije y = f(x) je simetričan u odnosu na x-osu sa grafikom funkcije y = f(x). Podsetimo se najvažnijih svojstava funkcije. Definicija 1.. Funkcija f : X Y naziva se: (1) injekcija ( 1-1 funkcija) ako za svako x 1, x X važi f(x 1 ) = f(x ) x 1 = x () sirjekcija (funkcija NA ) ako i samo ako za svako y Y postoji bar jedno x X takvo da je y = f(x), tj. ako i samo ako je (3) bijekcija ako je ona injekcija i sirjekcija. f(x) = { f(x) x X } = Y ; Definicija 1.3. Funkcije f : X 1 Y 1 i g : X Y su jednake ako i samo ako: (1) imaju isti domen, tj. X 1 = X ; () imaju isti kodomen, tj. Y 1 = Y ; (3) f(x) = g(x) za svako x X 1 = X. Definicija 1.4. Neka je f : X Y i g : Y Z. Kako je f(x) Y, svaki element f(x) f(x) Y funkcija g preslikava u element g ( f(x) ) Z. Tada se funkcija koja za svako x X ima vrednost g ( f(x) ) = (g f)(x) naziva složena funkcija ili kompozicija funkcija f i g i označava se sa g f. Definicija 1.5. Neka A, B R i neka je f : A B data funkcija. Ako postoji funkcija g : B A takva da važi

2 (1) f ( g(x) ) = x za svako x B () g ( f(x) ) = x za svako x A, kažemo da je funkcija g inverzna funkcija funkcije f i označavamo je sa f 1. Grafik funkcije y = f 1 (x) simetričan je grafiku funkcije y = f(x) u odnosu na pravu y = x. Inverzna funkcija funkcije f ne mora da postoji, a bliže uslove pod kojima funkcija f ima inverznu funkciju daje naredna teorema. Teorema 1.1. Neka je f : A B bijekcija. Tada postoji jedinstvena bijekcija g : B A takva da je (1) f ( g(x) ) = x za svako x B () g ( f(x) ) = x za svako x A, Dokaz: (a) Ako je f : A B sirjekcija, onda može postoji najviše jedna funkcija g : B A takva da je (g f)(x) = x za svako x A. Zaista, ako bi postojale dve funkcije g 1, g sa tim svojstvom, onda pretpostavka g 1 g vodi ka egzistenciji bar jednog elementa z B takvog da( je g) 1 (z) ( g (z). ) Kako je f sirjekcija, postoji x A takvo da je z = f(x). Ali tada je g 1 f(x) g f(x), što je u suprotnosti sa g 1 f = g f = 1 A (1 A je identično preslikavanje skupa A, tj. funkcija definisana sa 1 A (x) = x za svako x A). Prema tome, mora biti g 1 = g. (b) Ako je f : A B injekcija, onda može postojati najviše jedna funkcija g : B A takva da je (f g)(y) = y za svako y B. Zaista, ako bi postojale dve takve funkcije g 1, g, onda zbog pretpostavke g 1 g postoji bar jedan element z B takav da je g 1 (z) g (z). Kako je f injekcija, onda je f ( g 1 (z) ) f ( g (z) ) = 1 B, a to je kontradikcija sa f g 1 = f g. (c) Ako za funkciju f : A B postoje funckije g 1, g : B A takve da je (g 1 f)(x) = x za svako x A, (f g )(y) = y za svako y B, onda je g 1 = g i f je bijekcija. Za proizvoljno y B imamo g (y) A, pa je g (y) = (g 1 f) ( g (y) ) = g 1 (f ( g (y) )) = g 1 (y), što povlači da je g = g 1. Prema tome, postoji funkcija g : B A takva da je (g f)(x) = x za svako x A, (f g)(y) = y za svako y B. Iz g f = 1 A sledi da je f injekcija, a iz f g = 1 B da je f sirjekcija. Dakle, f je bijekcija. (d) Neka je f : A B bijekcija. Za svako y B postoji x A takvo da je y = f(x). Kako je f injekcija, takvo x je jedinstveno. Na taj način svakom elementu y B pridržen je jedinstven element x A takav da je y = f(x). Označimo li sa g : B A funkciju koja y x, tada za svako x A imamo (g f)(x) = g ( f(x) ) = x i za svako y = f(x) B (f g)(y) = f ( g(y) ) = f ( g ( f(x) )) = f ( (g f)(x) ) = f(x) = y. Time je dokazano da funkcija g ima tražene svojstva iz Definicije 1.5.

3 3 Definicija 1.6. Neka f : A R, gde skup A R ima osobinu da ako x A onda x A. Funkcija f je parna na A ako za svako x A važi f( x) = f(x), a neparna na A ako za svako x A važi f( x) = f(x). Ističemo sledeća svojstva parnih i neparnih funkcija: Grafik parne funkcije simetričan je u odnosu na y-osu, a grafik neparne funkcije simetričan je u odnosu na koordinatni početak. Ako su f i g parne funkcije, onda su i funkcije f ± g, f g i f/g parne funkcije. Ako su f i g neparne funkcije, onda su funkcije f ± g neparne funkcije, a f g i f/g su parne funkcije. Ako je f parna funkcija i g neparna funkcija, onda je f g neparna funkcija. Definicija 1.7. Za funkciju f : R R kažemo da je : (a) rastuća, ako je tačna implikacija ( x, y R) ( x < y f(x) < f(y). (b) neopadajuća, ako je tačna implikacija ( x, y R) ( x < y f(x) f(y) ). (c) opadajuća, ako je tačna implikacija ( x, y R) ( x < y f(x) > f(y) ). (d) nerastuća, ako je tačna implikacija ( x, y R) ( x < y f(x) f(y) ). Ako je funkcija neopadajuća ili nerastuća kažemo da je monotona funkcija, a ako je funkcija opadajuća ili rastuća kažemo da je strogo monotona funkcija. Teorema 1.. Neka je funkcija f strogo monotona funkcija koja preslikava segment [a, b] na segment [α, β]. Tada postoji inverzna funkcija f 1 koja preslikava [α, β] na [a, b] i koja je takod e strogo monotona. Dokaz: Neka je f rastuća funkcija na [a, b]. Ako pokažemo da je f bijekcija prema prethodnoj teoremi postoji inverzna funkcija f 1 funkcije f. Zaista, prema pretpostavci f je surjekcija. S druge strane, ako je x y, recimo x < y, tada je f(x) < f(y), tj. f(x) f(y), pa je f i injekcija. Dokažimo da je f 1 rastuća funkcija. Kako je f rastuća funkcija, za svako x 1, x [a, b] važi ili ekvivalentno x 1 < x f(x 1 ) < f(x ) f(x ) f(x 1 ) x x 1. Neka je y 1 = f(x 1 ) i y = f(x ), tj. x 1 = f 1 (y 1 ) i x = f 1 (y ). Tada prethodna nejednakost postaje y y 1 f 1 (y ) f 1 (y 1 ). što znači da je f 1 rastuća funkcija. Definicija 1.8. Neka je f : A R i a A. Za funkciju f kažemo da je neprekidna u tački a ako je lim f(x) = f(a). x a

4 4 Ako su funkcije f, g neprekidne u tačka a, onda su u tački a neprekidne i funkcije c f, f + g, f g, f g, (c R). Funkcija f g je takod e neprekidna u tački a, ako je g(a) 0. Kompozicija neprekidnih funkcija je neprekidna funkcija.. Stepena funkcija sa prirodnim izložiocem Definicija.1. Funkcija f : R R definisana formulom f(x) = x n, n N, naziva se stepena funkcija sa prirodnim izložiocem. Funkcija y = x je neprekidna, pa je onda i funkcija y = x n neprekidna kao prozivod neprekidnih funkcija. Teorema.1. Funkcija f(x) = x n, n N je neprekidna na R. Posmatrajmo jednačinu x n = a (1) Da bi definisali pojam korena od posebnog značaja je sledeća teorema: Teorema.. Neka je a R, a n N. Tada jednačina (1) ima: (1) tačno jedno rešenje ako je n neparan broj; (.1) tačno dva rešenja ako je a > 0 i n paran broj; (.) tačno jedno rešenja ako je a = 0 i n paran broj; (.3) nema rešenja ako je a < 0 i n neparan broj; Definicija.. Neka je n N, a R. Simbol n a označava (1) jedinstveno realno rešenje jednačine x n = a ako je n neparan broj; () pozitivno rešenje jednačine x n = a ako je a > 0 i n paran broj; (3) 0 = 0. Posmatrajmo najpre funkciju f(x) = x n+1, f : R R. Funkcija f je definisana za sve realne vrednosti x, tj. njen domen je skup R Funkcija f je neparna f(x) > 0 za x > 0 i f(x) < 0 za x < 0 f(x) = 0 ako i samo ako je x = 0 Funkcija f je strogo rastuća na R Funkcija f je bijekcija Za svako x 1, x R iz f(x 1 ) = f(x ) tj. x n+1 1 = x n+1 sledi x 1 = x, pa je f injekcija. Za svako y R postoji x = n+1 y R za koje je f(x) = x n+1 = y Funkcija je inverzna funkciji f. h : R R, h(y) = n+1 y, y R

5 5 Na sledećoj slici prikazani su grafici uzajamno inverznih funkcija y = x 3 i y = 3 x. Osnovna svojstva funkcije y = n+1 x su sledeća: Funkcija je definisana za sve realne vrednosti x Znak funkcije se poklapa sa znakom nezavisno promenljive, tj. važi n+1 x > 0 ako i samo ako x > 0, odnosno n+1 x < 0 ako i samo ako x < 0 n+1 x = 0 ako i samo ako x = 0 Funkcija je strogo rastuća na R Funkcija je neparna, tj. važi n+1 x = n+1 x za svako x R Posmatrajmo sada funkciju f(x) = x n, f : R R +. Funkcija f je definisana za sve realne vrednosti x Funkcija f je parna f(x) 0 za svako x R i f(x) = 0 ako i samo ako x = 0 Funkcija f je rastuća na (0, + ) i opadajuća na (, 0). Funkcija f nije ni 1-1 ni NA : Zaista, na primer, važi f( 1) = f(1), što znači da nije 1-1. S druge strane, za y = 1 R ne postoji x R takvo da je x n = 1 = y, pa funkcija nije ni NA. Dakle, ova funkcija nije bijekcija, pa nema inverznu funkciju. Posmatrajmo funkciju g : R + 0 R+ 0, g(x) = xn, x R + 0. Funkcija g je bijekcija. Zaista, ona je 1-1, jer iz g(x 1 ) = g(x ), tj. x n 1 = x n i x 1, x 0 sledi x 1 = x. Takod e ona je NA, jer prema Teoremi.. za svaki nenegativan broj y postoji jedinstven nenegativan broj x, takav da je g(x) = x n = y. Funkcija h : R + 0 R+ 0, h(y) = n y, y R + 0

6 6 je inverzna funkcija funkcije g. Analogno, inverzna funkcija bijekcije g 1 : R 0 R+ 0, g 1(x) = x n, x R 0, je funkcija h 1 : R + 0 R 0, h 1(y) = n y, y R + 0. Na sledećoj slici prikazani su prvo grafici uzajamno inverznih funkcija y = x, x 0 i y = x (obe funkcije su monotono rastuće - videti Teoremu 1..), a zatim grafici uzajamno inverznih funkcija y = x, x 0 i y = x (obe funkcije su monotono opadajuće). Osnovna svojstva funkcije y = n x su sledeća: Funkcija je definisana za nenegativne vrednosti x, tj. njen domen je [0, + ) n Funkcije je nenegativna tj. x > 0 za svako x > 0 n x = 0 ako i samo ako x = 0 Funkcija je strogo rastuća na R Funkcija nije ni parna ni neparna 3. Stepena funkcija sa racionalnim izložiocem Pri definisanju stepenovanja celobrojnim izložiocem, a zatim i pri definisanju stepenovanja racionalnim izložiocem vodi se računa da se sačuvaju svojstva stepenovanja prirodnim brojem, tako da za svako a, b R \ {0} i svako m, n N važi: (1) a m a n = a m+n ; () a m : a n = a m n ; (3) (a b) m = a m b m ; (4) (a : b) m = a m : b m ; (5) (a m ) n = a m n.

7 7 Definicija 3.1. Za a R \ {0} je a 0 = 1, a za n N je a n = 1 a n. Definicija 3.. Neka je a > 0, m Z, n N. Tada je a m/n = n a m. Definicija 3.3. Neka je x > 0 i r = m/n, m Z, n N. Funkcija f : R + R + definisana formulom x r = (x 1/n ) m, x > 0 naziva se stepena funkcija sa racionalnim izložiocem. Funkcija x 1/n je neprekidna i strogo rastuća za x > 0. Funkcija t m je neprekidna za t > 0, strogo rastuća ako je m 0 i strogo opadajuća, ako je m < 0. Zato je funkcija x r, r Q neprekidna za x > 0, strogo rastuća ako je r 0 i strogo opadajuća ako je r < 0. Navodimo neka svojstva stepena sa racionalnim izložiocem: (A) (a 1/n ) m = (a m ) 1/n, a > 0;; (B) a r > 1 za r Q, a > 1, r > 0;; (C) a r1 a r = a r1+r za a > 0, r 1 Q, r Q;; (D) (a r1 ) r = a r1r za a > 0, r 1 Q, r Q;; (E) a r1 > a r > 0 za a > 0, r 1 Q, r Q, r 1 > r.. Navedena svojstva se lako pokazuju, korišćenjem svojstva stepena sa celim izložiocem i činjenicom da ako je a > 0, b > 0 iz a n = b n, n N sledi a = b. 4. Eksponencijalna funkcija Postavlja se pitanje, može li se i za one brojeve x R koji nisu racionalni definisati a x, ali tako da ostanu na snazi osnovna svojstva stepena. Odgovor na postavljeno pitanje je potvrdan, ali dokaz te činjenice nije jednostavan. Da bi definisali eksponencijalnu funkciju f(x) = a x, x R pokazaćemo najpre sledeće tvrd enja: Stav 4.1. Ako je a > 1, onda za svako ε > 0 postoji δ > 0 tako da za svako r Q takvo da je r < δ važi a r 1 < ε. Dokaz: Kako je lim n + a 1/n = 1 i lim n + a 1/n = 1, za svako ε > 0 postoji p = p(ε) N, tako da je 0 < a 1/p 1 < ε, 0 < 1 a 1/p < ε, za a > 1. Odavde sledi da je 1 ε < a 1/p < a 1/p < 1 + ε. Neka je r proizvoljan racionalan broj takav da je r < 1/p, tj. 1/p < r < 1/p. Tada, kako je za a > 1 funkcija a r, r Q rastuća sledi a 1/p < a r < a 1/p. Dakle, za svako ε > 0 postoji δ = 1/p > 0 tako da za sve racionalne brojeve r koji zadovoljavaju uslov r < δ važe nejednakosti 1 ε < a 1/p < a r < a 1/p < 1 + ε, tj. ε < a r 1 < ε. Stav 4.. Ako niz {r n } racionalnih brojeva konvergira, onda niz {a rn }, za a > 1 takod e konvergira.

8 8 Dokaz: Kako je niz {r n } konvergentan on je ograničen, tj. postoji α, β Q, tako da za svako n N je α r n β, odakle kako je a > 1 imamo da je a α a rn a β. Kako je a α > 0, ako označimo sa C = a β, imamo da Prema Stavu 4.1. C > 0 : n N 0 < a rn C. () ε > 0 δ > 0 : r Q : r < δ a r 1 < ε C. (3) Iz konvergencije niza {r n } za δ > 0 postoji N ε takvo da n N ε m N ε r n r m < δ (4) Iz (3) i (4) sledi da je n N ε m N ε a rn rm 1 < ε C. (5) Iz () i (5) je onda a rn a rm = a rm (a rn rm 1) < C ε C = ε za svako n N ε i svako m N ε, tj. niz {a rn } je konvergentan. Pojam eksponencijalne funkcije Neka je x proizvoljan realan broj i {r n } niz racionalnih brojeva koji konvergira ka x tj. lim n r n = x. Ovaj niz postoji jer je skup Q gust u R. Neka je a > 0. Tada možemo definisati sa a x def = lim n + arn (6) Ako je a > 1, onda granična vrednost (6) postoji prema Stavu 4.1. Ako je 0 < a < 1, onda je a rn = 1/b rn, gde je b = 1/a > 1, odakle sledi da granična vrednost (6) postoji i za a (0, 1), jer je lim n + b rn = b x > 0. Definicija eksponencijalne funkcije je korektna, tj. granična vrednost (6) ne zavisi od izbora niza racionalnih brojeva {r n } koji konvergira ka x. Ova činjenica sledi iz poznatog svojstva granične vrednosti funkcije. Svojstva eksponencijalne funkcije Svojstvo 4.1. Za svako x 1, x R važi a x1 a x = a x1+x. Dokaz: Neka su {r n } i {ρ n } nizovi racionalnih brojeva takvi da je lim n + r n = x 1, lim n + ρ n = x. Tada je lim n + (r n + ρ n ) = x 1 + x i prema Stavu 4.. postoje granične vrednosti lim = a n + arn x1, lim = a n + aρn x, lim = a n + arn+ρn x1+x. Kako je prema svojstvu (C) stepena sa racionalnim izložiocem a rn+ρn = a rn a ρn to je a x1+x = lim = lim a n + arn+ρn n + arn ρn = a x1 a x.

9 9 Monotonost eksponencijalne funkcije Svojstvo 4.. Funkcija y = a x za a > 1 je rastuća. Dokaz: Primetimo najpre da važi a x > 1 za x > 0. (7) Zaista, neka je r Q, 0 < r < x i {r n } niz racionalnih brojeva takav da je lim n + r n = x i r n > r za svako n N. Tada je a rn > a r > 1 (zbog svojstva (E) stepena sa racionalnim izložiocem), odakle prelazkom na lim imamo da je a x a r > 1, tj. važi nejednakost (7). Neka su sada x 1, x R, x 1 < x proizvoljni. Prema (7) važi a x x1 > 1 za x > x 1, tj. imamo da je a x > a x1 za x > x 1, što znači da je funkcija y = a x za a > 1 rastuća. Neprekidnost eksponencijalne funkcije Svojstvo 4.3. Funkcija y = a x za a > 1 je neprekidna na R. Dokaz: Neka je x 0 proizvoljna tačka iz R, Treba pokazati da a x 1 kada x 0 ili y = a x0+ x a x0 = a x0 (a x 1). lim x 0 ax = 1. (8) Neka je {x n } proizvoljan niz realnih brojeva takav da lim n + x n = 0. Zbog svojstva skupa realnih brojeva postoje nizovi racionalnih brojeva {r n } i {ρ n } takvi da je x n 1 n < r n < x n < ρ n < x n + 1 n, za svako n N. Sada prema Svojstvu 4.. imamo da je a rn < a xn < a ρn. (9) Kako r n 0 i ρ n 0 kada n +, prema Svojstvu 4.1. je lim n + a rn = 1 i lim n + a ρn = 1. Dakle, koristeći nejednakost (9) dobija se lim n + a xn = 1. Pokazali smo (8) odakle sledi da je lim x 0 ax0+ x = a x0, tj. funkcija a x je neprekidna na R. Svojstvo 4.4. Za svako x 1, x R važi (a x1 ) x = a x1x. Dokaz: (a) Neka je najpre x = r Q, x 1 R i {r n } niz racionalnih brojeva takav da je lim n + r n = x 1. Tada je prema svojstvu (D) stepena sa racionalnim izložiocem (a rn ) r = a r rn. (10) Kako je lim n + r r n = r x 1, prema definiciji eksponencijalne funkcije je lim n + a r rn = a r x1, tj. zajedno sa (10) imamo da je lim ) r = a r n + (arn x1. (11) Označimo sa a rn = t n i a x1 = t 0. Tada prema definiciji eksponencijalne funkcije postoji lim n + t n = t 0 i zbog neprekidnosti eksponencijalne funkcije sa racionalnim izložiocem g(x) = x r, r Q imamo da je lim n + g(t n ) = g(t 0 ), tj. lim n + (arn ) r = (a x1 ) r. (1)

10 10 Iz (11) i (1) imamo da je (a x1 ) r = a x1 r za svako x 1 R i svako r Q. (13) (b) Neka su sada x 1 i x proizvoljni realni brojevi i {ρ n } niz racionalnih brojeva takav da je lim n + ρ n = x. Iz (13) za r = ρ n dobija se (a x1 ) ρn = a x1 ρn. (14) Kako je lim n + x 1 ρ n = x 1 x, prema Svojstvu 4.3. je lim n + a x1ρn = a x1x, a zbog (14) je lim ) n + (ax1 ρn = a x1x. (15) S druge strane, ako označimo sa a x1 = b, prema definiciji eksponencijalne funkcije imamo da je lim ) n + (ax1 ρn = lim = b n + bρn x = (a x1 ) x. (16) Konačno, iz (15) i (16) zaključujemo da dato svojstvo ekponencijalne funkcije važi za svako x 1, x R. Osnovna svojstva eksponencijalne funkcije y = f(x) = a x, a > 0 su: funkcija f je definisana za svako x R, a skup vrednosti funkcije je interval (0, + ), tj. f : R (0, + ) funkcija je pozitivna za svako x R nule funkcije ne postoje funkcija f je monotono rastuća na R za a > 1 i monotono opadajuća na R za 0 < a < 1 Grafici funkcije y = a x za a > 1 i 0 < a < 1 su: 5. Logaritamska funkcija Funkcijom f : R R +, R x f(x) = a x = y R + ostvaruje se bijektivno preslikavanje skupa R na skup R +, pa postoji inverzna funkcija ove funkcije koja je data sa f 1 : R + R, R + y f 1 (y) = log a y = x R. Funkcija naziva se logaritamska funkcija. y = log a x, a > 0, a 1, x > 0,

11 11 Grafici funkcije y = log a x za a > 1 i 0 < a < 1 su: Osnovna svojstva logaritamske funkcije y = f(x) = log a x, a > 0, a 1 su: funkcija f je definisana za svako x R + za 0 < a < 1 funkcija je pozitivna za x (0, 1) i negativna za x (1, + ), a za a > 1 funkcija je pozitivna za x (1, + ) i negativna za x (0, 1) nula funkcije je x = 1 funkcija f je monotono rastuća na R + za a > 1 i monotono opadajuća na R + za 0 < a < 1 6. Trigonometrijske funkcije (i) Sinusna funkcija. Funkcija f(x) = sin x je definisana za svako x R, a skup vrednosti funkcije je segment [ 1, 1], tj. f : R [ 1, 1]. funkcija f je neparna i periodična sa osnovnom periodom π (zato je dovoljno iskazati svojstva funkcije samo na segmentu [0, π]) funkcija je pozitivna za x (0, π) i negativna za x (π, π) nule funkcije f su u tačkama x = k π, k Z [ funkcija je monotono rastuća na 0, π ] [ 3π ] [ π, π i monotono opadajuća na, 3π ] Sinusna funkcija je osnovna elementarna funkcija. Ostale trigonometrijske funkcije definišemo sa ( cos x = sin x + π ), tg x = sin x cos x, cos x ctg x = sin x. (ii) Kosinusna funkcija. Funkcija g(x) = cos x je definisana za svako x R, a skup vrednosti funkcije je segment [ 1, 1], tj. g : R [ 1, 1]. funkcija g je parna i periodična sa osnovnom periodom π nule funkcije g su u tačkama x = π + k π, k Z funkcija je monotono opadajuća na [0, π] i monotono rastuća na [π, π]

12 1 (iii) Tanges. Funkcija h(x) = tg x = sin x je definisana za svako x R izuzev u tačkama cos x (k + 1)π x =, k Z, a skup vrednosti funkcije je R. funkcija h je neparna i periodična sa osnovnom periodom π nule funkcije h su u tačkama x = k π, k Z funkcija je monotono rastuća (iv) Kotanges. Funkcija k(x) = ctg x = cos x sin x x = kπ, k Z, a skup vrednosti funkcije je R. je definisana za svako x R izuzev u tačkama funkcija k je neparna i periodična sa osnovnom periodom π nule funkcije h su u tačkama x = funkcija je monotono opadajuća (k + 1)π, k Z Neprekidnost trigonometrijskih funkcija Teorema 6.1. Funkcije y = sin x i y = cos x su neprekidne na R. Dokaz: Neka je x 0 proizvoljna tačka iz R. Tada Kako je sin x sin x 0 = sin x x 0 sin x x 0 x x 0, cos x + x 0 cos x + x 0 1, to je sin x sin x 0 x x 0, odakle sledi da je funkcija y = sin x neprekidna u tački x 0. Analogno, kako je cos x cos x 0 = sin x + x 0 sin x 0 x sledi da je cos x cos x 0 x x 0, zbog čega je funkcija y = cos x neprekidna u tački x 0. Iz neprekidnosti funkcija y = sin x i y = cos x sledi da je funkcija tg x = sin x neprekidna, ako cos x je cos x 0, tj. x π cos x + n π, n Z, a funkcija ctg x = je neprekidna, ako je x n π, sin x n Z.. 7. Inverzne trigonometrijske funkcije Inverzne trigonometrijske funkcije nazivaju se ciklometrijske ili arkus funkcije. (i) Arkus sinus. Funkcija f(x) = sin x nema inverznu funkciju, jer nije bijekcija. Na primer, svi brojevi oblika π + kπ, k Z preslikavaju se ovom funkcijom u broj 1. Med utim, posmatrajmo [ restrikciju funkcije f(x) na π, π ], tj. funkciju [ f 1 : π, π ] [ 1, 1], gde je f 1 (x) = sin x. [ Funkcija f 1 (x) je rastuća funkcija, pa postoji njena inverzna funkcija f 1 1 : [ 1, 1] π, π ] koja se naziva arkus sinus i označava se sa F (x) = arcsin x. Grafik funkcije y = arcsin x simetričan je grafiku funkcije f 1 (x) u odnosu na pravu y = x.

13 13 Prema svojstvima uzajamno inveznih funkcija važe jednakosti: arcsin(sin x) = x, x [ π, π ], sin(arcsin x) = x, x [ 1, 1]. Osnovna svojstva funkcije F (x) = arcsin x, x [ 1, 1] su: funkcija F je neparna, tj. važi arcsin( x) = arcsin x, x [ 1, 1]. funkcija je pozitivna za x (0, 1] i negativna za x [ 1, 0) nula funkcija F je x = 0 funkcija je monotono rastuća Primer: Nacrtati grafik funkcije y = arcsin(sin x). Funkcija je definisana na R i periodična je sa periodom π. Zato je dovoljno odrediti grafik funkcije na segmentu [ π/, 3π/]. Ako je π/ x π/, onda je y = arcsin(sin x) = x. Za π/ x 3π/ je π/ x π π/, pa je S druge strane, sin(x π) = sin x i zato je arcsin(sin(x π)) = x π. arcsin(sin(x π)) = arcsin( sin x) = arcsin(sin x), zbog neparnosti funkcije arcsin x. Dakle, x π = arcsin(sin x) za x [π/, 3π/]. Konačno, imamo da je x, π y = arcsin(sin x) = x π, π π x, x 3π, Grafik funkcije y = arcsin(sin x) prikazan je na sledećoj slici:

14 14 (ii) Arkus kosinus. Funkcija g 1 : [0, π] [ 1, 1], g 1 (x) = cos x, x [0, π] je neprekidna i opadajuća. Njena inverzna funkcija G : [ 1, 1] [0, π], G(x) = arccos x, x [ 1, 1] je takod e neprekidna i opadajuća. Grafik funkcije y = arccos x prikazan je na sledećoj slici: Važe jednakosti: arccos(cos x) = x, x [0, π], cos(arccos x) = x, x [ 1, 1]. Osnovna svojstva funkcije G(x) = arccos x, x [ 1, 1] su: funkcija G nije ni parna ni neparna, već važi arccos( x) = π arccos x funkcija G je pozitivna za svako x [ 1, 1) nula funkcija G je x = 1 funkcija je monotono opadajuća

15 15 Stav 7.1. Za svako x [ 1, 1] važe jednakosti: arccos( x) = π arccos x, arcsin x + arccos x = π. (A) (B) Dokaz: (a) Označimo sa arccos x = α. Tada prema definiciji funkcije arccos x je cos α = x, 0 α π. Onda je 0 π α π i cos(π α) = cos α = x. Opet prema definiciji funkcije arccos x je π α = arccos( x). Ovim je formula (A) dokazana. (b) Označimo sa arcsin x = α. Tada prema definciji funkcije arcsin x je sin α = x, π/ α π/. Onda je 0 π/ α π i cos(π/ α) = sin α = x. Sada prema definiciji funkcije arccos x je π/ α = arccos x. Ovim je i formula (B) dokazana. (iii) Arkus tanges. Funkcija [ h 1 : π, π ] R, h 1 (x) = tg x, x [ π, π ] je neprekidna i rastuća. Njena inverzna funkcija [ H : R π, π ], H(x) = arctg x, x R je takod e neprekidna i rastuća. Važe jednakosti: arctg(tg x) = x, x [ π, π ], tg(arctg x) = x, x R. Za funkciju H(x) = arcctg x, x R važi: funkcija H je neparna, tj. arctg( x) = arctg x, x R funkcija je negativna za x < 0, pozitivna za x > 0 i nula funkcije je x = 0 funkcija je monotono rastuća (iv) Arkus kotanges. Funkcija K(x) = arcctg x, K : R [0, π] je inverzna za monotonu funkciju k 1 : [0, π] R datu sa k 1 (x) = ctg x, x [0, π]. Važe jednakosti: arcctg(ctg x) = x, x [0, π], ctg(arcctg x) = x, x R. Za funkciju y = K(x) = arcctg x važi: funkcija K nije ni parna ni neparna, već važi arcctg( x) = arcctg x + π funkcija K nema nule funkcija je monotono opadajuća

16 16 Grafici funkcija y = arctg x i y = arcctg x su: Stav 7.. Za svako x R važe jednakosti: arctg x + arcctg x = π, arcctg( x) = arcctg x + π. (C) (D) Veze izmed u ciklometrijskih funkcija istog ugla: Stav 7.3. Važe sledeće jednakosti: arcsin x = arccos 1 x = arctg arccos x = arcsin 1 x = arcctg x, x [0, 1] 1 x x, x [0, 1] 1 x arctg x = arcctg 1 x = arcsin x = arccos 1, 1 + x 1 + x x R Dokaz: Označimo sa arcsin x = α. Tada prema definiciji funkcije arcsin x je sin α = x, 0 α π/. Onda je cos α = odakle je α = arccos 1 x = arctg 1 sin α = 1 x, tg α = x 1 x. sin x 1 sin x,

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive KOMPLEKSNA ANALIZA. Funkcije kompleksne promenljive Neka je R skup realnih brojeva, a C skup kompleksnih brojeva. Definicija. Ako je E R, preslikavanje f : E C se naziva kompleksna funkcija realne promenljive.

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Prostori Soboljeva sa negativnim indeksom

Prostori Soboljeva sa negativnim indeksom UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Nevena Mutlak Prostori Soboljeva sa negativnim indeksom -master rad- Mentor: prof.dr Marko Nedeljkov Novi Sad,

Διαβάστε περισσότερα

1.1 Definicija funkcije

1.1 Definicija funkcije . Definicija funkcije Realna funkcija predstavlja osnovni pojam u matematičkoj analizi i centralni objekat svih njenih razmatranja. Definicija Neka je dat skup D R. Ako je svakom x D po nekom zakonu (pravilu)

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014 Nermin Okičić Vedad Pašić MATEMATIKA II 014 Sadržaj 1 Funkcije više promjenljivih 1 1.1 Pojam funkcije više promjenljivih................ 1.1.1 Osnovni elementi preslikavanja.............. 1.1. Grafičko

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Milan Merkle. Matematička analiza. Pregled teorije i zadaci. Treće izmenjeno i dopunjeno izdanje. Beograd, 2001.

Milan Merkle. Matematička analiza. Pregled teorije i zadaci. Treće izmenjeno i dopunjeno izdanje. Beograd, 2001. Milan Merkle Matematička analiza Pregled teorije i zadaci Treće izmenjeno i dopunjeno izdanje Beograd, 2001. Sadržaj Obavezno pročitati................................................... xi 1 Uvod u analizu........................................................

Διαβάστε περισσότερα

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija Društvo matematičara Srbije Pripreme za Juiorske olimpijade školske 007/008 -Dord e Baralić Tel:063/706-706-6 e-mail:djolebar@ptt.yu Matematička idukcija Primer 1. Dokazati da je > za sve N. Ituitivo zamo

Διαβάστε περισσότερα

Racionalne krive i površi u geometrijskom dizajnu

Racionalne krive i površi u geometrijskom dizajnu Racionalne krive i površi u geometrijskom dizajnu Tijana Šukilović Matematički fakultet, Univerzitet Beograd May 2, 2011, Beograd Sadržaj 1 Racionalne Bézier-ove krive Polinomijalne Bézier-ove krive Algoritam

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Vjeºbe iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R. II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I Skupovi, funkcije, brojevi mr.sc. TATJANA STANIN 009. Kratak pregled predavanja koja se izvode na učiteljskom

Διαβάστε περισσότερα

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Krijan, Sara Muhvić MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA Zagreb, 2013. Ovaj rad izraden je na Zavodu

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 1

LEKCIJE IZ MATEMATIKE 1 LEKCIJE IZ MATEMATIKE 1 Ivica Gusić Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Lekcije iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama I. Naslov i obja²njenje

Διαβάστε περισσότερα

Skinuto sa

Skinuto sa Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ==========================

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== M. JOVANOVIĆ M. MERKLE Z. MITROVIĆ Elektrotehnički fakultet Banja Luka ================================== ii Autori: dr Milan

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

KONTURNA INTEGRACIJA

KONTURNA INTEGRACIJA KONTURNA INTEGRACIJA Materijal sa sedme radne Ljaškijade - jun 14. Studentska asocijacija Eneter emineter.wordpress.com Ovo je materijal za rešavanje pet tipova integrala koristeći teoreme kompleksne analize

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

JEDNA NOVA KLASA RELACIJA. Daniel A. Romano 1

JEDNA NOVA KLASA RELACIJA. Daniel A. Romano 1 MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) Vol. XX (1)(2014), 5-14 Osnove matematike JEDNA NOVA KLASA RELACIJA Daniel A. Romano 1 Sažak: U ovom tekstu, slijedeći koncepte izložene u radovima

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Univerzitet u Kragujevcu Prirodno-matemati~ki fakultet. Bojana Borovi}anin SPEKTRALNE OSOBINE NEKIH KLASA GRAFOVA. Doktorska disertacija

Univerzitet u Kragujevcu Prirodno-matemati~ki fakultet. Bojana Borovi}anin SPEKTRALNE OSOBINE NEKIH KLASA GRAFOVA. Doktorska disertacija Univerzitet u Kragujevcu Prirodno-matemati~ki fakultet Bojana Borovi}anin SPEKTRALNE OSOBINE NEKIH KLASA GRAFOVA Doktorska disertacija Kragujevac 2007 Sadr`aj Predgovor 2 1 Harmonijski grafovi 5 1.1 Definicija

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj.

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj. Opća topologija 24 Opća topologija 26 13. Baza topologije Baza topologije 2 TOPOLOŠKI PROSTORI I NEPREKIDNE FUNKCIJE Topološki prostori Baza topologije Uređajna topologija Produktna topologija na X Y Topologija

Διαβάστε περισσότερα

Projektivna geometrija Milivoje Luki

Projektivna geometrija Milivoje Luki odatna nastava u Matematiqkoj gimnaziji 04.02.2007. Projektivna geometrija Milivoje Luki milivoje.lukic@gmail.com 1. vorazmera. Harmonijska spregnutost. Perspektivitet. Projektivitet efinicija: Neka su

Διαβάστε περισσότερα

Matematika 1 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić.

Matematika 1 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić. Ivan Slapničar Marko Matić Matematika 1 PODSJETNIK ZA UČENJE http://www.fesb.hr/mat1 Fakultet elektrotehnike, strojarstva i brodogradnje Split, 2001. Sadržaj 1 Osnove matematike 3 2 Linearna algebra 4

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

Projektovanje informacionih sistema 39

Projektovanje informacionih sistema 39 Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo,

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo, Elektrotehnički fakultet Univerziteta u Sarajevu Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA Akademska 008-009 godina Sarajevo, 09 0 009 IME I PREZIME STUDENTA

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

REXENjA ZADATAKA OPXTINSKOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija ( 1)

REXENjA ZADATAKA OPXTINSKOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija ( 1) REXENjA ZADATAKA OPXTINSKOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, 0.0.008. Pvi azed, A kategoija Kako je 5 10510 nepaan boj, sledi da je 10 510510 ( 1) 510510 1 (mod 11). Kako je 5 5 =5 5 5 5

Διαβάστε περισσότερα

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto?

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Franka Miriam Brückler Igor Pažanin Zagreb, 2012. Sadržaj 1 Uvod 7 1.1 Varijable i konstante............................

Διαβάστε περισσότερα

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem Dirichletov princip Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem obliku glasi ovako: Dirichletov princip: Ako n + 1 predmet rasporedimo kako

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA KOMPLETI ZADATAKA ZA PRIJEMNI ISPIT 011. Edicija: Pomoæni ud benici Marjan

Διαβάστε περισσότερα