8 Funkcije više promenljivih

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "8 Funkcije više promenljivih"

Transcript

1 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen X. Ako označimo sa x = (x 1, x 2,..., x n ) proizvoljni element iz X i sa u R sliku elementa x ovim preslikavanjem onda možemo pisati u = f(x 1, x 2,..., x n ) Ako je funkcija samo sa dve nezvisno promenljive onda se obično piše z = f(x, y) gde su x i y nezavisno promenljive a z je zavisno promenljiva. Funkciju sa tri nezavisno promenljive obično onzačavamo sa u = f(x, y, z) gde su x, y i z nezavisno promenljive a u je zavisno promenljiva. Funkcija dve promenljive se može geometrijski interpretirati na sledeći način. Ako sa M označimo tačku u ravni xoy čije su koordinate x i y, onda se funkcija z = f(x, y) može označiti sa z = f(m), tj, z je funkcija tačke M iz ravni xoy, pa skup svih trojki (x, y, z) R 3 koje zadovoljavaju jednačinu z = f(m) ima svoj geometrijski smisao. Obično je to neka površ u prostoru. Primer 72 Oblast definisanosti funkcije z = 2x y je cela ravan R 2. Funkcija definiše ravnu površ u prostoru. Primer 73 Funkcija z = 1 x 2 y 2 ima za domen skup tačaka u ravni R 2 koji zadovoljavaju uslov x 2 +y 2 1, tj. kružnicu x 2 + y 2 = 1 i njenu unutrašnjost. Funkcijom je definisana gornja polusfera x 2 + y 2 + z 2 = 1. Primer 74 Funkcija u = 1 4 x2 y 2 z 2 ima za domen skup svih tačaka x 2 + y 2 + z 2 < 4 (u unutrašnjosti sfere x 2 + y 2 + z 2 = 4).

2 8.1 Granična vrednost i neprekidnost funkcije više promenljivih Granična vrednost i neprekidnost funkcije više promenljivih Rastojanje izmežu n-dimenzionalnih tačaka x R n i y R n gde je x = (x 1, x 2,..., x n ) i y = (y 1, y 2,..., y n ) se definiše metrikom d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) (x n y n ) 2. Pod r-okolinom tačke x 0 podrazumevamo n-dimenzionalnu kuglu K[x 0, r) koju čine tačke x koje zadovoljavahju uslov d(x 0, x) < r. Ako je funkcija u = f(x) definisana u oblasti K[x 0, r)\{x 0 }, gde x R n i x 0 R n, i ako postoji broj b R takav da je za svako ε > 0 (ε r) postoji δ > 0 tako da je d(x 0, x) < δ f(x) b < ε onda se kaže da je b granična vrednost funkcije u = f(x) u tački x 0 i piše se lim x x 0 f(x) = b. Ako je funkcija u = f(x) definisana u oblasti K[x 0, r) i ako je lim f(x) = f(x 0 ) x x 0 onda se kaže da je funkcija neprekidna u tački x o. Ako je funkcija neprekidna u svakoj tački neke oblasti D, onda se kaže da je neprekidna na D. 8.2 Parcijalni izvodi Neka je funkcija z = f(x, y) definisana na oblasti D R 2. Neka (x, y), (x + x, y), (x, y + y) i (x + x, y + y) pripadaju oblasti D. Prvi parcijalni priraštaj funkcije f(x, y) po x u tački (x, y) je x z = f(x + x, y) f(x, y), dok je prvi parcijalni priraštaj funkcije f(x, y) po y u tački (x, y) y z = f(x, y + y) f(x, y). Potpuni (totalni) priraštaj funkcije f(x, y) u tački (x, y) je z = f(x + x, y + y) f(x, y).

3 8.2 Parcijalni izvodi 80 Za funkciju u = f(x 1, x 2,..., x n ) totalni priraštaj je u = f(x 1 + x 1, x 2 + x 2,..., x n + δx n ) f(x 1, x 2,..., x n ). Ako postoji x z lim x 0 x = lim f(x + x, y) f(x, y) x 0 x onda se on naziva prvi parcijalni izvod funkcije z = f(x, y) po x u tački (x, y) i oznažava se sa f ili ili f x(x, y). Slično, ako postoji, y z lim y 0 y = lim f(x, y + y) f(x, y) y 0 y onda se on naziva prvi parcijalni izvod funkcije z = f(x, y) po y u tački (x, y) i oznažava se sa f ili ili f y y y(x, y). Primer 75 = y = z = xy ln(x + y) + 2x 3 y 2 xy ln(x + y) + xy x 2 xy ln(x + y) + xy 1 x + y x + y Ako se totalni priraštaj z funkcije z = f(x, y) u tački može predstaviti u obliku zbira z = f 1 (x, y) x + f 2 (x, y) y + ε( x, y) gde je lim x 0 y 0 ε( x, y) x2 + y 2 = 0 onda se kaže da je funkcija f(x, y) diferencijabilna u tački (x, y). Linearni deo po x i y, tj. f 1 (x, y) x + f 2 (x, y) y naziva se totalni diferencijal funkcije z = f(x, y) u tački (x, y) koji odgovara priraštajima nezavisno promenljivih x i y i označava se sa dz ili df ili df(x, y). Neka je funkcija z = f(x, y) definisana u oblasti D i neka su u toj oblasti neprekidni parcijalni izvodi te funkcije f x(x, y) i f y(x, y). Tada je za (x + x, y + y) D funkcija f(x, y) diferencijabilna u tački (x, y) i važi dz = f x(x, y) x + f y(x, y) y.

4 8.3 Parcijalni izvodi višeg reda 81 odnosno kako je x = dx i y = dy važi dz = f x(x, y)dx + f y(x, y)dy = dx + y dy. Ako se radi o funkciji od n promenljivih u = f(x 1, x 2,..., x n ) onda je totalni diferencijal funkcije jednak du = n k=1 u dx k. 8.3 Parcijalni izvodi višeg reda Parcijalni izvodi prvog reda f i f funkcije f(x, y) su takože funkcije od y x i y, pa se mogu tražiti njihovi parcijalni izvodi po x i y, koji se nazivaju parcijalnim izvodima drugog reda i zavisno od promenljivih po kojima je funkcija diferencirana obeležavaju kao = 2 y 2 = y y = y y = ( ) f ( ) f y ( ) f ( ) f y Poslednja dva izvoda se nazivaju mešovitim parcijalnim izvodima, i ukoliko su 2 f i neprekidne funkcije, tada važi y y y = 2 f y, što znači da u ovom slučaju drugi mešoviti parcijalni izvod ne zavisi od redosleda diferenciranja po x i y. Primer 76 Za funkciju z = x 3 + 2x 2 y + 3xy 2 + y 3

5 8.4 Parcijalni izvodi složene funkcije 82 prvi parcijalni izvodi su = 3x2 + 4xy + 3y 2 dok su drugi parcijalni izvodi 2 z 2 = 6x z = 6x + 6y y2 y = 2x2 + 6xy + 3y 2 2 z y = 4x + 6y Kako su i parcijalni izvodi ponovo funkcije od x i y, postupak diferenciranja je moguće nastaviti kako bi se za funkciju z = f(x, y) dobili parcijalni izvodi trećeg i viših redova. Tako se, na primer, mogu naći sledeć izvodi trećeg reda 3, 2 y, y 2, y 3 y, 2 y 2 y, y y. Pored parcijalnih izvoda za funkcije više promenljivih postoje i totalni diferencijali višeg reda, pa je tako, na primer, za funkciju z = f(x, y) totalni diferencijal drugog reda jednak d 2 z = d(dz) = 2 z 2 dx z y dxdy + 2 z y 2 dy2 dok je njen totalni diferencijal trećeg reda jednak d 3 z = d(d 2 z) = 3 z 3 dx z 2 x y dx2 dy z 2 y dxdy2 + 3 z y 3 dy Parcijalni izvodi složene funkcije Funkcije više promenljivih mogu biti složene, pa tako, na primer, ako je z = f(u, v) funkcija od u i v, pri čemu su u = u(x, y) i v = v(x, y) funkcije od x i y, onda je z složena funkcija od x i y z = f(u(x, y), v(x, y)) = g(x, y) a njeni parcijalni izvodi po x i y se dobijaju kao = u u + v v y = u u y + v v y. Za složene funkcije mogu se definisati i parcijalni izvodi višeg reda, s tim što se njihovo nalaženje usložnjava sa povećavanjem reda parcijalnog izvoda.

6 8.5 Ekstremne vrednosti funkcije dve promenljive Ekstremne vrednosti funkcije dve promenljive Nalaženje ekstremnih vrednosti više promenljivih ilustrovaćemo na najjednostavnijem primeru funkcije dve promenljive z = f(x, y). Najpre ćemo uvesti uobičajene skraćene oznake za parcijalne izvode prvog i drugog reda p = q = y r = 2 z 2 s = 2 z y t = 2 z y 2. Potreban uslov da funkcija dve promenljive u nekoj tački M k ima ekstremnu vrednost jeste da u toj tački oba prva parcijalna izvoda budu jednaka nuli, odnosno p = q = 0/M k. Sve tačke u kojima je ovaj uslov zadovoljen nazivaju se stacionarnim tačkama, ali funkcija ne mora u svakoj od njih imati ekstremnu vrednost. Da bi u stacionarnoj tački funkcija imala ekstremnu vrednost potrebno je da budu ispunjeni još neki uslovi. Da bi se ispitalo da li su ovi uslovi ispunjeni, za svaku stacionarnu tačku se od vrednosti drugih parcijalnih izvoda funkcije u toj tački formira sledeći izraz F (M k ) = rt s 2 /M k. Zavisno od vrednosti ovog izraza postoje sledeće mogućnosti: 1. Ako je F (M k ) > 0, funkcija u stacionarnoj tački ima ekstremnu vrednost i to, zavisno od vrednosti drugog parcijalnog izvoda funkcije po x u toj tački - maksimum, ako je r/m k < 0 - minimum, ako je r/m k > 0 2. Ako je F (M k ) > 0, funkcija u stacionarnoj tački nema ekstremnu vrednost, već je u pitanju tzv. sedlasta tačka 3. Ako je F (M k ) = 0, potrebna su dodatna ispitivanja. Primer 77 Naći ekstremne vrednosti funkcije z = x 2 + y 2 + 2x 4y + 6. Najpre potražimo stacionarne tačke pomoću parcijalnih izvoda prvog reda: p = 2x + 2 q = 2y 4.

7 8.5 Ekstremne vrednosti funkcije dve promenljive 84 Izjednačavanjem parcijalnih izvoda prvog reda sa nulom dolazimo do sistema jednačina 2x + 2 = 0 2y 4 = 0 čijim rešavanjem dobijamo samo jednu stacionarnu tačku M( 1, 2). Kada se potraže parcijalni izvodi drugog reda dobija se r = 2 s = 0 t = 2 što su u ovom slučaju konstante, pa je tako i u tački M rt s 2 = 4 > 0 što dalje znači da u ovoj tački funkcija postiže ekstremnu vrednost. Kako je, pri tome, r = 2 > 0 radi se o minimumu koji je jednak z min = ( 1) = 1 Pored nalaženja ekstremnih vrednosti, za funkciju dve promenljive z = f(x, y) moguće je odrediti i najmanju i najveću vrednost koje funkcija postiže u nekoj oblasti D sa konturom L D = D L Ove vrednosti dobijaju se ispitivanjem - ekstremnih vrednosti funkcije unutar oblasti D (po ranije opisanom postupku) - ekstremnih vrednosti funkcije na konturi L. Ispitivanje ekstremnih vrednosti na konturi svodi se na nalaženje vezanih (neslobodnih) ekstremnih vrednosti funkcije z = f(x, y), odnosno ekstremnih vrednosti koje ona postiže uz zadovoljavanje dodatnog uslova g(x, y) = 0, koji predstavlja jednačinu konturne linije. Postoje dve metode za iznalaženje vezanih ekstrema. 1. Metod direktne eliminacije Iz veze g(x, y) = 0 promenljiva y se izrazi kao funkcija od x, odnosno y = y(x), pa z = f(x, y) sada postaje z = f(x, y(x)) = F (x), dakle samo funkcija od x, za koju se ekstremne vrednosti mogu naći na isti način kao i za druge funkcije jedne promenljive.

8 8.5 Ekstremne vrednosti funkcije dve promenljive Langranžova metoda množitelja Od funkcija f i g se uz uvoženje množitelja λ formira nova funkcija F (x, y, λ) = f(x, y) + λ g(x, y) pa se zatim traže vrednosti za x, y, i λ koje zadovoljavaju jednačine F x = 0 F y = 0 F λ = g(x, y) = 0. Za dobijene vrednosti (x k, y k, λ k ), odosno tačku M k (x k, y k ) se potom izračunava vrednost izraza d 2 F (M k, λ k ) = F xxdx 2 + 2F xydxdy + F yydy 2 uz uslov pa ako je g xdx + g ydy = 0 - d 2 F > 0, funkcija f(x, y) ima minimum u tački M k (x k, y k ) - d 2 F < 0, funkcija f(x, y) ima maksimum u tački M k (x k, y k ). Primer 78 Naći ekstremne vrednosti funkcije ako je pri tome z = x 2 + y 2 2x + y 2 = 0 Primenom metode direktne eliminacije iz dodatnog uslova se dobija y = 2 2x, pa je odatle z = x 2 + (2 2x) 2 = 5x 2 8x + 4. Dalje se izjednačavanjem prvog izvoda funkcije z po x sa nulom dobija z = 10x 8 = 0 x = 4 5 a za ovu vrednost x se jednostavno može ustanoviti da predstavlja minimum funkcije z. Primenom Langranžove metode množitelja formira se funkcija F (x, y, λ) = x 2 + y 2 + λ (2x + y 2)

9 8.6 Tangentna ravan i normala površi 86 odakle je F = 2x + 2λ F y = 2y + λ F λ = 2x + y 2 pa se izjednačavanjem gornjih parcijalnih izvoda funkcije F sa nulom dobija sistem tri jednačine sa tri nepoznate čije je rešenje x = 4 5 y = 2 5 λ = 4 5. Kao što je bilo i očekivano, dobijene su iste vrednosti za x i y, odnosno ista tačka M k ( 4, 2 ) kao i metodom direktne eliminacije. Kako je, dalje F 2 = 2 2 F y = 0 2 F y 2 = 2 to je d 2 F (M k, λ k ) = 2dx 2 + 2dy 2 > 0 što znači da funkcija u toj tački ima minimum. 8.6 Tangentna ravan i normala površi Funkcija z = f(x, y) definiše neku površ u prostoru koju čine tačke M(x, y, f(x, y)), odnosno tačke koje zadovoljavaju jednačinu f(x, y) z = 0. Ako je ova funkcija diferencijabilna u tački (x 0, y 0 ) onda svaka kriva kroz tačku M 0 (x 0, y 0, z 0 ) gde je z 0 = f(x 0, y 0 ) koja se dobija presecanjem te površi sa ravni upravnom na koordinatnu ravan Oxy ima u toj tački svoju tangentu, a sve te tangente leže u jednoj ravni čija je jednačina z z 0 = p(x x 0 ) + q(y y 0 ) gde je p = i q =. Ova ravan se zove tangentna ravan površi z = f(x, y) y u tački M 0 (x 0, y 0, z 0 ), a ova tačka je dodirna tačka izmežu površi i tangentne ravni. Prava koja prolazi kroz tačku M 0 (x 0, y 0, z 0 ) upravno na tangentnu ravan zove se normala površi u tački M 0. Njene jednačine su x x 0 p = y y 0 q = z z 0 1

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014 Nermin Okičić Vedad Pašić MATEMATIKA II 014 Sadržaj 1 Funkcije više promjenljivih 1 1.1 Pojam funkcije više promjenljivih................ 1.1.1 Osnovni elementi preslikavanja.............. 1.1. Grafičko

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive KOMPLEKSNA ANALIZA. Funkcije kompleksne promenljive Neka je R skup realnih brojeva, a C skup kompleksnih brojeva. Definicija. Ako je E R, preslikavanje f : E C se naziva kompleksna funkcija realne promenljive.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Racionalne krive i površi u geometrijskom dizajnu

Racionalne krive i površi u geometrijskom dizajnu Racionalne krive i površi u geometrijskom dizajnu Tijana Šukilović Matematički fakultet, Univerzitet Beograd May 2, 2011, Beograd Sadržaj 1 Racionalne Bézier-ove krive Polinomijalne Bézier-ove krive Algoritam

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo,

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo, Elektrotehnički fakultet Univerziteta u Sarajevu Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA Akademska 008-009 godina Sarajevo, 09 0 009 IME I PREZIME STUDENTA

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Milan Merkle. Matematička analiza. Pregled teorije i zadaci. Treće izmenjeno i dopunjeno izdanje. Beograd, 2001.

Milan Merkle. Matematička analiza. Pregled teorije i zadaci. Treće izmenjeno i dopunjeno izdanje. Beograd, 2001. Milan Merkle Matematička analiza Pregled teorije i zadaci Treće izmenjeno i dopunjeno izdanje Beograd, 2001. Sadržaj Obavezno pročitati................................................... xi 1 Uvod u analizu........................................................

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

Prostori Soboljeva sa negativnim indeksom

Prostori Soboljeva sa negativnim indeksom UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Nevena Mutlak Prostori Soboljeva sa negativnim indeksom -master rad- Mentor: prof.dr Marko Nedeljkov Novi Sad,

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

KONTURNA INTEGRACIJA

KONTURNA INTEGRACIJA KONTURNA INTEGRACIJA Materijal sa sedme radne Ljaškijade - jun 14. Studentska asocijacija Eneter emineter.wordpress.com Ovo je materijal za rešavanje pet tipova integrala koristeći teoreme kompleksne analize

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

MATEMATIKA 2 š.g. 2010./2011.

MATEMATIKA 2 š.g. 2010./2011. MATEMATIKA 2 š.g. 2010./2011. Matematika 2 1. Funkcije više varijabli 2. Višestruki integral 3. Vektorska Analiza 4. Obi cne diferencijalne jednadbe MATEMATIKA 2 1 Literatura: Petar Javor, Matematicka

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Digitalni sistemi automatskog upravljanja

Digitalni sistemi automatskog upravljanja Digitalni sistemi automatskog upravljanja Upotreba digitalnih računara u ulozi kompenzatora i regulatora, u poslednje dve decenije naglo raste. To je posledica rasta njihovih performansi i pouzdanosti,

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ==========================

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== M. JOVANOVIĆ M. MERKLE Z. MITROVIĆ Elektrotehnički fakultet Banja Luka ================================== ii Autori: dr Milan

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Skinuto sa

Skinuto sa Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo

Διαβάστε περισσότερα

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG S R P S K K M I J N U K KLSIƒNI NUƒNI SPISI KNJIG III MTMTIƒKI INSTITUT KNJIG 3 GOMTRISK ISPITIVNJ IZ TORIJ PRLLNIH LINIJ O N. I. LOƒVSKOG Preveo RNISLV PTRONIJVI RUGO, PRO IRNO IZNJ O G R 1951 Na²ao sam

Διαβάστε περισσότερα

1 RАVANSKE REŠETKE (1.2)

1 RАVANSKE REŠETKE (1.2) 1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Vizualizacija prostora Lobačevskog

Vizualizacija prostora Lobačevskog Univerzitet u Beogradu Matematički fakultet Master rad Vizualizacija prostora Lobačevskog Marijana Babić Beograd, 2010. godine MENTOR Dr. Srdan Vukmirović ČLANOVI KOMISIJE Dr. Srdan Vukmirović Dr. Predrag

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

Matematički modeli sistema

Matematički modeli sistema Matematički modeli sistema U analizi i sintezi SAU se koriste kvantitativni matematički modeli koji opisuju fiziku sistema. Generalno, dinamika sistema je opisana običnim diferencijalnim jednačinama. lasa

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA KOMPLETI ZADATAKA ZA PRIJEMNI ISPIT 011. Edicija: Pomoæni ud benici Marjan

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

1.1 Definicija funkcije

1.1 Definicija funkcije . Definicija funkcije Realna funkcija predstavlja osnovni pojam u matematičkoj analizi i centralni objekat svih njenih razmatranja. Definicija Neka je dat skup D R. Ako je svakom x D po nekom zakonu (pravilu)

Διαβάστε περισσότερα

Desanka P. Radunović T A L A S I Ć I (WAVELETS)

Desanka P. Radunović T A L A S I Ć I (WAVELETS) Desanka P Radunović T A L A S I Ć I (WAVELETS) AKADEMSKA MISAO Beograd, 005 Predgovor Knjiga je nastala kao rezultat želje autora da jednu novu, vrlo atraktivnu oblast primenjene matematike približi studentima

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Vjeºbe iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama

Διαβάστε περισσότερα

Boks Dºenkinsov model

Boks Dºenkinsov model UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIƒKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Sandra Kova evi Boks Dºenkinsov model -Master rad- Mentor: prof.dr Zagorka Lozanov-Crvenkovi Novi Sad, 2016

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 8 ΝΟΕΜΒΡΙΟΥ 2016 ΜΕΣΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Έστω η συνάρτηση συνολικής ζήτησης: p = D(q) = 50 2q

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. dr Jovo Jednak Proizvodnja, proizvodna funkcija, dodata vrednost i priroda inputa Transformacija faktora proizvodnje (inputa) u učinak zove se proces proizvodnje.

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ

Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ Έστω συνάρτηση y=f(x) Όριο L (limit) της συνάρτησης y=f(x) είναι ο αριθμός

Διαβάστε περισσότερα