Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση"

Transcript

1 Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x, y)dx + (x, y)dy = 0, καλείται ακριβής σε κάποιο χωρίο Ω του x y επιπέδου, αν υπάρχει ψ(x, y) C 1 (Ω), δηλ. μια συνεχής συνάρτηση ψ(x, y), με συνεχείς μερικές παραγώγους πρώτης τάξης, η οποία ικανοποιεί τις σχέσεις ψ(x, y) x = M(x, y), ψ(x, y) y = (x, y), (x, y) Ω. Κάθε διαφορίσιμη συνάρτηση y = y(x) αποτελεί λύση μιας ακριβούς διαφορικής εξίσωσης αν και μόνον αν ικανοποιεί την συνθήκη Μια τέτοια συνάρτηση ψ(x, y) λέγεται συνάρτηση δυναμικού για το διανυσματικό πεδίο v = ( M(x, y), (x, y) ) και οι σχέσεις αριστερά παίρνουν την διανυσματική μορφή v = ψ. ψ(x, y) = c, c R. Αυτό συμβαίνει γιατί, αφού η διαφορική εξίσωση είναι ακριβής, μπορεί να ξαναγραφεί στην μορφή ή ισοδύναμα στην μορφή ψ(x, y) x + ψ(x, y) y = 0 y d ψ(x, y(x)) = 0. dx Μια ικανή κι αναγκαία συνθήκη που μας εξασφαλίζει αν μια διαφορική εξίσωση είναι ακριβής είναι η εξής: Έστω ότι οι συναρτήσεις M(x, y) και (x, y) είναι C 1 στο απλά συνεκτικό 1 χωρίο Ω του x y επιπέδου. Τότε, η διαφορική εξίσωση M(x, y) + (x, y)y = 0 είναι ακριβής (στο Ω), αν και μόνο αν 1 Δηλαδή ένα υποσύνολο του R 2 που δεν έχει τρύπες. M(x, y) y = (x, y), (x, y) Ω. x Το θεώρημα αυτό αναφέρεται ως λήμμα του Poincaré στον R 2 και γενικεύεται κατάλληλα στον R n. απλά συνεκτικό χωρίο όχι απλά συνεκτικά χωρία

2 Άσκηση 1. Να εξεταστεί αν η εξίσωση (ye xy cos 2x 2e xy sin 2x + 2x)dx + (xe xy cos 2x 3)dy = 0 είναι ακριβής. Στην περίπτωση που είναι, να βρεθεί η (γενική) λύση της. Η εξίσωση είναι στην μορφή M(x, y)dx + (x, y)dy = 0, με M(x, y) = ye xy cos 2x 2e xy sin 2x + 2x και (x, y) = xe xy cos 2x 3, οι οποίες προφανώς είναι C 1 σε ολόκληρο το R 2. Για να είναι λοιπόν η ΣΔΕ ακριβής, αρκεί και πρέπει να ισχύει ότι M y (x, y) = x (x, y) για κάθε (x, y) R 2. Έχουμε ότι M y (x, y) = e xy cos 2x + yxe xy cos 2x 2xe xy sin 2x και x (x, y) = e xy cos 2x + xye xy cos 2x 2xe xy sin 2x. Οπότε, πράγματι, M y (x, y) = x (x, y), (x, y) R 2 και επομένως η εξίσωση είναι ακριβής. Σύμφωνα με τον ορισμό λοιπόν, υπάρχει μια C 1 συνάρτηση ψ(x, y), τέτοια που ψ x (x, y) = M και ψ y (x, y) =, για κάθε (x, y) R 2, δηλαδή ψ x (x, y) = ye xy cos 2x 2e xy sin 2x + 2x (1.1) ψ y (x, y) = xe xy cos 2x 3 (1.2) Ολοκληρώνοντας την εξίσωση (1.2) ως προς την μεταβλητή y, βρίσκουμε ότι ψ(x, y) = e xy cos 2x 3y + f(x), όπου f(x) τυχαία διαφορίσιμη συνάρτηση. Παραγωγίζοντας τώρα την συνάρτηση ψ ως προς την μεταβλητή x έπεται ότι ψ x (x, y) = ye xy cos 2x 2e xy sin 2x + f (x). Καθώς όμως η συνάρτηση ψ πρέπει να ικανοποιεί και την εξίσωση (1.1) του παραπάνω συστήματος, βλέπουμε ότι πρέπει να είναι ye xy cos 2x 2e xy sin 2x + 2x = ye xy cos 2x 2e xy sin 2x + f (x), δηλαδή πρέπει f (x) = 2x, από όπου έπεται τελικά ότι f(x) = x 2 + C, C R. Χωρίς βλάβη της γενικότητας, μπορούμε να επιλέξουμε C = 0. Έτσι λοιπόν, ψ(x, y) = e xy cos 2x 3y + x 2 και συνεπώς η λύση της διαφορικής εξίσωσης δίνεται, σε πεπλεγμένη μορφή, από την σχέση e xy cos 2x 3y + x 2 = c, c R. Παρατήρηση. Επιλέξαμε να ολοκληρώσουμε την εξίσωση (1.2) γιατί οι πράξεις ήταν ευκολότερες από αυτές που θα είχαμε αν η αφετηρία μας ήταν η εξίσωση (1.1).

3 Άσκηση 2. Να λυθεί το πρόβλημα αρχικών τιμών (2x y)dx + (2y x)dy = 0, y(1) = 3 και να καθοριστεί το σύνολο ισχύος της λύσης. Θέτοντας M(x, y) = 2x y και (x, y) = 2y x, εύκολα βλέπουμε ότι οι συναρτήσεις αυτές είναι C 1 σε όλο το R 2 και ότι M y (x, y) = 1 = x (x, y), για κάθε (x, y) R 2. Άρα, η διαφορική εξίσωση είναι ακριβής (στο R 2 ), οπότε υπάρχει μια C 1 συνάρτηση ψ(x, y), ώστε ψ x (x, y) = 2x y (2.1) ψ y (x, y) = 2y x (2.2) για κάθε (x, y) R 2. Ολοκληρώνοντας την εξίσωση (2.1) ως προς την μεταβλητή x, αμέσως έπεται ότι ψ(x, y) = x 2 yx + g(y) όπου g(y) τυχαία διαφορίσιμη συνάρτηση. Επομένως ψ y (x, y) = x + g (y). Αλλά, από την εξίσωση (2.2) έχουμε επίσης ότι, ψ y (x, y) = 2y x. Θα πρέπει λοιπόν 2y x = x + g (y), δηλαδή g (y) = 2y και άρα g(y) = y 2. Έχουμε λοιπόν ότι ψ(x, y) = x 2 yx + y 2, και άρα η γενική λύση της διαφορικής εξίσωσης δίνεται από την σχέση x 2 yx + y 2 = c, c R. Από όλες τις συναρτήσεις g(y) = y 2 + C με C πραγματική σταθερή, επιλέξαμε χωρίς βλάβη της γενικότητας αυτή με C = 0, αφού η σταθερή ολοκλήρωσης θα εισέλθει στο τέλος όταν θεωρήσουμε την συνάρτηση δυναμικού ψ(x, y) = c. Για την τιμή του x ίση με 1 στην τελευταία σχέση, λόγω της αρχικής τιμής y(1) = 3, έπεται ότι c = = 7. Συνεπώς, η λύση του π.α.τ. περιγράφεται απο την σχέση x 2 yx + y 2 = 7, (x, y) R 2. Η σχέση αυτή μπορεί να γραφεί ισοδύναμα ως y 2 2y x 2 + x2 4 = 7 3x2 4 ή ισοδύναμα και ως ( y x ) x 2 =. 2 4 Αμέσως λοιπόν, βλέπουμε ότι θα πρέπει 28 3x 2 0 ή αλλιώς ότι x 28/3. Καταλήγουμε λοιπόν ότι η λύση y(x) του προβλήματος αρχικών τιμών ισχύει για x στο διάστημα [ 28/3, 28/3], και μάλιστα λύνοντας την παραπάνω σχέση ως προς y, ότι (γιατί επιλέξαμε τον + κλάδο;) y(x) = x 28 3x

4 Άσκηση 3. Να βρεθεί η τιμή του b R για την οποία η διαφορική εξίσωση (xy 2 + bx 2 y)dx + (x + y)x 2 dy = 0 είναι ακριβής, και έπειτα να λυθεί η εξίσωση χρησιμοποιώντας αυτήν την τιμή του b. Έστω M(x, y) = xy 2 + bx 2 y και (x, y) = (x + y)x 2. Εύκολα βλέπουμε ότι οι συναρτήσεις M και είναι C 1, για κάθε (x, y) R 2 και M y (x, y) = 2xy + bx 2, x (x, y) = 3x 2 + 2yx. Η εξίσωση, λοιπόν, είναι ακριβής αν και μόνον αν M y (x, y) = x (x, y) δηλαδή ανν 2xy + bx 2 = 3x 2 + 2yx ή ισοδύναμα bx 2 = 3x 2. Αφού η εξίσωση αυτή θα πρέπει να ισχύει για κάθε πραγματικό αριθμό x, συμπεραίνουμε ότι b = 3. Άρα, η εξίσωση είναι ακριβής αν και μόνον αν b = 3. Υπάρχει, λοιπόν, μια C 1 συνάρτηση ψ(x, y), σε όλο το R 2, ώστε ψ x (x, y) = xy 2 + 3x 2 y (3.1) ψ y (x, y) = (x + y)x 2 (3.2) Από την εξίσωση (3.1), ολοκληρώνοντας ως προς x, έπεται ότι ψ(x, y) = x2 2 y2 + x 3 y + g(y) όπου g(y) τυχαία διαφορίσιμη συνάρτηση. Τότε όμως, ψ y (x, y) = x 2 y + x 3 + g (y), ή λόγω της (3.2), (x + y)x 2 = x 2 y + x 3 + g (y) και έτσι συμπεραίνουμε ότι g (y) = 0 ή αλλίως ότι η συνάρτση g(y) είναι σταθερή. Επιλέγοντας την μηδενική συνάρτηση, δίχως να χαλάμε την γενικότητα, βρίσκουμε ότι ψ(x, y) = x2 2 y2 + x 3 y, καταλήγοντας έτσι στο συμπέρασμα ότι η (γενική) λύση της (ακριβούς για b = 3) ΣΔΕ, δίνεται έμμεσα απο την σχέση x 2 y 2 + 2x 3 y = c, c R.

5 Ας υποθέσουμε τώρα ότι η διαφορική εξίσωση M(x, y) + (x, y)y = 0 (A.1) δεν είναι ακριβής, αλλά μπορούμε να βρούμε μια συνάρτηση µ(x, y), όχι ταυτοτικά μηδέν, τέτοια ώστε η εξίσωση µ(x, y)m(x, y) + µ(x, y)(x, y)y = 0 (A.2) να είναι ακριβής, σε κάποιο απλά συνεκτικό χωρίο του R 2. Η συνάρτηση µ(x, y) με την παραπάνω ιδιότητα καλείται ολοκληρωτικός παράγοντας 2 ή πολλαπλασιαστής (του) Euler για την (μη-ακριβή) διαφορική εξίσωση (A.1). Παρατηρούμε ότι οι λύσεις της εξίσωσης (A.2), θα είναι λύσεις και της αρχικής εξίσωσης, (A.1) καθώς οι δύο εξισώσεις αυτές είναι ισοδύναμες, αφού η (A.2) δεν είναι παρά η ίδια η (A.1) πολλαπλασιασμένη με την μημηδενική συνάρτηση µ. Αν λοιπόν, μπορούμε να βρούμε κάποιο ολοκληρωτικό παράγοντα, μπορούμε να λύσουμε και την διαφορική εξίσωση (A.2), και συνεπώς και την (A.1). Γνωρίζουμε ότι η εξίσωση (A.2) θα είναι ακριβής, αν και μόνον αν (µ(x, y)m(x, y)) = (µ(x, y)(x, y)) y x για κάθε (x, y) σε κάποιο απλά συνεκτικό χωρίο Ω του R 2 ή ισοδύναμα ανν ( ) µ(x, y) µ(x, y) M(x, y) (x, y) (x, y) M(x, y) = µ(x, y) x y y x για (x, y) στο Ω. Βλέπουμε λοιπόν ότι, μια συνάρτηση µ(x, y) αποτελεί ολοκληρωτικό παράγοντα της εξίσωσης (A.1) αν και μόνον αν ικανοποιεί την εξίσωση Όταν πολλαπλασιάζουμε μια δοσμένη ΣΔΕ με μια συνάρτηση µ(x, y), προσέχουμε να μην εισάγουμε τρύπες στο χωρίο Ω που ορίζεται η αρχική ΣΔΕ. 2 στην καθαρεύουσα: ολοκληρώνων παράγων. µ x Mµ y = (M y x )µ, (x, y) Ω. (A.3) Η εξίσωση (A.3) είναι μια μερική διαφορική εξίσωση για την άγνωστη συνάρτηση µ(x, y). Συνεπώς η λύση της αποτελεί ένα πρόβλημα αν όχι πιο δύσκολο, της ίδιας τουλάχιστον δυσκολίας με το αρχικό μας πρόβλημα, δηλαδή της επίλυσης της ΣΔΕ (A.1). Συνεπώς, από πρακτική άποψη, η επίλυση μιας μη-ακριβούς διαφορικής εξίσωσεις μέσω εύρεσης ολοκληρωτικού παράγοντα δεν έχει νόημα, παρά μόνο στην περίπτωση που οι συναρτήσεις M(x, y) και (x, y) είναι τέτοιες ώστε μπορούμε εύκολα να εντοπίσουμε ειδικές λύσεις της εξίσωσης (A.3). Ο λόγος είναι ότι, για την κατασκευή ενός ολοκληρωτικού παράγοντα δεν είναι απαραίτητο να γνωρίζουμε την γενική λύση της εξίσωσης (A.3). Μια ειδική (μη-μηδενική) λύση της είναι αυτό που χρειαζόμαστε. Μία από τις πιο συνήθεις ειδικές μορφές ολοκληρωτικού παράγοντα είναι της μορφής µ(x, y) = f(x), δηλαδή η συνάρτηση µ να είναι μόνο συνάρτηση του x. Τότε, η εξίσωση (A.3) παίρνει την μορφή f (x) = (M y x )f(x) ή, επειδή η συνάρτηση f(x) είναι μη-μηδενική, f (x) f(x) = M y x. (A.4)

6 Όμως, το αριστερό μέλος της παραπάνω εξίσωσης είναι συνάρτηση μόνο του x. Θα πρέπει, λοιπόν, το ίδιο να ισχύει και για το δεξί. Αν, λοιπόν, οι συναρτήσεις M(x, y) και (x, y) είναι τέτοιες που, ο λόγος (M y x )/ είναι ανεξάρτητος από την μεταβλητή y, τότε η εξίσωση (A.4) έχει νόημα και μετατρέπεται στην γραμμική διαφορική εξίσωση πρώτης τάξης f (x) = M y x f(x) η οποία λύνεται αμέσως για να δώσει ότι ( My x f(x) = c exp ) dx όπου c τυχαίος πραγματικός αριθμός. Συνοψίζοντας λοιπόν, έχουμε ότι: Άν οι συναρτήσεις M(x, y) και (x, y) είναι τέτοιες ώστε, η συνάρτηση (M y x )/ είναι ανεξάρτητη από την μεταβλητή y, η (μη-ακριβής) διαφορική εξίσωση M(x, y) + (x, y)y = 0 επιδέχεται ολοκληρωτικό παράγοντα της μορφής µ = µ(x) που δίνεται απο την σχέση ( ) My x µ(x) = exp dx. Άσκηση 4. Να βρεθεί ένας ολοκληρωτικός παράγοντας για την διαφορική εξίσωση 3xy + y 2 + (x 2 + xy)y = 0 και στη συνεχεία να λυθεί. Παρατηρούμε ότι η εξίσωση είναι στην μορφή M(x, y) + (x, y)y = 0, όπου M(x, y) = 3xy + y 2 και (x, y) = x 2 + xy. Οι συναρτήσεις αυτές ανήκουν στην κλάση C 1 (R 2 ) και ισχύει M y (x, y) = 3x + 2y, x (x, y) = 2x + y. Βλέπουμε, λοιπόν, ότι M y x και άρα η εξίσωση δεν είναι ακριβής. Όμως, υπολογίζοντας την ποσότητα (M y x )/ έχουμε ότι M y (x, y) x (x, y) (x, y) = 3x + 2y 2x y x 2 + xy = x + y x(x + y) = 1 x, δηλαδή η συνάρτηση (M y x )/ είναι ανεξάρτητη από την μεταβλητή y. Συνεπώς, η εξίσωση δέχεται ολοκληρωτικό παράγοντα µ που είναι συνάρτηση μόνο του x και δίνεται απο την σχέση ( ) ( ) My x 1 µ(x) = exp dx = exp x dx = exp(ln x ) = x. Χωρίς βλάβη της γενικότητας, επιλέγουμε µ(x) = x. Έτσι, λοιπόν, πολλαπλασιάζοντας την αρχική εξίσωση με x καταλήγουμε στην ακριβή διαφορική εξίσωση 3x 2 y + xy 2 + (x 3 + x 2 y)y = 0

7 Τώρα μπορούμε, λοιπόν, να βρούμε μια συνάρτηση ψ(x, y) C 1 (R 2 ) με ψ x (x, y) = 3x 2 y + xy 2 (4.1) ψ y (x, y) = x 3 + x 2 y (4.2) για κάθε (x, y) R 2. Ολοκληρώνοντας την (4.1) ως προς x, είναι ψ(x, y) = x 3 y + x2 2 y2 + g(y), (x, y) R 2 με g(y) να είναι κάποια διαφορίσιμη συνάρτηση. Τότε, ψ y (x, y) = x 3 + x 2 y + g (y), ή, μέσω της (4.2), x 3 + x 2 y = x 3 + x 2 y + g (y) και άρα g (y) = 0. Επιλέγοντας την συνάρτηση g(y) να είναι η μηδενική, έχουμε ότι ψ(x, y) = x 3 y + x2 2 y2 και άρα, τελικά, η λύση της διαφορικής εξίσωσης δίνεται, έμμεσα, από την σχέση 2x 3 y + x 2 y 2 = c, c R. Η γραφική παράσταση της λύσης για διάφορες τιμές της παραμέτρου c. Καμπύλες με ίδιο χρώμα αντιστοιχούν στην ίδια τιμή της παραμέτρου c. Άσκηση 5. Να δειχθεί ότι η διαφορική εξίσωση ydx + (2x ye y )dy = 0 δεν είναι ακριβής, αλλά γίνεται ακριβής όταν πολλαπλασιαστεί με τον ολοκληρωτικό παράγοντα µ(x, y) = y. Έπειτα, να λυθεί η ΣΔΕ. Θέτοντας M(x, y) = y και (x, y) = 2x ye y, βλέπουμε ότι η εξίσωση είναι της μορφής M(x, y)dx + (x, y)dy = 0. Συνεπώς, για να είναι ακριβής, πρέπει και αρκεί οι συναρτήσεις M(x, y) και (x, y) να ικανοποιούν τη σχέση M y = x. Προφανώς, οι συναρτήσεις M και έχουν συνεχείς μερικές παραγώγους πρώτης τάξης σε κάθε σημείο του επιπέδου και M y (x, y) = 1, x (x, y) = 2. Αφού, λοιπόν, η σχέση M y = x δεν ικανοποιείται, συμπεραίνουμε ότι πράγματι, η ΣΔΕ δεν είναι ακριβής. Έστω τώρα ότι M(x, y) = µ(x, y)m(x, y) = y 2 και Τότε, Ñ(x, y) = µ(x, y)(x, y) = 2xy y 2 e y M y (x, y) = 2y = Ñx(x, y). Αυτό όμως σημαίνει, ότι η εξίσωση M(x, y)dx + Ñ(x, y)dy = 0 είναι ακριβής, δηλαδή η εξίσωση µ(x, y)m(x, y)dx + µ(x, y)(x, y)dy = 0 είναι ακριβής, που σημαίνει ότι η αρχική διαφορική εξίσωση, μετατράπηκε σε ακριβής ύστερα από τον πολλαπλασιασμό με y και άρα, πράγματι, η µ(x, y) = y είναι ολοκληρωτικός παράγοντας της εξίσωσης. Μπορούμε να βρούμε, λοιπόν, μια συνάρτηση ψ(x, y), που να είναι C 1 στο R 2 και για όλα τα (x, y) R 2. ψ x (x, y) = y 2 (5.1) ψ y (x, y) = 2xy y 2 e y (5.2)

8 Απο την εξίσωση (5.1), με απ ευθείας ολοκλήρωση, βρίσκουμε ψ(x, y) = xy 2 + g(y), για κάποια διαφορίσιμη συνάρτηση g(y). Αλλά τότε, ψ y (x, y) = 2xy + g (y) ή, μέσω της εξίσωσης (5.2), 2xy y 2 e y = 2xy + g (y). Έτσι, λοιπόν, είναι g (y) = y 2 e y. Άρα g(y) = y 2 e y dy = y 2 e y + 2 ye y dy = y 2 e y + 2ye y 2e y + C, όπου C τυχαία πραγματική σταθερά. Για C = 0, έχουμε ότι ψ(x, y) = xy 2 y 2 e y + 2ye y 2e y και επομένως, η λύση της (αρχικής) διαφορικής εξίσωσης δίνεται, έμμεσα, από την σχέση xy 2 y 2 e y + 2ye y 2e y = c, c R. Παρατήρηση. Είδαμε στην τελευταία άσκηση ότι μια διαφορική εξίσωση που δεν είναι ακριβής, μπορεί να δέχεται ως ολοκληρωτικό παράγοντα μια συνάρτηση μόνο της μεταβλητής y. Επαναλαμβάνοντας την ίδια διαδικασία που ακολουθήσαμε για να βρούμε ικανές συνθήκες που πρέπει να ικανοποιούν οι συναρτήσεις M(x, y) και (x, y), ώστε μια μη-ακριβής εξίσωση να δέχεται ολοκληρωτικό παράγοντα μια συνάρτηση μόνο του x, μπορούμε να δούμε ότι: Άν οι συναρτήσεις M(x, y) και (x, y) είναι τέτοιες ώστε, η συνάρτηση ( x M y )/M είναι ανεξάρτητη από την μεταβλητή x, η (μη-ακριβής) διαφορική εξίσωση M(x, y) + (x, y)y = 0 δέχεται ολοκληρωτικό παράγοντα της μορφής µ = µ(y) που δίνεται απο την σχέση ( ) x M y µ(y) = exp M dy. Λύστε την Άσκηση 5, επαληθεύοντας ότι η συνάρτηση ( x M y )/M είναι μια συνάρτηση μόνο του y, και άρα ότι ένας ολοκληρωτικός παράγοντας δίνεται από την συνάρτηση ( ) x M y µ(y) = exp M dy = y.

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.

ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή. 1 ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1.1. Εισαγωγή. Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα πραγματικών αριθμών. Σε

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις Π Δ Μ Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Συνήθεις Διαφορικές Εξισώσεις Δρ. Θεόδωρος Ζυγκιρίδης 28 Δεκεμβρίου 211 2 Περιεχόμενα 1 Εισαγωγή 1 1.1 Ορισμοί.........................................

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 215-16. Λύσεις ενδέκατου φυλλαδίου ασκήσεων. 1. Λύστε το πρόβλημα συνοριακών συνθηκών u xx + u yy =, u(x, ) = u(x, π) =, u(, y) =, u(a, y) = sin 2y + 4 sin 5y, < x

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 14-15, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: Πρόβλημα 1. Για κάθε μια από τις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +

Διαβάστε περισσότερα

Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις. Σηµειώσεις

Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις. Σηµειώσεις Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις Σηµειώσεις Ε. Στεϕανόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αιγαίου Πρόλογος Οι σηµειώσεις αυτές αποτελούν εξέλιξη σηµειώσεων οι οποίες χρησιµοποιήθηκαν σε παραδόσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος Διανυσματικός χώρος ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ Ορισμός Διανυσματικός χώρος V πάνω στο σύνολο πραγματικός διανυσματικός χώρος V λέγεται κάθε σύνολο εφοδιασμένο με τις πράξεις της πρόσθεσης μεταξύ των στοιχείων

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Εισαγωγή στις Διαφορικές Εξισώσεις Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα . Σκοποί

Διαβάστε περισσότερα

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία με υλικό από το ΕΑΠ που με βοήθησε

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

Περιεχόμενα 7. Πρόλογος

Περιεχόμενα 7. Πρόλογος Περιεχόμενα 7 Πρόλογος Πολλά προβλήματα των Φυσικών και γενικότερα των Τεχνικών Επιστημών είναι προβλήματα συμμεταβολής διαφόρων μεγεθών. Η μελέτη αυτών των προβλημάτων αποβλέπει στον προσδιορισμό των

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό ) είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

2 Περιεχόμενα. Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

2 Περιεχόμενα. Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Περιεχόμενα Γράφημα της συνάρτησης f( ), αν p < 0 F( ) = f( ), αν 0 p και F( + p) = F( ), R (δηλ της περιττής περιοδικής επέκτασης της f = f( ), 0 p στο R ) Περιεχόμενα 5 ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS 1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Βασικά θεωρήματα για τις γραμμικές Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! ookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις

Διαφορικές Εξισώσεις ΒΑΣΙΛΕΙΟΣ M. ΡΟΘΟΣ Αναπλ. Καθηγητής ΑΠΘ ΧΡΥΣΟΒΑΛΑΝΤΗΣ Α. ΣΦΥΡΑΚΗΣ Διδάκτωρ Μαθηματικός Διαφορικές Εξισώσεις Διαφορικές Εξισώσεις Συγγραφή Βασίλειος M. Ρόθος & Χρυσοβαλάντης Α. Σφυράκης Κριτικός αναγνώστης

Διαβάστε περισσότερα

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0 Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Εισαγωγικές έννοιες και ταξινόμηση Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11 Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =

Διαβάστε περισσότερα

= lim. e 1. e 2. = lim. 2t 3

= lim. e 1. e 2. = lim. 2t 3 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ, 6/06/017 Θέμα 1. Δίνεται η συνάρτηση f : R R με f(0, 0) = 0 και f(x, y) = x3 + y 3 x + y αν (x, y) (0, 0). (i) Δείξτε ότι η f είναι συνεχής στο (0, 0). (ii) Αν u

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 4 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων 1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε

Διαβάστε περισσότερα

Μαθηµατικός Λογισµός ΙΙ

Μαθηµατικός Λογισµός ΙΙ Μαθηµατικός Λογισµός ΙΙ ΤΕΙ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ 2 Κ Ε Φ Α Λ Α Ι Ο 1 Ορια και Συνέχεια 1.1 Ορια Παράδειγµα 1.1. Να υπολογίσετε το x+y lim (x,y) (0,0) x y. Απάντηση: Παρατηρούµε ότι η συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Διδάσκοντες: Δάλλα - Αλικάκος 6 Ιουλίου 204 Θέμα (α) Από την γνωστή ανισότητα a 2 + b 2 2 ab, όταν (x, y) (0, 0), τότε ισχύει: f(x, y) f(0, 0) x 2 y 2x

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1

Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1 Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1 Ιάκωβος Ανδρουλιδάκης users.uoa.gr/ iandroul iandroul@math.uoa.gr Πανεπιστήμιο Αθηνών, Τμήμα Μαθηματικών, Τομέας Άλγεβρας-Γεωμετρίας Περίληψη Στη διάλεξη

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

ẋ = f(x), x = x 0 όταν t = t 0,

ẋ = f(x), x = x 0 όταν t = t 0, Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jodan Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y 6 με απαλοιφή Gauss. Ο επαυξημένος πίνακας του συστήματος

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ~ ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 04 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Η συνάρτηση f ( ) γράφεται f x y + x + y x y + x + y xy ( ) ( ) ( ) ( ) Το πραγματικό και

Διαβάστε περισσότερα

= DX(0, 0)(ae 1 + be 2 ) = adx(0, 0)e 1 + bdx(0, 0)e 2 = ax u (0, 0) + bx v (0, 0).

= DX(0, 0)(ae 1 + be 2 ) = adx(0, 0)e 1 + bdx(0, 0)e 2 = ax u (0, 0) + bx v (0, 0). Κεφάλαιο 3 Ο εφαπτόμενος χώρος Σύνοψη Ο εφαπτόμενος χώρος μιας κανονικής επιφάνειας αποτελεί τη βέλτιση γραμμική προσέγγιση της επιφάνειας σε ένα σημείο της. Αποτελείται από όλα τα εφαπτόμενα διανύσματα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ 2 (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις)

ΟΡΙΣΜΟΣ 2 (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις) ΟΡΙΣΜΟΣ Μια συνάρτηση : A λέγεται συνάρτηση -, όταν για οποιαδήποτε, A ισχύει η συνεπαγωγή: αν, τότε ( ) ( ) ΟΡΙΣΜΟΣ (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις) Μια συνάρτηση : A είναι συνάρτηση -,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3

Διαβάστε περισσότερα

x (t) u (t) = x 0 u 0 e 2t,

x (t) u (t) = x 0 u 0 e 2t, Κεφάλαιο 7 Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Η ευαισθησία της λύσης μιας ΔΕ σε μεταβολές της αρχικής τιμής είναι έ- να θεμελιώδες ζήτημα στη θεωρία αλλά και στις εφαρμογές των διαφορικών εξισώσεων. Παράδειγμα 7.0.3.

Διαβάστε περισσότερα

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Αναλυτική Γεωμετρία Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Αναλυτική Γεωμετρία 4.1 Εξίσωση Καμπύλης Έστω C μια καμπύλη στο R. H C αποτελείται από άπειρα σημεία Μ(x,y). Έξίσωση μιας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ [] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Σ.Δ.Ε. 1 ης τάξης ανώτερου βαθμού, ορθογώνιες τροχιές Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ύπαρξη και Mοναδικότητα Λύσης Μη γραμμικών ΔΕ

Ύπαρξη και Mοναδικότητα Λύσης Μη γραμμικών ΔΕ Κεφάλαιο 3 Ύπαρξη και Mοναδικότητα Λύσης Μη γραμμικών ΔΕ Στο κεφάλαιο αυτό θα αναφέρουμε τις συνθήκες ύπαρξης και μοναδικότητας ΠΑΤ μη γραμμικών ΔΕ. Στο εδάφιο 3.1, θα παρουσιάσουμε την προσεγγιστική μέθοδο

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)

Διαβάστε περισσότερα