Διαφορικές Εξισώσεις.
|
|
- Παραμονος Παχής
- 10 μήνες πριν
- Προβολές:
Transcript
1 Διαφορικές Εξισώσεις. Εαρινό εξάμηνο Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται ως προς y, τότε αφήστε την ως έχει. α. y = (x + y) 2. β. y = x2 +xy+y 2. x 2 γ. y = x+3y x y. [(x + y) log x + y + c(x + y) = 2x.] δ. y = 2y x+5 2x y 4. [ y x + 3 = c y + x ] Λύση. [α] Η δ.ε. είναι στη μορφή y = f(ax + by) με σταθερές a = b = 1, οπότε ορίζουμε νέα άγνωστη συνάρτηση u = x + y. Τότε και η δ.ε. γράφεται ισοδύναμα u = 1 + y u = u Αυτή είναι δ.ε. με χωριζόμενες μεταβλητές και έχουμε τις παρακάτω διαδοχικές ισοδύναμες εξισώσεις: u u = 1 1 du u dx dx = 1 u du = 1 dx 1 dx Arctan u = x + c. Επειδή οι τιμές της Arctan u βρίσκονται στο διάστημα ( π 2, π 2 ), συνεπάγεται ότι το x βρίσκεται στο διάστημα ( π 2 c, π 2 c). Με αυτήν την προϋπόθεση η τελευταία ισότητα είναι ισοδύναμη με την u = tan(x + c) y = x + tan(x + c) στο ( π 2 c, π 2 c ). [β] Ο αριθμητής και ο παρονομαστής της δεξιάς μεριάς της δ.ε. είναι ομογενείς συναρτήσεις ίδιας τάξης: (tx) 2 + (tx)(ty) + (ty) 2 = t 2 (x 2 + xy + y 2 ), (tx) 2 = t 2 x 2. Επομένως, ορίζουμε νέα άγνωστη συνάρτηση u = y x και τότε xu = y 1
2 Έτσι η δ.ε. μετασχηματίζεται στην u + xu = y. u + xu = 1 + y x + ( y x xu = 1 + u 2. ) 2 = 1 + u + u 2 Από τη μορφή της αρχικής δ.ε. έχουμε τον περιορισμό x 0, οπότε εργαζόμαστε στα διαστήματα (, 0) και (0, + ). Στην πορεία μέχρι και την τελευταία μορφή της δ.ε. δεν έχει προστεθεί νέος περιορισμός. Άρα έχουμε τις παρακάτω διαδοχικές ισοδύναμες εξισώσεις: u 1 + u 2 = 1 x 1 du u 2 dx dx = x dx u 2 du = x dx Arctan u = log x + c. Επειδή οι τιμές της Arctan u βρίσκονται στο διάστημα ( π 2, π 2 ), συνεπάγεται ότι το log x βρίσκεται στο διάστημα ( π 2 c, π 2 c) ότι ce π 2 < x < ce π 2, όπου c είναι αυθαίρετη θετική σταθερά. Άρα το x βρίσκεται στα διαστήματα ( ce π 2, ce π 2 ), (ce π 2, ce π 2 ). Πρέπει να προσέξουμε ότι η τελευταία σταθερά c είναι ίση με e c, όπου c είναι η σταθερά που εμφανίζεται στην τελευταία ισότητα πιο πριν: Arctan u = log x + c. Άρα η ισότητα αυτή πρέπει να γίνει Arctan u = log x log c = log x c, όπου c είναι η τελευταία θετική σταθερά. Τώρα έχουμε u = tan log x c y = x tan log x c στο ( ce π 2, ce π 2 ) ή στο (ce π 2, ce π 2 ). 2. Λύστε τις παρακάτω πλήρεις εξισώσεις πρώτης τάξης. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται ως προς y, τότε αφήστε την ως έχει. α. (2x+3)+(2y 2)y = 0. [y = 1± c x 2 3x για 3 2 c < x < c + 9 4, αν c > 9 4.] β. (e x sin y 2y sin x) + (e x cos y + 2 cos x)y = 0. [2y cos x + e x sin y = c.] γ. (3x 2 2xy + 2) + (6y 2 x 2 + 3)y = 0. [2y 3 + (3 x 2 )y + x 3 + 2x = c.] 2
3 Λύση. [α] Με ισχύει Άρα M(x, y) = 2x + 3, N(x, y) = 2y 2 M y (x, y) = 0, N x (x, y) = 0. M y (x, y) = N x (x, y) στο xy επίπεδο και επειδή το xy-επίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = 2x + 3, u y (x, y) = 2y 2 στο xy-επίπεδο. Βρίσκουμε την u(x, y) ως εξής. Από την u x (x, y) = 2x + 3 έχουμε u(x, y) = (2x + 3) dx = x 2 + 3x + h(y) και τότε από την u y (x, y) = 2y 2 παίρνουμε Άρα h (y) = 2y 2 h(y) = y 2 2y + c. u(x, y) = x 2 + 3x + y 2 2y + c και, επιλέγοντας οποιαδήποτε τιμή της c, π.χ. c = 0, θεωρούμε την u(x, y) = x 2 + 3x + y 2 2y. Τώρα θεωρούμε οποιαδήποτε λύση y(x) της δ.ε. (2x + 3) + (2y 2)y = 0 σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση ως προς x I. Τότε Ισοδύναμα: u(x, y(x)) = u(x, y) = x 2 + 3x + y 2 2y d dx (x2 + 3x + y 2 2y) = (2x + 3) + (2y 2)y = 0 x 2 + 3x + y 2 2y = c για x I. (y 1) 2 = c x 2 3x. για x I (Κάναμε αλλαγή της σταθεράς.) Από τον αυτονόητο περιορισμό x 2 + 3x c 0 προκύπτει ότι πρέπει να είναι c 9 4 και το x να βρίσκεται στο διάστημα [ 3 2 c + 9 4, 3 2 c ]. Επειδή το διάστημα πρέπει να μην είναι μονοσύνολο, συνεπάγεται c > 9 4 και τότε προκύπτουν οι δύο λύσεις της δ.ε. y = 1 c x 2 3x και y = 1+ ( 3 c x 2 3x στο 2 c + 9 4, c ).
4 Δεν περιλαμβάνουμε τα άκρα του διαστήματος, διότι σ αυτά η τετραγωνική ρίζα δεν είναι παραγωγίσιμη. [β] Με M(x, y) = e x sin y 2y sin x, N(x, y) = e x cos y + 2 cos x ισχύει Άρα M y (x, y) = e x cos y 2 sin x, N x (x, y) = e x cos y 2 sin x. M y (x, y) = N x (x, y) στο xy επίπεδο και επειδή το xy-επίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = e x sin y 2y sin x, u y (x, y) = e x cos y + 2 cos x στο xy-επίπεδο. Βρίσκουμε την u(x, y) ως εξής. Από την u x (x, y) = e x sin y 2y sin x έχουμε u(x, y) = (e x sin y 2y sin x) dx = e x sin y + 2y cos x + h(y) και τότε από την u y (x, y) = e x cos y + 2 cos x παίρνουμε δηλαδή Άρα e x cos y + 2 cos x + h (y) = e x cos y + 2 cos x, h (y) = 0 h(y) = c. u(x, y) = e x sin y + 2y cos x + c και, επιλέγοντας οποιαδήποτε τιμή της c, π.χ. c = 0, θεωρούμε την u(x, y) = e x sin y + 2y cos x. Τώρα θεωρούμε οποιαδήποτε λύση y(x) της δ.ε. (e x sin y 2y sin x) + (e x cos y + 2 cos x)y = 0 σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση ως προς x I. Τότε u(x, y(x)) = u(x, y) = e x sin y + 2y cos x d dx (ex sin y + 2y cos x) = (e x sin y 2y sin x) + (e x cos y + 2 cos x)y = 0 e x sin y + 2y cos x = c για x I. για x I Από την ισότητα αυτή προκύπτει η συνάρτηση y: πρέπει να λύσουμε ως προς y και να βρούμε τον τύπο του συναρτήσει του x και, συγχρόνως, να βρούμε και το κατάλληλο διάστημα στο οποίο περιέχεται το x. Επειδή η συγκεκριμένη εξίσωση δεν λύνεται αλγεβρικά ως προς y, την αφήνουμε ως έχει και λέμε ότι η συνάρτηση y προσδιορίζεται έμμεσα από την εξίσωση. 4
5 3. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις βρείτε ολοκληρωτικό παράγοντα ώστε αυτή να γίνει πλήρης και λύστε την. α. (3x 2 y + 2xy + y 3 ) + (x 2 + y 2 )y = 0. β. 1 + ( x y sin y)y = 0. [µ(y) = y, xy + y cos y sin y = c.] γ. y + (2xy e 2y )y = 0. Λύση. [α] Με έχουμε M = 3x 2 y + 2xy + y 3, N = x 2 + y 2 M y = 3x 2 + 2x + 3y 2, N x = 2x. Βλέπουμε ότι δεν ισχύει M y = N x (παρά μόνο σε ένα σημείο, το (0, 0)) οπότε θα ψάξουμε να βρούμε κατάλληλο ολοκληρωτικό παράγοντα µ(x, y) 0 ώστε αφού πολλαπλασιάσουμε την δ.ε. με τον µ να γίνει πλήρης. Η δ.ε. που θα προκύψει είναι η και ελέγχουμε την µm + µny = 0 (µm) y = (µn) x µ y M + µm y = µ x N + µn x. Για απλοποίηση υποθέτουμε ότι η µ είναι συνάρτηση μόνο του x. Τότε μπορούμε να γράψουμε µ x = µ (x) = µ, µ y = 0 και η τελευταία εξίσωση γίνεται Από εδώ προκύπτει µm y = µ N + µn x. (1) µ µ = M y N x N = 3x2 + 3y 2 x 2 + y 2 = 3. Επειδή η µ My Nx µ είναι συνάρτηση μόνο του x πρέπει η N να είναι συνάρτηση μόνο του x, το οποίο στην προκειμένη περίπτωση ισχύει. Άρα προχωράμε και βρίσκουμε την µ. Από την (1) έχουμε τις διαδοχικές ισοδύναμες εξισώσεις (x 2 + y 2 )µ 3(x 2 + y 2 )µ = 0 µ 3µ = 0. (Εδώ πρέπει προσωρινά να αποκλείσουμε το σημείο (0, 0) λόγω της διαίρεσης με το x 2 +y 2. Θα δούμε, όμως, ότι αφού βρούμε την µ δεν θα υπάρχει πρόβλημα ως προς την πληρότητα σε ολόκληρο το xy-επίπεδο της δ.ε. που θα προκύψει.) Λύνουμε την τελευταία δ.ε. κατά τα γνωστά και βρίσκουμε µ(x) = ce 3x. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 1, και έχουμε την µ(x) = e 3x. Πολλαπλασιάζουμε την αρχική δ.ε. με τον ολοκληρωτικό παράγοντα µ = e 3x προκύπτει η ισοδύναμη δ.ε. 0 και (3x 2 ye 3x + 2xye 3x + y 3 e 3x ) + (x 2 e 3x + y 2 e 3x )y = 0. 5
6 Τώρα με έχουμε M = 3x 2 ye 3x + 2xye 3x + y 3 e 3x, N = x 2 e 3x + y 2 e 3x M y = 3x 2 e 3x + 2xe 3x + 3y 2 e 3x, N x = 2xe 3x + 3x 2 e 3x + 3y 2 e 3x. Ισχύει M y = N x σε ολόκληρο το xy-επίπεδο και επειδή το xy-επίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = 3x 2 ye 3x + 2xye 3x + y 3 e 3x, u y (x, y) = x 2 e 3x + y 2 e 3x στο xy-επίπεδο. (2) Βρίσκουμε την u(x, y) ξεκινώντας από την δεύτερη ισότητα (2) (επειδή είναι απλουστερη) και έχουμε u(x, y) = Από την πρώτη ισότητα (2) έχουμε τώρα ότι (x 2 e 3x + y 2 e 3x ) dy = x 2 ye 3x + y3 3 e3x + h(x). 2xye 3x + 3x 2 ye 3x + y 3 e 3x + h (x) = 3x 2 ye 3x + 2xye 3x + y 3 e 3x οπότε h (x) = 0 h(x) = c. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 0, και έχουμε την u(x, y) = x 2 ye 3x + y3 3 e3x. Τώρα θεωρούμε οποιαδήποτε λύση y(x) της δ.ε. (3x 2 ye 3x + 2xye 3x + y 3 e 3x ) + (x 2 e 3x + y 2 e 3x )y = 0 σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση ως προς x I. Τότε u(x, y(x)) = u(x, y) = x 2 ye 3x + y3 3 e3x d dx (x2 ye 3x + y3 3 e3x ) = (3x 2 ye 3x +2xye 3x +y 3 e 3x )+(x 2 e 3x +y 2 e 3x )y = 0 για x I x 2 ye 3x + y3 3 e3x = c για x I. Από την ισότητα αυτή προκύπτει η συνάρτηση y: πρέπει να λύσουμε ως προς y και να βρούμε τον τύπο του συναρτήσει του x και, συγχρόνως, να βρούμε και το κατάλληλο διάστημα στο οποίο περιέχεται το x. Επειδή η συγκεκριμένη εξίσωση δεν λύνεται αλγεβρικά ως προς y, την αφήνουμε ως έχει και λέμε ότι η συνάρτηση y προσδιορίζεται έμμεσα από την εξίσωση. [γ] Με M = y, N = 2xy e 2y έχουμε M y = 1, N x = 2y. 6
7 Βλέπουμε ότι δεν ισχύει M y = N x (παρά μόνο στα σημεία (x, 1 2 )) οπότε θα ψάξουμε να βρούμε κατάλληλο ολοκληρωτικό παράγοντα µ(x, y) 0 ώστε αφού πολλαπλασιάσουμε την δ.ε. με τον µ να γίνει πλήρης. Η δ.ε. που θα προκύψει είναι η και ελέγχουμε την µm + µny = 0 (µm) y = (µn) x µ y M + µm y = µ x N + µn x. (3) Για απλοποίηση υποθέτουμε ότι η µ είναι συνάρτηση μόνο του x. Τότε μπορούμε να γράψουμε µ x = µ (x) = µ, µ y = 0 και η τελευταία εξίσωση γίνεται Από εδώ προκύπτει µm y = µ N + µn x. µ µ = M y N x N = 1 2y 2xy e 2y. Επειδή η µ µ είναι συνάρτηση μόνο του x πρέπει η M y N x N να είναι συνάρτηση μόνο του x, το οποίο δεν ισχύει. Τώρα υποθέτουμε πάλι για απλοποίηση ότι η µ είναι συνάρτηση μόνο του y. Τότε γράφουμε και η (3) γίνεται Τότε µ y = µ (y) = µ, µ x = 0 µ M + µm y = µn x. (4) µ µ = N x M y M = 2y 1 = 2 1 y y. Επειδή η µ µ είναι συνάρτηση μόνο του y πρέπει η N x M y M να είναι συνάρτηση μόνο του y, το οποίο ισχύει. Άρα προχωράμε και βρίσκουμε την µ. Η (4) γράφεται yµ + (1 2y)µ = 0. Λύνουμε αυτήν την δ.ε. και βρίσκουμε µ(y) = c y e2y για y 0. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 1, και έχουμε την µ(y) = 1 y e2y για y 0. Τώρα παρατηρούμε ότι η αρχική δ.ε. έχει ως λύση τη σταθερή συνάρτηση y = 0 στο (, + ). Επομένως, συνεχίζουμε αναζητώντας λύσεις της δ.ε. για τις οποίες ισχύει y(x) 0 για κάθε x στο διάστημα ορισμού τους. 7
8 Πολλαπλασιάζουμε την αρχική δ.ε. με τον ολοκληρωτικό παράγοντα µ = 1 y e2y 0 και προκύπτει η ισοδύναμη δ.ε. ( e 2y + 2xe 2y 1 ) y = 0. y Τώρα με M = e 2y, N = 2xe 2y 1 y έχουμε M y = 2e 2y, N x = 2e 2y. Ισχύει M y = N x στα δύο ημιεπίπεδα στα οποία χωρίζει ο x-άξονας το xy-επίπεδο και επειδή κάθε ημιεπίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = e 2y, u y (x, y) = 2xe 2y 1 y στο xy-επίπεδο εκτός του x-άξονα. (5) Βρίσκουμε την u(x, y) ξεκινώντας από την πρώτη ισότητα (5) και έχουμε u(x, y) = e 2y dx = xe 2y + h(y). Από τη δεύτερη ισότητα (5) έχουμε τώρα ότι οπότε 2xe 2y + h (y) = 2xe 2y 1 y h (y) = 1 y h(y) = log y + c. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 0, και έχουμε την u(x, y) = xe 2y log y. Τώρα θεωρούμε οποιαδήποτε λύση y(x) 0 της δ.ε. ( e 2y + 2xe 2y 1 ) y = 0 y σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση u(x, y(x)) = u(x, y) = xe 2y log y ως προς x I. Τότε d ( dx (xe2y log y ) = e 2y + 2xe 2y 1 ) y = 0 y για x I xe 2y log y = c για x I. Από την ισότητα αυτή προκύπτει η συνάρτηση y: πρέπει να λύσουμε ως προς y και να βρούμε τον τύπο του συναρτήσει του x και, συγχρόνως, να βρούμε και το κατάλληλο διάστημα στο οποίο περιέχεται το x. Επειδή η συγκεκριμένη εξίσωση δεν λύνεται αλγεβρικά ως προς y, την αφήνουμε ως έχει και λέμε ότι η συνάρτηση y προσδιορίζεται έμμεσα από την εξίσωση. 8
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει
ProapaitoÔmenec gn seic.
ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη
Γενικά Μαθηματικά (Φυλλάδιο 1 ο )
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις
2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση
Κεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
Κυκλώματα, Σήματα και Συστήματα
Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ
ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x
ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι
Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)
Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)
Συσχέτιση μεταξύ δύο συνόλων δεδομένων
Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,
1 η Εργασία ΕΟ 13 2014-2015. Υποδειγματική λύση
1 η Εργασία ΕΟ 13 014-015 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) 1
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο
Συναρτήσεις Όρια Συνέχεια
Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με
3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις
24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις
ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ
ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων
Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης
Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με
ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.
ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:
ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία
B Γυμνασίου. Ενότητα 9
B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός
ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση
Κεφάλαιο 4 Διανυσματικοί Χώροι
Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x
Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ
1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών
Σηµειώσεις Γραµµικής Άλγεβρας
Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από
ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ
ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται
Κυκλώματα με ημιτονοειδή διέγερση
Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Μετασχηµατισµός Ζ (z-tranform)
Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.
Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:
Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να
1.5 Αξιοσημείωτες Ταυτότητες
1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές
ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ
ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η
Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα
Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου
εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B
4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε
Πεπερασμένες Διαφορές.
Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x
Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015
Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός
Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον
Αφιέρωση Σταπαιδιάµας Στουςµαθητέςπουατενίζουν µεαισιοδοξίατοµέλλον Φίληµαθήτρια,φίλεµαθητή Τοβιβλίοαυτόέχειδιπλόσκοπό: Νασεβοηθήσειστηνάρτιαπροετοιµασίατουκαθηµερινούσχολικού µαθήµατος. Νασουδώσειόλατααπαραίτηταεφόδια,ώστενααποκτήσειςγερές
ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ.
ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. Μια συνοπτική παρουσίαση της Άλγεβρας, για όσους θέλουν να προετοιμαστούν για τις Πανελλαδικές Εξετάσεις των ΕΠΑ.Λ. Για απορίες στο www.commonmaths.weebly.com
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Άλγεβρα Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Άλγεβρα Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )
ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,
ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :
Μεγιστοποίηση μέσα από το τριώνυμο
Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού
Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας
2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ
6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε
ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ
ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.
Maxima: οδηγίες χρήσης
Maima: οδηγίες χρήσης Αλέξιος Ταμπαρόπουλος aleis[dot]maima[at]gmail[dot]com Περιεχόμενα Εισαγωγή........................................................... 3 Αριθμητικές πράξεις..................................................
Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων
Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί
e-mail@p-theodoropoulos.gr
Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων
ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:
ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται
Κεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος
ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0
ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα
ΣΥΝΑΡΤΗΣΕΙΣ. H Εννοια του διανυσματος. Σ υ ν ο λ α - Ο ρ ι σ μ ο ι
ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν ο λ α - Ο ρ ι σ μ ο ι Συνολο λεγεται καθε συλλογη 3. Να δειχτει αντικειμενων, οτι α + 0 που προερχονται 0α. Ποτε ισχυει απ την το εμπειρια ισον; μας η τη διανοηση 3 3. μας, Aν α, ειναι
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:
. Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 0 MAΪΟΥ 0 Λύσεις των θεμάτων Έκδοση
, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j
Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος
Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος
Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)
23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις
ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009
ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά
Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58
Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας
α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.
ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ
Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C
Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο
Εξισώσεις 2 ου βαθμού
Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ
Μηχανική του στερεού σώματος
Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη
Μαθηματικα Γ Γυμνασιου
Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ
1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ
1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε
Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)
Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας
KYMATA Ανάκλαση - Μετάδοση
ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω
Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ Η χρονική απόκριση μπορεί να ληφθεί από αναλυτικά μέσα όπως η μέθοδος μετασχηματισμού Laplace, εναλλακτικά δε μπορεί να χρησιμοποιηθεί εξομοίωση από Η/Υ. Η προσέγγιση
εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες
Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο
µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;
ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι
ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ
ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ 1. Να λύσετε τα συστήματα: 4 1 17 x y α) 19 x y δ) 1 4 17 5 5 x y β) 15 1 1 y x 1 1 0 x y ε) 1 1 8 x y στ) γ) 5 5 a 1 7 1 1 5 x y 1 7 x y. Να λυθούν τα συστήματα:
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B
151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι
ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.
ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός
Διάδοση Κυμάτων στα Υλικά. Δ. Ευταξιόπουλος
Διάδοση Κυμάτων στα Υλικά Δ. Ευταξιόπουλος 14 Φεβρουαρίου 01 Περιεχόμενα 1 Διάδοση κυμάτων σε ελαστικό μέσο άπειρων διαστάσεων 5 1.1 Τάσεις και παραμορφώσεις...................... 5 1. Ο νόμος Hooke για
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ
ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις
ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ
ΚΕΦΑΛΑΙΟ : ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ Μια εικόνα μπορεί να περιγραφεί με πολλούς τρόπους. Αν υποθέσουμε ότι έχουμε μια προβολή ψηφιδοπλέγματος, μια εικόνα καθορίζεται πλήρως από το σύνολο των
Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε
Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και