Διαφορικές Εξισώσεις.
|
|
- Παραμονος Παχής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Διαφορικές Εξισώσεις. Εαρινό εξάμηνο Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται ως προς y, τότε αφήστε την ως έχει. α. y = (x + y) 2. β. y = x2 +xy+y 2. x 2 γ. y = x+3y x y. [(x + y) log x + y + c(x + y) = 2x.] δ. y = 2y x+5 2x y 4. [ y x + 3 = c y + x ] Λύση. [α] Η δ.ε. είναι στη μορφή y = f(ax + by) με σταθερές a = b = 1, οπότε ορίζουμε νέα άγνωστη συνάρτηση u = x + y. Τότε και η δ.ε. γράφεται ισοδύναμα u = 1 + y u = u Αυτή είναι δ.ε. με χωριζόμενες μεταβλητές και έχουμε τις παρακάτω διαδοχικές ισοδύναμες εξισώσεις: u u = 1 1 du u dx dx = 1 u du = 1 dx 1 dx Arctan u = x + c. Επειδή οι τιμές της Arctan u βρίσκονται στο διάστημα ( π 2, π 2 ), συνεπάγεται ότι το x βρίσκεται στο διάστημα ( π 2 c, π 2 c). Με αυτήν την προϋπόθεση η τελευταία ισότητα είναι ισοδύναμη με την u = tan(x + c) y = x + tan(x + c) στο ( π 2 c, π 2 c ). [β] Ο αριθμητής και ο παρονομαστής της δεξιάς μεριάς της δ.ε. είναι ομογενείς συναρτήσεις ίδιας τάξης: (tx) 2 + (tx)(ty) + (ty) 2 = t 2 (x 2 + xy + y 2 ), (tx) 2 = t 2 x 2. Επομένως, ορίζουμε νέα άγνωστη συνάρτηση u = y x και τότε xu = y 1
2 Έτσι η δ.ε. μετασχηματίζεται στην u + xu = y. u + xu = 1 + y x + ( y x xu = 1 + u 2. ) 2 = 1 + u + u 2 Από τη μορφή της αρχικής δ.ε. έχουμε τον περιορισμό x 0, οπότε εργαζόμαστε στα διαστήματα (, 0) και (0, + ). Στην πορεία μέχρι και την τελευταία μορφή της δ.ε. δεν έχει προστεθεί νέος περιορισμός. Άρα έχουμε τις παρακάτω διαδοχικές ισοδύναμες εξισώσεις: u 1 + u 2 = 1 x 1 du u 2 dx dx = x dx u 2 du = x dx Arctan u = log x + c. Επειδή οι τιμές της Arctan u βρίσκονται στο διάστημα ( π 2, π 2 ), συνεπάγεται ότι το log x βρίσκεται στο διάστημα ( π 2 c, π 2 c) ότι ce π 2 < x < ce π 2, όπου c είναι αυθαίρετη θετική σταθερά. Άρα το x βρίσκεται στα διαστήματα ( ce π 2, ce π 2 ), (ce π 2, ce π 2 ). Πρέπει να προσέξουμε ότι η τελευταία σταθερά c είναι ίση με e c, όπου c είναι η σταθερά που εμφανίζεται στην τελευταία ισότητα πιο πριν: Arctan u = log x + c. Άρα η ισότητα αυτή πρέπει να γίνει Arctan u = log x log c = log x c, όπου c είναι η τελευταία θετική σταθερά. Τώρα έχουμε u = tan log x c y = x tan log x c στο ( ce π 2, ce π 2 ) ή στο (ce π 2, ce π 2 ). 2. Λύστε τις παρακάτω πλήρεις εξισώσεις πρώτης τάξης. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται ως προς y, τότε αφήστε την ως έχει. α. (2x+3)+(2y 2)y = 0. [y = 1± c x 2 3x για 3 2 c < x < c + 9 4, αν c > 9 4.] β. (e x sin y 2y sin x) + (e x cos y + 2 cos x)y = 0. [2y cos x + e x sin y = c.] γ. (3x 2 2xy + 2) + (6y 2 x 2 + 3)y = 0. [2y 3 + (3 x 2 )y + x 3 + 2x = c.] 2
3 Λύση. [α] Με ισχύει Άρα M(x, y) = 2x + 3, N(x, y) = 2y 2 M y (x, y) = 0, N x (x, y) = 0. M y (x, y) = N x (x, y) στο xy επίπεδο και επειδή το xy-επίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = 2x + 3, u y (x, y) = 2y 2 στο xy-επίπεδο. Βρίσκουμε την u(x, y) ως εξής. Από την u x (x, y) = 2x + 3 έχουμε u(x, y) = (2x + 3) dx = x 2 + 3x + h(y) και τότε από την u y (x, y) = 2y 2 παίρνουμε Άρα h (y) = 2y 2 h(y) = y 2 2y + c. u(x, y) = x 2 + 3x + y 2 2y + c και, επιλέγοντας οποιαδήποτε τιμή της c, π.χ. c = 0, θεωρούμε την u(x, y) = x 2 + 3x + y 2 2y. Τώρα θεωρούμε οποιαδήποτε λύση y(x) της δ.ε. (2x + 3) + (2y 2)y = 0 σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση ως προς x I. Τότε Ισοδύναμα: u(x, y(x)) = u(x, y) = x 2 + 3x + y 2 2y d dx (x2 + 3x + y 2 2y) = (2x + 3) + (2y 2)y = 0 x 2 + 3x + y 2 2y = c για x I. (y 1) 2 = c x 2 3x. για x I (Κάναμε αλλαγή της σταθεράς.) Από τον αυτονόητο περιορισμό x 2 + 3x c 0 προκύπτει ότι πρέπει να είναι c 9 4 και το x να βρίσκεται στο διάστημα [ 3 2 c + 9 4, 3 2 c ]. Επειδή το διάστημα πρέπει να μην είναι μονοσύνολο, συνεπάγεται c > 9 4 και τότε προκύπτουν οι δύο λύσεις της δ.ε. y = 1 c x 2 3x και y = 1+ ( 3 c x 2 3x στο 2 c + 9 4, c ).
4 Δεν περιλαμβάνουμε τα άκρα του διαστήματος, διότι σ αυτά η τετραγωνική ρίζα δεν είναι παραγωγίσιμη. [β] Με M(x, y) = e x sin y 2y sin x, N(x, y) = e x cos y + 2 cos x ισχύει Άρα M y (x, y) = e x cos y 2 sin x, N x (x, y) = e x cos y 2 sin x. M y (x, y) = N x (x, y) στο xy επίπεδο και επειδή το xy-επίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = e x sin y 2y sin x, u y (x, y) = e x cos y + 2 cos x στο xy-επίπεδο. Βρίσκουμε την u(x, y) ως εξής. Από την u x (x, y) = e x sin y 2y sin x έχουμε u(x, y) = (e x sin y 2y sin x) dx = e x sin y + 2y cos x + h(y) και τότε από την u y (x, y) = e x cos y + 2 cos x παίρνουμε δηλαδή Άρα e x cos y + 2 cos x + h (y) = e x cos y + 2 cos x, h (y) = 0 h(y) = c. u(x, y) = e x sin y + 2y cos x + c και, επιλέγοντας οποιαδήποτε τιμή της c, π.χ. c = 0, θεωρούμε την u(x, y) = e x sin y + 2y cos x. Τώρα θεωρούμε οποιαδήποτε λύση y(x) της δ.ε. (e x sin y 2y sin x) + (e x cos y + 2 cos x)y = 0 σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση ως προς x I. Τότε u(x, y(x)) = u(x, y) = e x sin y + 2y cos x d dx (ex sin y + 2y cos x) = (e x sin y 2y sin x) + (e x cos y + 2 cos x)y = 0 e x sin y + 2y cos x = c για x I. για x I Από την ισότητα αυτή προκύπτει η συνάρτηση y: πρέπει να λύσουμε ως προς y και να βρούμε τον τύπο του συναρτήσει του x και, συγχρόνως, να βρούμε και το κατάλληλο διάστημα στο οποίο περιέχεται το x. Επειδή η συγκεκριμένη εξίσωση δεν λύνεται αλγεβρικά ως προς y, την αφήνουμε ως έχει και λέμε ότι η συνάρτηση y προσδιορίζεται έμμεσα από την εξίσωση. 4
5 3. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις βρείτε ολοκληρωτικό παράγοντα ώστε αυτή να γίνει πλήρης και λύστε την. α. (3x 2 y + 2xy + y 3 ) + (x 2 + y 2 )y = 0. β. 1 + ( x y sin y)y = 0. [µ(y) = y, xy + y cos y sin y = c.] γ. y + (2xy e 2y )y = 0. Λύση. [α] Με έχουμε M = 3x 2 y + 2xy + y 3, N = x 2 + y 2 M y = 3x 2 + 2x + 3y 2, N x = 2x. Βλέπουμε ότι δεν ισχύει M y = N x (παρά μόνο σε ένα σημείο, το (0, 0)) οπότε θα ψάξουμε να βρούμε κατάλληλο ολοκληρωτικό παράγοντα µ(x, y) 0 ώστε αφού πολλαπλασιάσουμε την δ.ε. με τον µ να γίνει πλήρης. Η δ.ε. που θα προκύψει είναι η και ελέγχουμε την µm + µny = 0 (µm) y = (µn) x µ y M + µm y = µ x N + µn x. Για απλοποίηση υποθέτουμε ότι η µ είναι συνάρτηση μόνο του x. Τότε μπορούμε να γράψουμε µ x = µ (x) = µ, µ y = 0 και η τελευταία εξίσωση γίνεται Από εδώ προκύπτει µm y = µ N + µn x. (1) µ µ = M y N x N = 3x2 + 3y 2 x 2 + y 2 = 3. Επειδή η µ My Nx µ είναι συνάρτηση μόνο του x πρέπει η N να είναι συνάρτηση μόνο του x, το οποίο στην προκειμένη περίπτωση ισχύει. Άρα προχωράμε και βρίσκουμε την µ. Από την (1) έχουμε τις διαδοχικές ισοδύναμες εξισώσεις (x 2 + y 2 )µ 3(x 2 + y 2 )µ = 0 µ 3µ = 0. (Εδώ πρέπει προσωρινά να αποκλείσουμε το σημείο (0, 0) λόγω της διαίρεσης με το x 2 +y 2. Θα δούμε, όμως, ότι αφού βρούμε την µ δεν θα υπάρχει πρόβλημα ως προς την πληρότητα σε ολόκληρο το xy-επίπεδο της δ.ε. που θα προκύψει.) Λύνουμε την τελευταία δ.ε. κατά τα γνωστά και βρίσκουμε µ(x) = ce 3x. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 1, και έχουμε την µ(x) = e 3x. Πολλαπλασιάζουμε την αρχική δ.ε. με τον ολοκληρωτικό παράγοντα µ = e 3x προκύπτει η ισοδύναμη δ.ε. 0 και (3x 2 ye 3x + 2xye 3x + y 3 e 3x ) + (x 2 e 3x + y 2 e 3x )y = 0. 5
6 Τώρα με έχουμε M = 3x 2 ye 3x + 2xye 3x + y 3 e 3x, N = x 2 e 3x + y 2 e 3x M y = 3x 2 e 3x + 2xe 3x + 3y 2 e 3x, N x = 2xe 3x + 3x 2 e 3x + 3y 2 e 3x. Ισχύει M y = N x σε ολόκληρο το xy-επίπεδο και επειδή το xy-επίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = 3x 2 ye 3x + 2xye 3x + y 3 e 3x, u y (x, y) = x 2 e 3x + y 2 e 3x στο xy-επίπεδο. (2) Βρίσκουμε την u(x, y) ξεκινώντας από την δεύτερη ισότητα (2) (επειδή είναι απλουστερη) και έχουμε u(x, y) = Από την πρώτη ισότητα (2) έχουμε τώρα ότι (x 2 e 3x + y 2 e 3x ) dy = x 2 ye 3x + y3 3 e3x + h(x). 2xye 3x + 3x 2 ye 3x + y 3 e 3x + h (x) = 3x 2 ye 3x + 2xye 3x + y 3 e 3x οπότε h (x) = 0 h(x) = c. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 0, και έχουμε την u(x, y) = x 2 ye 3x + y3 3 e3x. Τώρα θεωρούμε οποιαδήποτε λύση y(x) της δ.ε. (3x 2 ye 3x + 2xye 3x + y 3 e 3x ) + (x 2 e 3x + y 2 e 3x )y = 0 σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση ως προς x I. Τότε u(x, y(x)) = u(x, y) = x 2 ye 3x + y3 3 e3x d dx (x2 ye 3x + y3 3 e3x ) = (3x 2 ye 3x +2xye 3x +y 3 e 3x )+(x 2 e 3x +y 2 e 3x )y = 0 για x I x 2 ye 3x + y3 3 e3x = c για x I. Από την ισότητα αυτή προκύπτει η συνάρτηση y: πρέπει να λύσουμε ως προς y και να βρούμε τον τύπο του συναρτήσει του x και, συγχρόνως, να βρούμε και το κατάλληλο διάστημα στο οποίο περιέχεται το x. Επειδή η συγκεκριμένη εξίσωση δεν λύνεται αλγεβρικά ως προς y, την αφήνουμε ως έχει και λέμε ότι η συνάρτηση y προσδιορίζεται έμμεσα από την εξίσωση. [γ] Με M = y, N = 2xy e 2y έχουμε M y = 1, N x = 2y. 6
7 Βλέπουμε ότι δεν ισχύει M y = N x (παρά μόνο στα σημεία (x, 1 2 )) οπότε θα ψάξουμε να βρούμε κατάλληλο ολοκληρωτικό παράγοντα µ(x, y) 0 ώστε αφού πολλαπλασιάσουμε την δ.ε. με τον µ να γίνει πλήρης. Η δ.ε. που θα προκύψει είναι η και ελέγχουμε την µm + µny = 0 (µm) y = (µn) x µ y M + µm y = µ x N + µn x. (3) Για απλοποίηση υποθέτουμε ότι η µ είναι συνάρτηση μόνο του x. Τότε μπορούμε να γράψουμε µ x = µ (x) = µ, µ y = 0 και η τελευταία εξίσωση γίνεται Από εδώ προκύπτει µm y = µ N + µn x. µ µ = M y N x N = 1 2y 2xy e 2y. Επειδή η µ µ είναι συνάρτηση μόνο του x πρέπει η M y N x N να είναι συνάρτηση μόνο του x, το οποίο δεν ισχύει. Τώρα υποθέτουμε πάλι για απλοποίηση ότι η µ είναι συνάρτηση μόνο του y. Τότε γράφουμε και η (3) γίνεται Τότε µ y = µ (y) = µ, µ x = 0 µ M + µm y = µn x. (4) µ µ = N x M y M = 2y 1 = 2 1 y y. Επειδή η µ µ είναι συνάρτηση μόνο του y πρέπει η N x M y M να είναι συνάρτηση μόνο του y, το οποίο ισχύει. Άρα προχωράμε και βρίσκουμε την µ. Η (4) γράφεται yµ + (1 2y)µ = 0. Λύνουμε αυτήν την δ.ε. και βρίσκουμε µ(y) = c y e2y για y 0. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 1, και έχουμε την µ(y) = 1 y e2y για y 0. Τώρα παρατηρούμε ότι η αρχική δ.ε. έχει ως λύση τη σταθερή συνάρτηση y = 0 στο (, + ). Επομένως, συνεχίζουμε αναζητώντας λύσεις της δ.ε. για τις οποίες ισχύει y(x) 0 για κάθε x στο διάστημα ορισμού τους. 7
8 Πολλαπλασιάζουμε την αρχική δ.ε. με τον ολοκληρωτικό παράγοντα µ = 1 y e2y 0 και προκύπτει η ισοδύναμη δ.ε. ( e 2y + 2xe 2y 1 ) y = 0. y Τώρα με M = e 2y, N = 2xe 2y 1 y έχουμε M y = 2e 2y, N x = 2e 2y. Ισχύει M y = N x στα δύο ημιεπίπεδα στα οποία χωρίζει ο x-άξονας το xy-επίπεδο και επειδή κάθε ημιεπίπεδο δεν έχει τρύπες, η δ.ε. είναι πλήρης και υπάρχει συνάρτηση u(x, y) ώστε u x (x, y) = e 2y, u y (x, y) = 2xe 2y 1 y στο xy-επίπεδο εκτός του x-άξονα. (5) Βρίσκουμε την u(x, y) ξεκινώντας από την πρώτη ισότητα (5) και έχουμε u(x, y) = e 2y dx = xe 2y + h(y). Από τη δεύτερη ισότητα (5) έχουμε τώρα ότι οπότε 2xe 2y + h (y) = 2xe 2y 1 y h (y) = 1 y h(y) = log y + c. Επιλέγουμε οποιαδήποτε τιμή της c, π.χ. c = 0, και έχουμε την u(x, y) = xe 2y log y. Τώρα θεωρούμε οποιαδήποτε λύση y(x) 0 της δ.ε. ( e 2y + 2xe 2y 1 ) y = 0 y σε κάποιο διάστημα I και παραγωγίζουμε την αντίστοιχη συνάρτηση u(x, y(x)) = u(x, y) = xe 2y log y ως προς x I. Τότε d ( dx (xe2y log y ) = e 2y + 2xe 2y 1 ) y = 0 y για x I xe 2y log y = c για x I. Από την ισότητα αυτή προκύπτει η συνάρτηση y: πρέπει να λύσουμε ως προς y και να βρούμε τον τύπο του συναρτήσει του x και, συγχρόνως, να βρούμε και το κατάλληλο διάστημα στο οποίο περιέχεται το x. Επειδή η συγκεκριμένη εξίσωση δεν λύνεται αλγεβρικά ως προς y, την αφήνουμε ως έχει και λέμε ότι η συνάρτηση y προσδιορίζεται έμμεσα από την εξίσωση. 8
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης
Διαφορικές Εξισώσεις Πρώτης Τάξης
Κεφάλαιο 2 Διαφορικές Εξισώσεις Πρώτης Τάξης Στο κεφάλαιο αυτό θα μελετήσουμε διαφορικές εξισώσεις πρώτης τάξης και θα διατυπώσουμε χωρίς απόδειξη βασικά θεωρήματα αυτών. Το εδάφιο 2.1 ασχολείται με γραμμικές
Διαφορικές εξισώσεις 302.
Διαφορικές εξισώσεις 32. Μαθηματικό Αθήνας Συλλογή ασκήσεων 1 Λύτες: Βουλγαρίδου Εύα Ορμάνογλου Στράβων Παπαμικρούλη Ελένη Παπανίκου Μυρτώ Καθηγητές: Αθανασιάδου - Μπαρμπάτης Επιμέλεια L A TEX: Βώβος Μάριος
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
Συνήθεις Διαφορικές Εξισώσεις
Π Δ Μ Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Συνήθεις Διαφορικές Εξισώσεις Δρ. Θεόδωρος Ζυγκιρίδης 28 Δεκεμβρίου 211 2 Περιεχόμενα 1 Εισαγωγή 1 1.1 Ορισμοί.........................................
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις πρώτου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9.. Για καθεμία από τις ανισότητες Λύσεις πρώτου φυλλαδίου ασκήσεων. x + > 2, x x +, x x+2 > x+3 3x+, (x )(x 3) (x 2) 2 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων
ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.
1 ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1.1. Εισαγωγή. Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα πραγματικών αριθμών. Σε
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις
Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3
10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνθεις Διαφορικές Εξισώσεις Ι Ασκσεις - 26/0/207 Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων πρώτης τάξης της
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 8-9. Λύσεις ενδέκατου φυλλαδίου ασκήσεων.. (i) Βρείτε μία παράγουσα της + στο (, + ). Ποιές είναι όλες οι παράγουσες της + στο (, + ); (ii) Βρείτε μία παράγουσα
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 215-16. Λύσεις ενδέκατου φυλλαδίου ασκήσεων. 1. Λύστε το πρόβλημα συνοριακών συνθηκών u xx + u yy =, u(x, ) = u(x, π) =, u(, y) =, u(a, y) = sin 2y + 4 sin 5y, < x
y 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ένατου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 018-19. Λύσεις ένατου φυλλαδίου ασκήσεων. 1. Έστω a < b. Αποδείξτε ότι υπάρχει ξ ώστε (i) a < ξ < b και e b e a = (b a)e ξ. (ii) a < ξ < b και cos b cos a = (e
1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων
Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων
~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
~ ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Μια συνάρτηση f ( ) u( x, y) iv( x, y ) έχει παράγωγο σε ένα σημείο x iy αν ικανοποιούνται
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
Μερικές Διαφορικές Εξισώσεις
Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο
2x 2 y. f(y) = f(x, y) = (xy, x + y)
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Εστω f : R R η συνάρτηση με τύπο y + x sin 1, για y 0, f(x, y) = y 0, για y = 0. (α) Να αποδειχθεί οτι lim f(x, y) = 0. (x,y) (0,0) (β) Να αποδειχθεί οτι το lim(lim f(x, y)) δεν
(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)
1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό
~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
~ ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 04 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Η συνάρτηση f ( ) γράφεται f x y + x + y x y + x + y xy ( ) ( ) ( ) ( ) Το πραγματικό και
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να
Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις. Σηµειώσεις
Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις Σηµειώσεις Ε. Στεϕανόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αιγαίου Πρόλογος Οι σηµειώσεις αυτές αποτελούν εξέλιξη σηµειώσεων οι οποίες χρησιµοποιήθηκαν σε παραδόσεις
a (x)y a (x)y a (x)y' a (x)y 0
Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
APEIROSTIKOS LOGISMOS I
APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 4. Άσκηση : Υπολογίστε, αν υπάρχουν, τα παρακάτω όρια. Αν χρειάζεται, υπολογίστε τα αντίστοιχα πλευρικά όρια. + 4 3 + +,
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Βασικά θεωρήματα για τις γραμμικές Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
1.1. Διαφορική Εξίσωση και λύση αυτής
Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δεύτερου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε τα arccos και arcsin των 0, ±, ±, ±, ±. Λύση: Στο διάστημα [ π, π ] είναι (κατά αύξουσα διάταξη των γωνιών και
Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ
Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει
Ασκήσεις Συνήθων Διαϕορικών Εξισώσεων
Ασκήσεις Συνήθων Διαϕορικών Εξισώσεων Α. Αργυρίου May 5, 205 Οι σημειώσεις αυτές περιέχουν λυμένες ασκήσεις από τις διάϕορες ενότητες του μαθήματος των Συνήθων Διαϕορικών Εξισώσεων, ώστε να δώσουν τη δυνατότητα
2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
[] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος
Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x
Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ & ΘΕΜΑΤΑ: ΓΕΝΙΚΑ
iii) x + ye 2xy 2xy dy
ΕΚΠΑ - Τμήμα Μαθηματικών Διαφορικές Εξισώσεις Ι Χειμερινό Εξάμηνο 2016-2017 Παραδόσεις Ε. Κόττα-Αθανασιάδου Ασκήσεις (Είναι οι ασκήσεις που αφήνονται για «λύση στο σπίτι» στις παραδόσεις της διδάσκουσας.
Κεφάλαιο 5. Γραμμικές Βαθμωτές ΔΕ
Κεφάλαιο 5 Γραμμικές Βαθμωτές ΔΕ Στο παρόν κεφάλαιο θα ασχοληθούμε με τη θεωρία όσο και με τη μεθοδολογία επίλυσης βαθμωτών γραμμικών ΔΕ 2ης και n-στής τάξης. Θα μελετήσουμε, ως επί το πλείστον, γραμμικά
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή
cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =
ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos
Απειροστικός Λογισμός Ι Ασκήσεις
Απειροστικός Λογισμός Ι Ασκήσεις Μ. Παπαδημητράκης . Για καθεμία από τις ανισότητες ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ + >, +, + > +3 3+, ( )( 3) ( ) 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων το σύνολο
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία με υλικό από το ΕΑΠ που με βοήθησε
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις τέταρτου φυλλαδίου ασκήσεων. ( n(n+1) e 1 (
. Αποδείξτε ότι: Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις τέταρτου φυλλαδίου ασκήσεων. +) 7 +) +), 5 +7 5 5, +log ) 7 log 4, +, ++ + + ) +4+4 + +4, + si +, +) +), + [ ], + + 0, + +, ) +,,
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία με υλικό από το ΕΑΠ που με βοήθησε
f (x) dx = f (x) + c a f (x) f (x) cos 2 (f (x)) f (x) dx = tan(f (x)) + c 1 sin 2 (f (x)) f (x) dx = cot(f (x)) + c e f (x) f (x) dx = e f (x) + c
Ασκήσεις στα Μαθηματικά Ι Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 208-209 Ορισμοί ΤΟ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Αντιπαράγωγος συνάρτησης Εστω συνάρτηση f : R, R διάστημα. Αν για τη συνάρτηση F :
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε
Συνέχεια συνάρτησης Σελ 17 ΜΕΘΟΔΟΛΟΓΙΑ 4.0.1 Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε κάποιο διάστημα τιμών της μεταβλητής της, οδηγεί στην εφαρμογή του θεωρήματος Βlzan ως εξής: i) Μεταφέρουμε
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
Διαφορικές εξισώσεις
Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglys.gr 1 1 / 1 / 0 1 8 εκδόσεις Καλό
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των
α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y
Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη
Φίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια φίλε μαθητή Η εργασία αυτή έγινε με σκοπό να συμβάλει στην κατανόηση στην εμπέδωση και στην εμβάθυνση των μαθηματικών εννοιών που αναπτύσσονται στην Άλγεβρα της Β Λυκείου. Η ύλη είναι γραμμένη
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Εισαγωγή στις Διαφορικές Εξισώσεις Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα . Σκοποί
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Εισαγωγικές έννοιες και ταξινόμηση Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008
n sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4.
ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Εξετάστε ως προς τη σύγκλιση τη σειρά si. Λύση: Παρατηρούμε ότι si 0 άρα η σειρά δεν συγκλίνει. Συγκεκριμένα
Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019
Διαφοριϰές Εξισώσεις ΜΕΜ 71 Λύσεις Θεμάτων Εξέτασης Ιούνη 19 Εστω η μη γραμμιϰή διαφοριϰή εξίσωση ρώτης τάξης Α 1. Δείξτε ότι η διαφοριϰή εξίσωση δεν είναι αϰριβής. Λύση. Η αντίστοιχη διαφοριϰή μορφή είναι
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ. 2.1: Έννοια της Παραγώγου του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ 1: Έννοια της Παραγώγου του σχολικού βιβλίου] ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1 ΘΕΜΑ Β Να βρείτε την παράγωγο της συνάρτησης
ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ
6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι:
Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11
Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =
ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)
ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δέκατου φυλλαδίου ασκήσεων. 2 x dx = 02 ( 2) 2
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις δέκατου φυλλαδίου ασκήσεων.. Υπολογίστε το x αν x < 0 4 fx) dx όταν fx) = αν 0 x 3/x αν < x 4 Λύση: Η f ταυτίζεται στο [, 0] με την συνεχή συνάρτηση
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1
ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ. u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει. df u x,y dx υ x,y dy. f u και. f y. 3 f. και
Το άθροισμα u,d διαφορίσιμη συνάρτηση f / A Παράδειγμα υ, d, με με Το άθροισμα ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει df u,d υ,d f u f υ 6 d 9 d είναι ακριβές διαφορικό, διότι
Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Φυσικής 1ο Σετ Ασκήσεων Γενικών Μαθηματικών ΙΙ Author : Βρετινάρης Γεώργιος Πιθανώς έχει κάποιο λάθος Supervisor : Χ.Τσάγκας 19 Φεβρουαρίου 217 ΑΕΜ: 14638 Πιθανώς
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
********* Β ομάδα Κυρτότητα Σημεία καμπής*********
********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε
A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ
A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία
Γραμμικές διαφορικές εξισώσεις ανώτερης τάξης
Κεφάλαιο 5 Γραμμικές διαφορικές εξισώσεις ανώτερης τάξης Στο κεφάλαιο περιέχεται μία συνοπτική επισκόπηση των γραμμικών Δ.Ε. ανώτερης τάξης, όπου επεκτείνονται με φυσικό και αναμενόμενο τρόπο οι μεθοδολογίες
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy
4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των
f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange
Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος
σ (9) = i + j + 3 k, σ (9) = 1 6 k.
Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις
Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων
1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε
dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1
I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα
Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )
Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =
Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ
ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ Στα παρακάτω γίνεται μία προσπάθεια, ομαδοποίησης των ασκήσεων επίλυσης εξισώσεων και ανισώσεων, συναρτησιακών μορφών, συνεχών συναρτήσεων,
ProapaitoÔmenec gn seic.
ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία