Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά"

Transcript

1 Mαρία Πριοβόλου Οδηγός προετοιμασίας για τα Πρότυπα Πειραματικά Γυμνάσια Μαθηματικά

2 Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται κατά τις διατάξεις της ελληνικής νομοθεσίας (Ν. 2121/1993 όπως έχει τροποποιηθεί και ισχύει σήμερα) και τις διεθνείς συμβάσεις περί πνευματικής ιδιοκτησίας. Απαγορεύεται απολύτως άνευ γραπτής αδείας του εκδότη ή κατά οποιονδήποτε τρόπο ή μέσο (ηλεκτρονικό, μηχανικό ή άλλο) αντιγραφή, φωτοανατύπωση και εν γένει αναπαραγωγή, εκμίσθωση ή δανεισμός, μετάφραση, διασκευή, αναμετάδοση στο κοινό σε οποιαδήποτε μορφή και η εν γένει εκμε τάλλευση του συνόλου ή μέρους του έργου. Εκδόσεις Πατάκη Eκπαίδευση Μαρία Πριοβόλου, Οδηγός προετοιμασίας για τα Πρότυπα Πειραματικά Γυμνάσια Μαθηματικά Eπιμέλεια: Γεωργία Ευθυμίου Διορθώσεις: Νάντια Κουτσουρούμπα Υπεύθυνος έκδοσης: Βαγγέλης Μπακλαβάς Σελιδοποίηση: Ιόλη Κυρούση Φιλμ μοντάζ: Κέντρο Γρήγορης Εκτύπωσης Copyright Σ. Πατάκης Α.Ε.Ε.Δ.Ε. (Εκδόσεις Πατάκη) και Μαρία Πριοβόλου, Αθήνα, 2014 ΚΕΤ 8942 ΚΕΠ 163/14 ISBN ΠΑΝΑΓΗ ΤΣΑΛΔΑΡΗ (ΠΡΩΗΝ ΠΕΙΡΑΙΩΣ) 38, ΑΘΗΝΑ, ΤΗΛ.: , , , ΦΑΞ: ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ: ΕΜΜ. ΜΠΕΝΑΚΗ 16, ΑΘΗΝΑ, ΤΗΛ.: ΥΠΟΚ/ΜΑ: ΚΟΡYΤΣΑΣ (ΤΕΡΜΑ ΠΟΝΤΟΥ ΠΕΡΙΟΧΗ Β ΚΤΕΟ), ΚΑΛΟΧΩΡΙ ΘΕΣΣΑΛΟΝΙΚΗΣ, Τ.Θ Web site:

3 Το βιβλίο αυτό αφιερώνεται στους γονείς μου, Γιάννη και Ειρήνη

4

5 Περιεχομενα Πρόλογος ο κριτήριο - Φυσικοί αριθμοί ο κριτήριο - Δεκαδικοί αριθμοί ο κριτήριο - Μετατροπή δεκαδικών σε κλάσματα και αντίστροφα ο κριτήριο - Σύγκριση φυσικών ή δεκαδικών αριθμών ο κριτήριο - Πρόσθεση και αφαίρεση φυσικών και δεκαδικών αριθμών ο κριτήριο - Πολλαπλασιασμός φυσικών και δεκαδικών αριθμών ο κριτήριο - Διαίρεση φυσικών και δεκαδικών αριθμών ο κριτήριο - Πράξεις με μεικτές αριθμητικές παραστάσεις ο κριτήριο - Λύνω σύνθετα προβλήματα των τεσσάρων πράξεων Ένα μηχάνημα που μιλάει μαθηματικά μαζί μου ο κριτήριο - Στρογγυλοποίηση φυσικών και δεκαδικών αριθμών ο κριτήριο - Διαιρέτες ενός αριθμού Μ.Κ.Δ. αριθμών ο κριτήριο - Κριτήρια διαιρετότητας ο κριτήριο - Πρώτοι και σύνθετοι αριθμοί ο κριτήριο - Παραγοντοποίηση φυσικών αριθμών ο κριτήριο - Πολλαπλάσια ενός αριθμού Ε.Κ.Π ο κριτήριο - Δυνάμεις ο κριτήριο - Δυνάμεις του ο κριτήριο - Κλάσματα ομώνυμα και ετερώνυμα ό κριτήριο - Το κλάσμα ως ακριβές πηλίκο διαίρεσης ο κριτήριο - Ισοδύναμα κλάσματα ο κριτήριο - Σύγκριση Διάταξη κλασμάτων ο κριτήριο - Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων ο κριτήριο - Προβλήματα με πολλαπλασιασμό και διαίρεση κλασμάτων ο κριτήριο - Η έννοια της μεταβλητής ο κριτήριο - Εξισώσεις στις οποίες ο άγνωστος είναι προσθετέος ο κριτήριο - Εξισώσεις στις οποίες ο άγνωστος είναι μειωτέος ή αφαιρετέος

6 Περιεχομενα 28ο κριτήριο - Εξισώσεις στις οποίες ο άγνωστος είναι παράγοντας γινομένου ο κριτήριο - Εξισώσεις στις οποίες ο άγνωστος είναι διαιρετέος ή διαιρέτης ό κριτήριο - Λόγος δύο μεγεθών ο κριτήριο - Από τους λόγους στις αναλογίες ο κριτήριο - Αναλογίες ο κριτήριο - Σταθερά και μεταβλητά ποσά ο κριτήριο - Ανάλογα ποσά ο κριτήριο - Λύνω προβλήματα με ανάλογα ποσά ο κριτήριο - Αντιστρόφως ανάλογα ή αντίστροφα ποσά ο κριτήριο - Λύνω προβλήματα με αντιστρόφως ανάλογα ποσά ο κριτήριο - Η απλή μέθοδος των τριών στα ανάλογα ποσά ο κριτήριο - Η απλή μέθοδος των τριών στα αντίστροφα ποσά ό κριτήριο - Εκτιμώ το ποσοστό ο κριτήριο - Βρίσκω το ποσοστό ο κριτήριο - Λύνω προβλήματα με ποσοστά: Βρίσκω την τελική τιμή ο κριτήριο - Λύνω προβλήματα με ποσοστά: Βρίσκω την αρχική τιμή ο κριτήριο - Λύνω προβλήματα με ποσοστά: Βρίσκω το ποσοστό στα ο κριτήριο - Απεικονίζω δεδομένα με ραβδογράμματα ή εικονόγραμμα ο κριτήριο - Ταξινομώ δεδομένα Εξάγω συμπεράσματα ο κριτήριο - Άλλοι τύποι γραφημάτων ο κριτήριο - Βρίσκω τον μέσο όρο ο κριτήριο - Μετρώ το μήκος ό κριτήριο - Μετρώ και λογαριάζω βάρη ο κριτήριο - Μετρώ τον χρόνο ο κριτήριο - Μετρώ την αξία με χρήματα ο κριτήριο - Γεωμετρικά μοτίβα ο κριτήριο - Αριθμητικά μοτίβα ο κριτήριο - Σύνθετα μοτίβα

7 Περιεχομενα 56ο κριτήριο - Γεωμετρικά σχήματα Πολύγωνα ο κριτήριο - Γωνίες ο κριτήριο - Σχεδιάζω γωνίες ο κριτήριο - Μεγεθύνω μικραίνω σχήματα ό κριτήριο - Αξονική συμμετρία ο κριτήριο - Μέτρο επιφάνειας ο κριτήριο - Βρίσκω το εμβαδόν παραλληλογράμμου ο κριτήριο - Βρίσκω το εμβαδόν τριγώνου ο κριτήριο - Βρίσκω το εμβαδόν τραπεζίου ο κριτήριο - Βρίσκω το εμβαδόν κυκλικού δίσκου ο κριτήριο - Κύβος και ορθογώνιο παραλληλεπίπεδο: έδρες και αναπτύγματα ο κριτήριο - Κύβος και ορθογώνιο παραλληλεπίπεδο: ακμές και κορυφές ο κριτήριο - Κύλινδρος ο κριτήριο - Όγκος Χωρητικότητα ό κριτήριο - Όγκος κύβου και ορθογώνιου παραλληλεπιπέδου ο κριτήριο - Όγκος κυλίνδρου ο Επαναληπτικό κριτήριο αξιολόγησης ο Επαναληπτικό κριτήριο αξιολόγησης ο Επαναληπτικό κριτήριο αξιολόγησης ο Επαναληπτικό κριτήριο αξιολόγησης ο Επαναληπτικό κριτήριο αξιολόγησης Λύσεις των ασκήσεων

8

9 Προλογοσ Αγαπητή μαθήτρια, αγαπητέ μαθητή, Το βιβλίο αυτό απευθύνεται σ εσένα που φέτος ολοκληρώνεις την 6ετή φοίτησή σου στο Δημοτικό Σχολείο και ετοιμάζεσαι να κάνεις το μεγάλο βήμα στη δευτεροβάθμια εκπαίδευση. Ένα μέρος του ταξιδιού σου στη χώρα των Μαθηματικών ολοκληρώνεται, αλλά η περιπέτεια της ανακάλυψης και της δημιουργίας των Μαθηματικών δεν τελειώνει εδώ. Για να μπορέσεις να συνεχίσεις δυναμικά την πορεία σου στο Γυμνάσιο για την κατάκτηση της μαθηματικής γνώσης, πρέπει να βεβαιωθείς ότι έχεις αποκτήσει όλα τα απαιτούμενα γνωστικά εφόδια τα προηγούμενα χρόνια. Το βιβλίο αυτό αποτελείται από Κριτήρια Αξιολόγησης, μέσα από τα οποία θα επαναλάβεις και θα αξιολογήσεις όλα όσα διδάχτηκες τα προηγούμενα έξι χρόνια στο Δημοτικό Σχολείο. Αν είσαι μαθητής της ΣΤ Δημοτικού και έχεις βάλει στόχο να κατακτήσεις την κορυφή, το βιβλίο αυτό θα σου προσφέρει βήμα βήμα την κατάλληλη επανάληψη σε καθένα από τα 71 κεφάλαια της ύλης Μαθηματικών της τάξης σου, εμπλουτισμένη με ερωτήματα από προηγούμενες τάξεις. Όσο για σένα που στοχεύεις στην εισαγωγή σου στα Πρότυπα Πειραματικά Γυμνάσια και θέλεις να βεβαιωθείς ότι κατέχεις σε άριστο βαθμό κάθε μαθηματική έννοια που διδάχτηκες τα τελευταία έξι χρόνια, τότε κρατάς στα χέρια σου το κατάλληλο βιβλίο για την άρτια προετοιμασία σου. Τέλος, αν ανήκεις στην κατηγορία των μαθητών που αξιοποιούν τους καλοκαιρινούς μήνες εποικοδομητικά, τότε αυτό το βιβλίο αποτελεί την καλύτερη επιλογή για την καλοκαιρινή προετοιμασία σου για το Γυμνάσιο. Κάθε άσκηση αυτού του βιβλίου αποτελεί πρόκληση για έναν σύγχρονο μαθητή που επιθυμεί να ξεπεράσει τα προσωπικά του όρια. -11-

10 Προλογοσ Κάθε Κριτήριο Αξιολόγησης περιέχει: Μαθηματικές έννοιες από όλες τις τάξεις του Δημοτικού. Ερωτήσεις καθορισμένης απαντήσεις (Συμπλήρωσης κενού, Τύπου Σωστού Λάθους, Πολλαπλής επιλογής, Αντιστοίχισης), μέσα από τις οποίες θα επαναλάβεις τη θεωρία που διδάχτηκες. Όλα τα μαθηματικά θέματα που διαπραγματεύτηκες στην ΣΤ Τάξη. Συνδυαστικά θέματα. Θέματα Μαθηματικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας, του Διαγωνισμού Καγκουρό και του American Mathematics Competition. Θέματα από την Ιστορία των Μαθηματικών. Στο βιβλίο αυτό θα ασχοληθείς με ασκήσεις από την Άλγεβρα, τη Γεωμετρία, τη Θεωρία Αριθμών, τη Στατιστική, τα Μοτίβα κ.ά. Σε κάθε Κριτήριο Αξιολόγησης θα παρατηρήσεις ότι υπάρχει διαβαθμισμένη δυσκολία μεταξύ των θεμάτων. Πολλές από τις ασκήσεις έχουν αυξημένο επίπεδο δυσκολίας, για να σε προετοιμάσουν για το Γυμνάσιο. Πώς θα χρησιμοποιήσεις αυτό το βιβλίο: Το Θέμα 1ο κάθε Κριτηρίου Αξιολόγησης αφορά τη θεωρία του αντίστοιχου κεφαλαίου στο σχολικό σου βιβλίο. Μελέτησε πρώτα προσεκτικά τη θεωρία και έπειτα συμπλήρωσε το Θέμα 1ο. Όσα θέματα έχουν το σύμβολο χρειάζονται περισσότερη ανάπτυξη και γι αυτόν τον λόγο είναι προτιμότερο να τα επιλύσεις σ ένα τετράδιο. Στο τέλος του βιβλίου μπορείς να βρεις τις αναλυτικές λύσεις όλων των θεμάτων των Κριτηρίων Αξιολόγησης, ώστε να κάνεις την αυτοαξιολόγησή σου. Θα ήθελα να ευχαριστήσω τη Γεωργία Ευθυμίου και τη Νάντια Κουτσουρούμπα για την επιμέλεια της έκδοσης και για τις εύστοχες παρατηρήσεις τους. Μαρία Πριοβόλου -12-

11 ΚΡΙΤΗΡΙA ΑΞΙΟΛΟΓΗΣΗΣ

12

13 1ο κριτήριο Φυσικοί αριθμοί Με το κριτήριο αυτό θα ασχοληθείς με... τους φυσικούς αριθμούς, την αξία θέσης τους. Θα θυμηθείς από προηγούμενη τάξη... Θα χρησιμοποιήσεις... Θέμα 1ο τη γραφή των φυσικών αριθμών με ψηφία και με λέξεις, τη σύγκριση δύο φυσικών αριθμών. την αριθμογραμμή και τις τέσσερις πράξεις. Διάβασες τη θεωρία; A. Nα χαρακτηρίσεις ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις επόμενες προτάσεις. 1. Κάθε φυσικός αριθμός, εκτός από το 0, σχηματίζεται από τον προηγούμενό του, με την πρόσθεση σε αυτόν του αριθμού Από το 20 μέχρι και το 50 το ψηφίο 5 εμφανίζεται 3 φορές. 3. Στον φυσικό αριθμό το ψηφίο 4 φανερώνει μονάδες χιλιάδων. 4. Ο αριθμός 2,0986 είναι φυσικός αριθμός. 5. Ο αριθμός σχηματίζεται από τα ψηφία 2, 6 και 7. Β. Nα συμπληρώσεις τα παρακάτω κενά με τις λέξεις, φράσεις ή μαθηματικά σύμβολα που λείπουν. 1. Ο αριθμός γράφεται με λέξεις Ανάμεσα σε δύο φυσικούς αριθμούς με διαφορετικό πλήθος στοιχείων, μεγαλύτερος είναι όποιος έχει... ψηφία. 3. Για να συγκρίνω δύο φυσικούς αριθμούς με το ίδιο πλήθος ψηφίων, ξεκινώ από τη θέση με τη... αξία. 4. Το ψηφίο 6 στον αριθμό φανερώνει Ισχύει ότι Θέμα 2ο Nα γράψεις τους αριθμούς που συμβολίζουν τα γράμματα Α, Β και Γ στην παρακάτω αριθμογραμμή. Γ A B

14 ΚΡΙΤΗΡΙO ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Θέμα 3ο Η Αιμιλία έχει τέσσερις κάρτες. Κάθε κάρτα έχει έναν αριθμό γραμμένο επάνω της.! Η Αιμιλία τοποθέτησε τις τέσσερις κάρτες πάνω στο τραπέζι, για να φτιάξει έναν αριθμό. α. Να γράψεις τον μικρότερο αριθμό που μπορεί να φτιάξει η Αιμιλία με αυτές τις κάρτες. β. Να γράψεις τον μεγαλύτερο αριθμό που μπορεί να φτιάξει η Αιμιλία με αυτές τις κάρτες. Έπειτα η Αιμιλία χρησιμοποίησε τις κάρτες, για να δημιουργήσει την παρακάτω ισότητα: + = γ. Χρησιμοποιώντας κάθε κάρτα μία φορά, να γράψεις τον σωστό υπολογισμό. Θέμα 4ο! Να χρησιμοποιήσεις όλα τα στοιχεία που σου δίνονται, για να βρεις τον μυστηριώδη αριθμό. 3 Το άθροισμα των ψηφίων του είναι 8. 3 Ο αριθμός διαβάζεται το ίδιο και αντίστροφα. 3 Ο αριθμός είναι μικρότερος του Έχει τέσσερα ψηφία. -16-

15 2ο κριτήριο Δεκαδικοί αριθμοί Με το κριτήριο αυτό θα ασχοληθείς με... τη γραφή των δεκαδικών αριθμών και την αξία των ψηφίων τους. Θα θυμηθείς από προηγούμενη τάξη... Θα χρησιμοποιήσεις... την εκτίμηση. την αριθμογραμμή. Θέμα 1ο Διάβασες τη θεωρία; A. Nα συμπληρώσεις τα παρακάτω κενά με τις λέξεις, φράσεις ή μαθηματικά σύμβολα που λείπουν. 1. Δεκαδικοί αριθμοί είναι οι αριθμοί που αποτελούνται από ένα... και ένα... μέρος. Τα δύο μέρη χωρίζονται μεταξύ τους με την Χρησιμοποιούμε τους δεκαδικούς αριθμούς, για να μετρήσουμε με Σε έναν δεκαδικό αριθμό, τα... γράφονται στην πρώτη θέση μετά την υποδιαστολή. 4. Ο δεκαδικός αριθμός 0,03 διαβάζεται Β. Nα παρατηρήσεις το παρακάτω σχήμα και να επιλέξεις τη σωστή απάντηση στις ερωτήσεις πολλαπλής επιλογής. Β 0, Ο αριθμός που αντιστοιχεί στο γράμμα Β είναι ο αριθμός: α. 0,9 β. 0,95 γ Ο αριθμός που αντιστοιχεί στο γράμμα Γ είναι ο αριθμός: α. 2,05 β. 2,5 γ. 2,15 3. Ο αριθμός που αντιστοιχεί στο γράμμα Δ είναι ο αριθμός: α. 2,7 β. 2,80 γ. 2,85 Γ 4. Ο μεγαλύτερος από τους αριθμούς που αντιστοιχούν στα γράμματα Β, Γ και Δ είναι ο αριθμός: α. 0,95 β. 2,05 γ. 2,85 5. Ο μικρότερος από τους αριθμούς που αντιστοιχούν στα γράμματα Β, Γ και Δ είναι ο αριθμός: α. 0,95 β. 2,05 γ. 2,85 Δ 4-17-

16 ΚΡΙΤΗΡΙO ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Θέμα 2ο! Να χρησιμοποιήσεις τα στοιχεία που σου δίνονται, για να βρεις τον άγνωστο δεκαδικό αριθμό. 3 Έχει διψήφιο ακέραιο μέρος και διψήφιο δεκαδικό μέρος. 3 Δύο από τα ψηφία του είναι τα ίδια. 3 Το ψηφίο των δεκάδων είναι μικρότερο από το ψηφίο των μονάδων. 3 Το ψηφίο των μονάδων είναι το ίδιο με το ψηφίο των δεκάτων. 3 Το ψηφίο των δεκάτων είναι κατά ένα μικρότερο από το ψηφίο των εκατοστών. 3 Το άθροισμα των ψηφίων του είναι 11. Θέμα 3ο Δίνονται οι αριθμοί: 0,25 0,9 2,5 12,6 1,2 0,8 α. Δύο από τους παραπάνω αριθμούς, αν πολλαπλασιαστούν, δίνουν το μικρότερο πιθανό γινόμενο. Ποιοι είναι; β. Δύο από τους παραπάνω αριθμούς, όταν πολλαπλασιαστούν, δίνουν το πιο κοντινό γινόμενο στη μονάδα. Ποιοι είναι; γ. Να βρεις δύο από τους παραπάνω αριθμούς που, αν διαιρεθούν, δίνουν το μεγαλύτερο δυνατό πηλίκο.! Θέμα 4ο! Μια ομάδα 38 παιδιών θα επισκεφτούν μια θεατρική παράσταση. Το εισιτήριο της παράστασης κοστίζει 9,75 για το κάθε παιδί. α. Να εκτιμήσεις άμεσα το συνολικό κόστος των εισιτηρίων για όλα τα παιδιά. β. Η εκτίμησή σου είναι μεγαλύτερη ή μικρότερη από το ακριβές κόστος των εισιτηρίων; -18-

17 ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ 1ο κριτήριο Θέμα 1ο Α. 1. Σ, 2. Λ (Aπό το 20 μέχρι και το 50 το ψηφίο 5 εμφανίζεται 4 φορές.), 3. Σ, 4. Λ (Ο αριθμός 2,0986 είναι δεκαδικός αριθμός.), 5. Σ. Β. 1. τριακόσιες πενήντα χιλιάδες, 2. περισσότερα, 3. μεγαλύτερη, 4. μονάδες εκατομμυρίων, 5. >. Θέμα 2ο Α = 35, Β = 52, Γ = 24. Θέμα 3ο α , β , γ = 14. Θέμα 4ο Αφού ο αριθμός έχει τέσσερα ψηφία και διαβάζεται το ίδιο και αντίστροφα, το ψηφίο των μονάδων είναι ίσο με το ψηφίο των χιλιάδων και το ψηφίο των δεκάδων είναι ίσο με το ψηφίο των εκατοντάδων, άρα ψάχνουμε για δύο ψηφία. Εφόσον το άθροισμα όλων των ψηφίων είναι 8, τότε το άθροισμα των δύο ζητούμενων ψηφίων είναι 4. Ο αριθμός που ικανοποιεί τα παραπάνω δεδομένα και είναι ταυτόχρονα μικρότερος από το είναι ο ο κριτήριο Θέμα 1ο Α. 1. ακέραιο, δεκαδικό, υποδιαστολή, 2. ακρίβεια, 3. δέκατα, 4. τρία εκατοστά. Β. 1. β, 2. α, 3. γ, 4. γ, 5. α. Θέμα 2ο Με δοκιμές βρίσκουμε 14,42. Θέμα 3ο α. 0,25 0,8 = 0,2. β. 0,8 1,2 = 0,96. γ. 12,6 : 0,25 = 50,4. Φυσικοί αριθμοί Δεκαδικοί αριθμοί Θέμα 4ο α. Στρογγυλοποιώντας προς τα πάνω το πλήθος των παιδιών και την τιμή του εισιτηρίου, προκύπτει το γινόμενο = 400. β. H εκτίμηση είναι μεγαλύτερη από το ακριβές κόστος, το οποίο είναι 38 9,75 = 370,5. Μετατροπή δεκαδικών 3ο κριτήριο σε κλάσματα και αντίστροφα Θέμα 1ο Α. 1. Σ, 2. Σ, 3. Λ ( Kάτι που κοστίζει 60 λεπτά κοστίζει του. ), 4. Σ, 5. Λ ( O δεκαδικός αριθμός 46,783 γράφεται ως κλάσμα ) Β. 1. 4, 2., 3., 4. μονάδες Θέμα 2ο α. 25,3 =, β. = 0,003, γ. 12,75 =, δ. = 51,5, ε. 0,06 = Θέμα 3ο 6 4 α = 8, β. + + = 0, γ = 56, Θέμα 4ο Αν από το σύνολο αφαιρέσουμε τα κιλά που χρειάζονται τα παιδιά, έχουμε 5,3 3,95 1,2 = 0,15. Το αλεύρι θα τους φτάσει και θα περισσέψουν 0,15 κιλά. Θέμα 1ο Α. 1. αριστερά, 2. αύξουσα, 3. μεγαλύτερο, μικρότερο 4. παρεμβάλουμε. Β. 1. δ, 2. δ, 3. β, 4. β. Θέμα 2ο Α. 1,405 > 1,4. Οι αριθμοί που βρίσκονται μεταξύ τους είναι: 1,401, 1,402, 1,403 και 1,404. Β. 4,5 > 4,051 > 1,405 > 1,4 > 1,054 > 0,004. Γ ο κριτήριο Σύγκριση φυσικών ή δεκαδικών αριθμών Α Β Γ Δ Ε 1,3 1,32 1,34 1,36 1,38 1,4 1,42 1,441,45 1,46 1,48 1,5 Θέμα 3ο α. Η Παρασκευή. β. Η Πέμπτη. γ = 2 C. δ. Η Τρίτη. Θέμα 4ο Γράφοντας όλους τους συνδυασμούς και προσθέτοντας τις τιμές τους, βρίσκουμε ότι: -161-

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/05/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Στοιχεία Θεωρίας - Λυμένα Παραδείγματα. Ασκήσεις - Ερωτήσεις Θεωρίας. Νικόλαος Χονδράκης (Εκπαιδευτικός)

ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Στοιχεία Θεωρίας - Λυμένα Παραδείγματα. Ασκήσεις - Ερωτήσεις Θεωρίας. Νικόλαος Χονδράκης (Εκπαιδευτικός) ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ Στοιχεία Θεωρίας - Λυμένα Παραδείγματα Ασκήσεις - Ερωτήσεις Θεωρίας Νικόλαος Χονδράκης (Εκπαιδευτικός) ... Νικόλαος Γ. Χονδράκης Διπλωματούχος Μηχανολόγος Μηχανικός

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΠΡΟΤΥΠΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ. ΤΕΣΤ ΔΕΞΙΟΤΗΤΩΝ.

ΠΡΟΤΥΠΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ. ΤΕΣΤ ΔΕΞΙΟΤΗΤΩΝ. ΠΡΟΤΥΠΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ. ΤΕΣΤ ΔΕΞΙΟΤΗΤΩΝ. ΤΟ e-μαθημα Η Learn-era.gr σας καλωσορίζει στη σύγχρονη διαδικτυακή εκπαίδευση και σας υπόσχεται μία μοναδική εμπειρία παροχής γνώσης. Για να έχετε πρόσβαση

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Μαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΙΣ Α, Β, Γ, Δ, Ε & ΣΤ ΤΑΞΕΙΣ ΔΗΜΟΤΙΚΟΥ ΓΙΑ ΚΩΦΟΥΣ ΜΑΘΗΤΕΣ ΒΙΒΛΙΟ ΔΑΣΚΑΛΟΥ Περιεχόμενα Α. ΠΑΙΔΑΓΩΓΙΚΟ ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Aλγεβρα A λυκείου B Τομος

Aλγεβρα A λυκείου B Τομος Aλγ ε β ρ α A υ κ ε ί ο υ B Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ειρά: Γενικό ύκειο, Θετικές Επιστήμες Άλγεβρα Α υκείου, Β Τόμος Παναγιώτης Γριμανέλλης Εξώφυλλο: Γεωργία αμπροπούλου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική)

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) ΝΤΑΗ ΕΙΡΗΝΗ ΤΜΗΜΑ: Π.Τ.Δ.Ε, ΠΑΤΡΑΣ 2012-13 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ Ε.ΚΟΛΕΖΑ «ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) [1] Στόχοι της ενότητας(οι μαθητές

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 1. Σκοπός της διδασκαλίας του µαθήµατος Ο σκοπός της διδασκαλίας των Μαθηµατικών εντάσσεται στους γενικότερους σκοπούς της Εκπαίδευσης και αφορά

Διαβάστε περισσότερα

Μαθηματικά Δημοτική Εκπαίδευση

Μαθηματικά Δημοτική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Δημοτική Εκπαίδευση Εργαλείο Διαδίκτυο Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής Τεχνολογίας

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

ΜΑΜΑ, ΘΑ ΜΕ ΘΗΛΑΣΕΙΣ;

ΜΑΜΑ, ΘΑ ΜΕ ΘΗΛΑΣΕΙΣ; ΜΑΜΑ, ΘΑ ΜΕ ΘΗΛΑΣΕΙΣ; Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται από τις διατάξεις της ελληνικής νομοθεσίας (Ν. 2121/1993 όπως έχει τροποποιηθεί και ισχύει σήμερα) και από τις διεθνείς συμβάσεις

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας;

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; 2. ºÙÈ Óˆ ÚÈıÌÔ Ì ÚÈ ÙÔ 100 Î È ÙÔ Û ÁÎÚ Óˆ ΜΑΘΑΙΝΩ ΠΩΣ ΝΑ ΛΥΝΩ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ Ú Êˆ Ó Ó ÚÈıÌfi Ì ËÊ Î È ÌÂ Ï ÍÂÈ 2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; ΛΥΣΗ Στη ράβδο του άβακα που δείχνει

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Λιακόπουλος Ιωάννης1 και Λυπηρίδης Χαράλαμπος2 1liakopoulosjohn@gmail.com, 2xarislip@hotmail.com Επιβλέπων Καθηγητής: Λάζαρος Τζήμκας tzimkaslazaros@gmail.com

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ ΤΑΞΗ ΚΕΦΑΛΑΙΟ 2 ο ΕΙΣΗΓΗΤΗΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ : ΚΑΖΑΝΤΖΗΣ ΧΡΗΣΤΟΣ 1. Γενικός

Διαβάστε περισσότερα

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού 1. Εισαγωγή Παίζοντας με τα νομίσματα (Ευρώ) Το εκπαιδευτικό λογισμικό «Παίζοντας με τα νομίσματα (Ευρώ)» είναι κυρίως κατάλληλο για τις μικρές τάξεις του δημοτικού σχολείου και ενισχύει τη διδασκαλία

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

Μιχάλης Αρταβάνης κλάδου Πληροφορικής ΠΕ19

Μιχάλης Αρταβάνης κλάδου Πληροφορικής ΠΕ19 Φυλλάδιο Ασκήσεων 1 - οµές Επανάληψης Ασκ1. Πόσες φορές θα εκτελεστούν οι επαναληπτικές δοµές στα παρακάτω τµήµατα αλγορίθµων; x 5 Όσο (x > 0) x x - 1 x 5 Όσο (x >= 0) x x - 1 x -5 Όσο (x >= 0) x x - 1

Διαβάστε περισσότερα

Μαθηματικά στην Πρωτοβάθμια Εκπαίδευση (Δημοτικό)

Μαθηματικά στην Πρωτοβάθμια Εκπαίδευση (Δημοτικό) ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με την συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Μαθηματικά

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα