Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού"

Transcript

1 Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού

2 ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις: Μαθηματικά Στ Δημοτικού Επιμέλεια έκδοσης: Χαρά Σταυροπούλου Επιμέλεια - Διόρθωση: Γιάννης Τσατσαρός Εικονογράφηση εξωφύλλου: Σπύρος Γούσης Εικόνες εσωτερικού: Κατερίνα Βερούτσου Δημιουργική Επιμέλεια: Αρχέτυπο Γραφικές Τέχνες 2008, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης Ζαχαρόπουλος ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ, Καποδιστρίου 9, , Μεταμόρφωση Αττικής, τηλ.: , fax: BIBΛΙΟΠΩΛΕΙΟ: Μασσαλίας 14, 680 Αθήνα, τηλ.: ΙSBN ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

3 Περιεχόμενα 1η Θεματική ενότητα Αριθμοί και πράξεις 1. Φυσικοί αριθμοί Δεκαδικοί αριθμοί Μετατροπή δεκαδικών σε κλάσματα και αντίστροφα Σύγκριση φυσικών ή δεκαδικών αριθμών Πρόσθεση και αφαίρεση φυσικών και δεκαδικών αριθμών Πολλαπλασιασμός φυσικών και δεκαδικών αριθμών Διαίρεση φυσικών και δεκαδικών αριθμών Πράξεις με μεικτές αριθμητικές παραστάσεις Λύνω σύνθετα προβλήματα των 4 πράξεων Η χρήση του υπολογιστή τσέπης Στρογγυλοποίηση φυσικών και δεκαδικών αριθμών Διαιρέτες ενός αριθμού Μ.Κ.Δ. αριθμών Κριτήρια διαιρετότητας Πρώτοι και σύνθετοι αριθμοί Παραγοντοποίηση φυσικών αριθμών Πολλαπλάσια ενός αριθμού Ε.Κ.Π Δυνάμεις Δυνάμεις του Κλάσματα ομώνυμα και ετερώνυμα Το κλάσμα ως ακριβές πηλίκο διαίρεσης Ισοδύναμα κλάσματα Σύγκριση Διάταξη κλασμάτων Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων Προβλήματα με πολλαπλασιασμό και διαίρεση κλασμάτων Ανακεφαλαίωση η Θεματική ενότητα Εξισώσεις 25. Η έννοια της μεταβλητής Εξισώσεις στις οποίες ο άγνωστος είναι προσθετέος Εξισώσεις στις οποίες ο άγνωστος είναι μειωτέος ή αφαιρετέος Εξισώσεις στις οποίες ο άγνωστος είναι παράγοντας γινομένου Εξισώσεις στις οποίες ο άγνωστος είναι διαιρετέος ή διαιρέτης Ανακεφαλαίωση

4 Περιεχόμενα Περιεχόμενα 3η Θεματική ενότητα Λόγοι Αναλογίες 6η Θεματική ενότητα Γεωμετρία 30. Λόγος δύο μεγεθών Από τους λόγους στις αναλογίες Αναλογίες Σταθερά και μεταβλητά ποσά Ανάλογα ποσά Λύνω προβλήματα με ανάλογα ποσά Αντιστρόφως ανάλογα ή αντίστροφα ποσά Λύνω προβλήματα με αντιστρόφως ανάλογα ποσά Η απλή μέθοδος των τριών στα ανάλογα ποσά Η απλή μέθοδος των τριών στα αντίστροφα ποσά Εκτιμώ το ποσοστό Βρίσκω το ποσοστό Λύνω προβλήματα με ποσοστά: Βρίσκω την τελική τιμή Λύνω προβλήματα με ποσοστά: Βρίσκω την αρχική τιμή Λύνω προβλήματα με ποσοστά: Βρίσκω το ποσοστό στα εκατό Ανακεφαλαίωση Γεωμετρικά σχήματα Πολύγωνα Γωνίες Σχεδιάζω γωνίες Μεγεθύνω Μικραίνω σχήματα Αξονική συμμετρία Μετρώ επιφάνειες Βρίσκω το εμβαδό παραλληλογράμμου Βρίσκω το εμβαδό τριγώνου Βρίσκω το εμβαδό τραπεζίου Βρίσκω το εμβαδό κυκλικού δίσκου Κύβος και ορθογώνιο παραλληλεπίπεδο: έδρες και αναπτύγματα Κύβος και ορθογώνιο παραλληλεπίπεδο: ακμές και κορυφές Κύλινδρος Όγκος Χωρητικότητα Όγκος κύβου και ορθογωνίου παραλληλεπιπέδου Όγκος κυλίνδρου Ανακεφαλαίωση η Θεματική ενότητα Συλλογή και επεξεργασία δεδομένων 45. Απεικονίζω δεδομένα με ραβδόγραμμα ή εικονόγραμμα Ταξινομώ δεδομένα Εξάγω συμπεράσματα Άλλοι τύποι γραφημάτων Βρίσκω το μέσο όρο η Θεματική ενότητα Μετρήσεις Μοτίβα 49. Μετρώ το μήκος Μετρώ και λογαριάζω βάρη Μετρώ το χρόνο Μετρώ την αξία με χρήματα Γεωμετρικά μοτίβα Αριθμητικά μοτίβα Σύνθετα μοτίβα Ανακεφαλαίωση Απαντήσεις στα Κριτήρια αξιολόγησης του βιβλίου του δασκάλου 1ο Κριτήριο αξιολόγησης: Eνότητα 1: Αριθμοί και πράξεις ο Κριτήριο αξιολόγησης: Eνότητα 2: Εξισώσεις ο Κριτήριο αξιολόγησης: Eνότητα 3: Λόγοι Αναλογίες ο Κριτήριο αξιολόγησης: Eνότητες 4-5: Συλλογή και επεξεργασία δεδομένων Μετρήσεις Μοτίβα ο Κριτήριο αξιολόγησης: Eνότητα 6: Γεωμετρία

5 1η Ενότητα: Αριθμοί και πράξεις Κεφάλαιο 1ο Φυσικοί αριθμοί Δραστηριότητα 1η Ταξινομήστε τους αριθμούς του πίνακα σε ομάδες, ανάλογα με το πλήθος των ψηφίων τους. (2 ψηφία): 30, 32, 58, 41 (3 ψηφία): 679, 556, 273, 664, 199, 448, 397 (4 ψηφία): 3.053, 8.857, 8.074, 1.766, 3.654, 4.384, (5 ψηφία): , , , Σε ποιον από τους αριθμούς το ψηφίο 2 έχει τη μεγαλύτερη αξία; Στον αριθμό Πόσα παιδιά μικρότερα από 15 ετών εργάζονταν στην Ελλάδα το 1996; παιδιά. Πόσοι έφηβοι ετών εργάζονταν σε βιομηχανίες; έφηβοι. Σε ποιον κλάδο εργάζονταν οι περισσότεροι ανήλικοι; Οι περισσότεροι ανήλικοι εργάζονταν στη γεωργία και την κτηνοτροφία: = ανήλικοι. Συζητήστε στην τάξη για τη σημασία των αριθμών στην εξαγωγή συμπερασμάτων. Με τους αριθμούς μπορούμε να βγάζουμε εύκολα και ασφαλή συμπεράσματα. Δραστηριότητα 2η Α: 1896 Β: 1912 Γ: 1914 (αρχή) Γ: 1918 (τέλος) Δ: 1911 Εφαρμογή 1η Να γραφεί με ψηφία ο αριθμός επτά εκατομμύρια δεκαπέντε χιλιάδες εννιακόσια δύο Ερωτήσεις για αυτοέλεγχο και συζήτηση α) Σ, β) Λ (Το ψηφίο 3 εμφανίζεται 13 φορές: 13, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39), γ) Λ (Οι μονοψήφιοι φυσικοί αριθμοί είναι μαζί με το μηδέν). 9

6 1η Θεματική Ενότητα Αριθμοί και πράξεις Τετράδιο Εργασιών Άσκηση 1: Να γράψεις με ψηφία τους παρακάτω αριθμούς: α) διακόσια πέντε: 205 δ) πεντακόσια τριάντα δύο: 532 β) τρεις χιλιάδες δύο: ε) τριακόσια εννιά: 309 γ) χίλια πενήντα: στ) χίλια εκατόν ένα: 1.1 Άσκηση 2: Να σχηματίσεις όσο περισσότερους τριψήφιους φυσικούς αριθμούς μπορείς με τα ψηφία 2, 7 και 9. Σε κάθε αριθμό να χρησιμοποιήσεις κάθε ψηφίο μία φορά. Οι τριψήφιοι φυσικοί αριθμοί που σχηματίζονται είναι: 279, 297, 729, 792, 927, 972. Πόσοι αριθμοί σχηματίστηκαν; Σχηματίστηκαν έξι αριθμοί. Πρόβλημα 2ο Πόσα χρόνια έζησε καθένας από τους παρακάτω διάσημους επιστήμονες; Rene Descartes (Καρτέσιος) ( ) 54 έτη Sir Isaac Newton (Νεύτωνας) ( ) 84 έτη Etienne Pascal (Πασκάλ) ( ) 63 έτη Nicolaus Copernicus (Κοπέρνικος) ( ) 70 έτη Pierre-Simon Laplace (Λαπλάς) ( ) 78 έτη Διόφαντος της Αλεξανδρείας ( ) 84 έτη Ποιοι από αυτούς δεν είχαν τη δυνατότητα να γνωριστούν προσωπικά; Ο Διόφαντος ( ), ο Κοπέρνικος ( ) και ο Λαπλάς ( ). Άσκηση 3: Στον υπολογιστή τσέπης οι αριθμοί εμφανίζονται χωρίς διαχωριστικό στις χιλιάδες και στα εκατομμύρια. Να χωρίσεις τους παρακάτω αριθμούς με τελείες Δραστηριότητα με προεκτάσεις: «Ιστορικές επέτειοι» Υπολογίστε πόσα χρόνια έχουν περάσει από: α) την Επανάσταση του 1821, β) το ιστορικό ΟΧΙ του 1940, γ) την εξέγερση των φοιτητών στο Πολυτεχνείο το Άσκηση 4: «Σταυράριθμο» Πρόβλημα 1ο Α Β Γ Δ Ε Αφαιρούμε καθεμιά από τις παραπάνω χρονολογίες από το έτος που έχουμε σήμερα, για παράδειγμα από το έτος 2008, και βρίσκουμε ότι: α) από την Επανάσταση του 1821 έχουν περάσει ( ) 187 έτη. β) από το ιστορικό ΟΧΙ του 1940 έχουν περάσει ( ) 68 έτη. γ) από την εξέγερση των φοιτητών στο Πολυτεχνείο το 1973 ( ) 35 έτη. Θέματα για διερεύνηση και συζήτηση Σε ποιες ημερομηνίες τιμούνται αυτές οι επέτειοι κατά τη διάρκεια του σχολικού έτους; α) Η Επανάσταση του 1821 τιμάται στις 25 Μαρτίου. β) Το ιστορικό ΟΧΙ του 1940 τιμάται στις 28 Οκτωβρίου. γ) Η εξέγερση των φοιτητών στο Πολυτεχνείο το 1973 τιμάται στις 17 Νοεμβρίου. α) Βρίσκουμε το διπλάσιο του 88, του αριθμού που μας δείχνει πόσα είναι τα ντολμαδάκια: 2 88 = 176. β) Βρίσκουμε τον αριθμό που μας δείχνει τις ημέρες δύο εβδομάδων: 2 7 = 14. γ) Κάνουμε την αφαίρεση και βρίσκουμε ότι το βιβλίο έχει: = 162 σελίδες. 11

7 1η Θεματική Ενότητα Αριθμοί και πράξεις Τετράδιο Εργασιών Κεφάλαιο 2ο Δραστηριότητα 1η ΥΨΟΣ ΣΕ ΜΕΤΡΑ 1,48 1,49 1,50 1,51 1,52 1,53 1,54 1,55 1,56 1,57 1,58 1,59 1,60 1,61 ΑΡΙΘΜΟΣ ΠΑΙΔΙΩΝ ΥΨΟΣ ΣΕ ΕΚΑΤΟΣΤΑ Τι αριθμούς χρησιμοποίησαν για να καταγράψουν τις μετρήσεις τους; Χρησιμοποίησαν φυσικούς αριθμούς. Επαρκούν οι φυσικοί αριθμοί για να εκφράσουμε μετρήσεις; Όχι, δεν επαρκούν. Μπορείς να συμπληρώσεις την τελευταία σειρά του πίνακα; Ναι. Τι αριθμούς χρησιμοποίησες; Γιατί; Χρησιμοποιήσαμε ακέραιους αριθμούς, γιατί 1 μέτρο = 0 εκατοστά. Δραστηριότητα 2η Δεκαδικοί αριθμοί Άσκηση 1: Να γράψεις με δεκαδικό αριθμό τα παρακάτω: α) τέσσερα εκατοστά: 0,04 β) εξήντα πέντε χιλιοστά: 0,065 γ) τριακόσια εβδομήντα εννιά χιλιοστά: 0,379 δ) σαράντα κόμμα δύο: 40,2 ε) ένα κόμμα ογδόντα ένα: 1,81 Άσκηση 2: Να γράψεις την αξία του ψηφίου 3 στους παρακάτω αριθμούς: 123,041: 3 μονάδες 3000,09: 3 μονάδες χιλιάδων 0,36: 3 δέκατα 18,293: 3 χιλιοστά 169,93: 3 εκατοστά 20,3: 3 δέκατα Άσκηση 3: Να γράψεις τους παρακάτω αριθμούς καταργώντας το μηδέν εκεί που δεν επηρεάζει την αξία του αριθμού: 1,650 μέτρα: 1,65 μέτρα 2800,50 : 2800,5 18,300 : 18,3 06,900 κιλά: 6,9 κιλά 2,080 κιλά: 2,08 κιλά 30,090 χιλιόμετρα: 30,09 χιλιόμετρα Άσκηση 4: Παρατηρώντας την αριθμογραμμή να αντιστοιχίσεις τον κατάλληλο αριθμό στο κατάλληλο γράμμα. Α: 0,8 Β: 2,2 Γ: 4,3 Δ: 6,8 Συμπλήρωσε στο σχήμα τι δηλώνουν οι αριθμοί 0, 6 και 5 στο δεκαδικό μέρος. Πρόβλημα 1ο Εκατοντάδες Δεκάδες Μονάδες δέκατα εκατοστά χιλιοστά 8 4, α) Οι 5 χάρακες έχουν μήκος: 5 30 = 150 εκατοστά. β) Το ύψος του Άλκη είναι: = 161 εκατοστά. Αν το εκφράσουμε με δεκαδικό αριθμό, το ύψος του είναι 1,61 μέτρα. Προσπαθήστε τώρα να εκφράσετε το αποτέλεσμα της ζύγισης με λόγια. Το αποτέλεσμα της ζύγισης είναι: Oγδόντα τέσσερα κιλά και εξήντα πέντε γραμμάρια. Πρόβλημα 2ο α) Ο ταμίας εισέπραξε από την πώληση των ημερολογίων 25 3,2 = 80. β) Το ποσό είναι δυνατό να αποτελείται μόνο από χαρτονομίσματα. Ερωτήσεις για αυτοέλεγχο και συζήτηση α) Λ, β) Σ, γ) Λ (Το 1 δέκατο είναι 0,1. Τα χιλιοστά είναι 0,0.) 12 13

8 1η Θεματική Ενότητα Αριθμοί και πράξεις Δραστηριότητα με προεκτάσεις: «Μέγεθος και αξία χαρτονομισμάτων» Υπάρχει σχέση ανάμεσα στο μέγεθος και την αξία των χαρτονομισμάτων; Ναι. Όσο μεγαλύτερη είναι η αξία ενός χαρτονομίσματος τόσο μεγαλύτερο είναι και το σχήμα του. Κεφάλαιο 3ο Δραστηριότητα 1η Μετατροπή δεκαδικών σε κλάσματα και αντίστροφα Θέματα για διερεύνηση και συζήτηση Γνήσια και πλαστά προϊόντα στην οικονομία, τη μουσική, τις καλές τέχνες. Στην οικονομία: Πλαστά νομίσματα, χαρτονομίσματα, πλαστές επιταγές κ.ά. Στη μουσική: «πειρατικά» CD και DVD. Στις καλές τέχνες: πιστά αντίγραφα έργων τέχνης κ.ά. Όλα αυτά έχουν ως σκοπό τους το παράνομο κέρδος και την εξαπάτηση. Υπήρχαν στην αρχαιότητα πλαστά νομίσματα; Γιατί; Αν και στην αρχαιότητα ήταν πιο δύσκολο να κατασκευαστούν πλαστά νομίσματα, το φαινόμενο αυτό δεν έπαυε να υπάρχει. Τέτοια «κίβδηλα» νομίσματα είχαν όπως και σήμερα σκοπό το κέρδος. Τι σημαίνει «προστασία πνευματικών δικαιωμάτων»; Τι δηλώνει το σήμα ; «Προστασία πνευματικών δικαιωμάτων» σημαίνει ότι οι νόμοι και οι αρμόδιες αρχές διασφαλίζουν τα δικαιώματα των δημιουργών προστατεύοντάς τους από την παράνομη αντιγραφή των έργων τους. Το σήμα δηλώνει τη γνησιότητα ενός προϊόντος. Αφού τα αριθμητικά δεδομένα είναι διαφορετικής μορφής, τι πρέπει να κάνουν τα παιδιά για να υπολογίσουν πόσο απέχει το Δίον από το σχολείο τους; Τα παιδιά πρέπει να μετατρέψουν τα αριθμητικά δεδομένα στην ίδια μορφή: 3 = 0,3 χμ. Επομένως το Δίον απέχει από το σχολείο τους: 253,5 + 0,3 = 253,8 χμ. Δραστηριότητα 2η Τοποθετήστε τα κλάσματα των ενδείξεων του δοσομετρητή στην παρακάτω αριθμογραμμή ,2 0,5 0,7 1 Διατυπώστε έναν κανόνα για τη μετατροπή δεκαδικών αριθμών σε δεκαδικά κλάσματα. Για να μετατρέψουμε ένα δεκαδικό αριθμό σε δεκαδικό κλάσμα, γράφουμε: α) στη θέση του αριθμητή το δεκαδικό αριθμό ολόκληρο χωρίς την υποδιαστολή και β) στη θέση του παρoνομαστή το 1 με τόσα μηδενικά όσα είναι τα δεκαδικά ψηφία του συγκεκριμένου αριθμού. Εφαρμογή 1η 245 Πώς θα γραφεί ως κλάσμα ο δεκαδικός αριθμός δύο και σαράντα πέντε εκατοστά;. 0 Εφαρμογή 2η 25 = 0,25. Επομένως, θα προκύψει ο αριθμός: 55,70 0,25 = 55,45. 0 Ερωτήσεις για αυτοέλεγχο και συζήτηση α) Σ, β) Λ (Αν είναι εκατοστά, θα βάλουμε παρονομαστή το 0, αν είναι χιλιοστά, το 00 κ.ο.κ.) 14 15

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά Mαρία Πριοβόλου Οδηγός προετοιμασίας για τα Πρότυπα Πειραματικά Γυμνάσια Μαθηματικά Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Ε Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Ε Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις αθηματικά ημοτικού ΚΟΣΙΣ ΠΑΠΑΟΠΟΥΛΟΣ Περιεχόμενα νότητα Κεφάλαιο Υπενθύμιση Τάξης... 5 Κεφάλαιο 2 Υπενθύμιση Οι αριθμοί μέχρι το.000.000... 8 Κεφάλαιο 3 Οι αριθμοί

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Γ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 01, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Παρουσίαση Λογισμικού: Κατερίνα Αραμπατζή Προμηθευτής: Postscriptum Advanced Communication

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

C Y M B ȦIJȠıIJȠȚȤİȚȠșİıȓĮ Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ %ȚȕȜȚȠʌȦȜİȓȠ (.ǻ2ȉ(,ȉ =+7+ ĭȧijƞıijƞțȥițƞșiıȓį Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ

C Y M B ȦIJȠıIJȠȚȤİȚȠșİıȓĮ Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ %ȚȕȜȚȠʌȦȜİȓȠ (.ǻ2ȉ(,ȉ =+7+ ĭȧijƞıijƞțȥițƞșiıȓį Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ ΘΕΣΣΑΛΟΝΙΚΗ www.ziti.gr www.ziti.gr Πρόλογος Το βιβλίο αυτό αποτελεί μια υπεύθυνη και εμπεριστατωμένη προσέγγιση της ύλης των δύο τελευταίων τάξεων Εʹ και Στʹ του Δημοτικού σχολείου, στα βασικά μαθήματα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ ÅÕÁÃÃÅËIÁ ÄÅÓYÐÑÇ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ Â Äçìïôéêïý ÅÊÄÏÓÅÉÓ ÐÁÐÁÄÏÐÏÕËÏÓ Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό Ευαγγελία Δεσύπρη, Φύλλα εργασίας για τα Μαθηματικά Β Δημοτικού Υπεύθυνη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Ανακεφαλαίωση ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ: 1, 2,,, Άρτιοι αριθμοί είναι οι φυσικοί

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Γ Δ η μ ο τ ι κ ο ύ 1 ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Μαθαίνω... Τριψήφιοι λέγονται οι αριθμοί που έχουν τρία ψηφία. Οι τριψήφιοι αριθμοί αποτελούνται από Εκατοντάδες (Ε), Δεκάδες (Δ) και Μονάδες

Διαβάστε περισσότερα

Πρόσθεση και αφαίρεση κλασμάτων

Πρόσθεση και αφαίρεση κλασμάτων Πρόσθεση και αφαίρεση κλασμάτων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Γνωρίζω μέχρι τώρα Στην πρόσθεση, οι προσθετέοι και το άθροισμα είναι ομοειδείς αριθμοί. Π.χ 8 κεράσια + 6 κεράσια = κεράσια

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Πηγή: e-selides 1. Βρίσκω και γράφω τα γινόμενα: 4Χ8= 3Χ8= 4Χ9= 3Χ9= 2Χ8= 8Χ8= 6Χ8= 8Χ9= 6Χ9= 2Χ9=

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς: Λύνω τις ασκήσεις 1. Γράφω δίπλα με ψηφία τους παρακάτω αριθμούς: Εκατόν ενενήντα εννέα:.. Τριακόσια ένα: Τετρακόσια πενήντα οκτώ:... Πεντακόσια εννέα:.. Οχτακόσια ογδόντα οκτώ:.... Εννιακόσια δύο: Εννιακόσια

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Πηγή: e-selides 1. Μετρώ από το 1.000 μέχρι το 2.000 ανά 100: 1.000, 1.100. 2. Γράφω με

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò

ÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò ÊåöÜëáéï 1 ï Öõóéêïß êáé Äåêáäéêïß áñéèìïß âéâëéïììüèçìá 1: -Öõóéêïß áñéèìïß -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí âéâëéïììüèçìá : -Ç Ýííïéá ôçò ìåôáâëçôþò -Ç Ýííïéá

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Δείκτες Επιτυχίας Επίπεδο Δραστηριοτήτων Δείκτες Επάρκειας Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ÓfiÙËÙ ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô Ì Ì È: ÀappleÂÓı ÌÈÛË ã T ÍË È Ó ÂappleÈÏ ÛÔ ÌÂ Ó appleúfi ÏËÌ, ÙÔ È Ô ÌÂ appleúôûâîùèî ÒÛÙÂ Ó Î Ù ÓÔ ÛÔ - ÌÂ ÙÈ appleïëúôêôú

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Mαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Στρογγυλοποίηση. Βασικές ασκήσεις Βασική θεωρία. Δεκαδικό ανάπτυγμα φυσικού αριθμού - Δεκαδική τάξη ψηφίων 1.1 Δίνεται ο αριθμός 23.586.504.

Στρογγυλοποίηση. Βασικές ασκήσεις Βασική θεωρία. Δεκαδικό ανάπτυγμα φυσικού αριθμού - Δεκαδική τάξη ψηφίων 1.1 Δίνεται ο αριθμός 23.586.504. 1 1 Φυσικοί αριθμοί Διάταξη Στρογγυλοποίηση Δεκαδικό ανάπτυγμα φυσικού αριθμού - Δεκαδική τάξη ψηφίων 1.1 Δίνεται ο αριθμός 23.586.504. α) Τι δηλώνει κάθε ψηφίο αυτού του αριθμού ανάλογα με τη θέση του;

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Μετρήσεις. Απόστασης ( μήκος, πλάτος, ύψος )

Μετρήσεις. Απόστασης ( μήκος, πλάτος, ύψος ) Μετρήσεις Απόστασης ( μήκος, πλάτος, ύψος ) Την απόσταση την μετράμε με το μέτρο και μπορούμε να την εκφράζουμε και σε δέκατα, εκατοστά, χιλιοστά και για μεγάλες αποστάσεις χρησιμοποιούμε το χιλιόμετρο.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Ακολουθιακή ομή

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Ακολουθιακή ομή ΑΔ.1 Να αναπτυχθεί αλγόριθμος που θα διαβάζει την ημερομηνία γέννησης (ημέρα, μήνας, χρόνος) καθώς και την τρέχουσα ημερομηνία,και θα υπολογίζει την ηλικία του. Για να λύσουμε την άσκηση θα υπολογίσουμε

Διαβάστε περισσότερα

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

Άρθρο 4 ΜΕΤΟΧΙΚΟ ΚΕΦΑΛΑΙΟ

Άρθρο 4 ΜΕΤΟΧΙΚΟ ΚΕΦΑΛΑΙΟ Σε συνέχεια προηγούμενων εισηγήσεών του, το Διοικητικό Συμβούλιο της Εταιρείας με την επωνυμία Ξενοδοχειακαί Τουριστικαί Οικοδομικαί και Λατομικαί Επιχειρήσεις Ο ΚΕΚΡΟΨ Α.Ε. προτείνει την τροποποίηση του

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ ΕΥΑΓΓΕΛIΑ ΔΕΣYΠΡΗ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ A Äçìïôéêïý ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Ευαγγελία Δεσύπρη Φύλλα εργασίας για τα Μαθηματικά Ά Δημοτικού Υπεύθυνη

Διαβάστε περισσότερα

Προϋποθέσεις Διδασκαλίας & Μάθησης

Προϋποθέσεις Διδασκαλίας & Μάθησης Νέα Αναλυτικά Προγράμματα Μαθηματικών Επιμόρφωση Μάχιμων Εκπαιδευτικών 2 η συνάντηση εκέμβριος 2010 Κωνσταντίνος Χρίστου Δήμητρα Πίττα ΠανταζήΠανταζή Ρίτα Παναούρα Μάριος Πιττάλης Προϋποθέσεις Διδασκαλίας

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα