Applicable Analysis and Discrete Mathematics available online at Roman Witu la, Damian S lota

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Applicable Analysis and Discrete Mathematics available online at Roman Witu la, Damian S lota"

Transcript

1 Applicable Analysis Discrete Mathematics available online at Appl. Anal. Discrete Math , doi: /aadm w δ-ibonacci NUMBERS Roman Witu la, Damian S lota The scope of the paper is the definition discussion of the polynomial generalizations of the ibonacci numbers called here δ-ibonacci numbers. Many special identities interesting relations for these new numbers are presented. Also, different connections between δ-ibonacci numbers ibonacci Lucas numbers are proven in this paper. 1. INTRODUCTION Rabinowitz in [9] Grzymkowski Witu la in [4] independently discovered studied the following two identities: ξ + ξ 4 n n+1 + n ξ + ξ ξ 2 + ξ 3 n n+1 + n ξ 2 + ξ 3, where n, n N denotes the ibonacci numbers see, for example [7] ξ C, ξ 1, ξ 1. Corresponding to these identities, many classical identities relations for ibonacci Lucas numbers could be proved in a new elegant way see for example [12]. In this paper we generalize the identities to the following forms: δξ + ξ 4 n an δ + b n δξ + ξ δξ 2 + ξ 3 n an δ + b n δξ 2 + ξ Mathematics Subject Classification. 11B39, 11B83, 11A07, 39A10. Keywords Phrases. ibonacci numbers, Lucas numbers. 310

2 δ-ibonacci numbers 311 for δ C, n N. Simultaneously with these new identities, we introduce the polynomials a n δ, b n δ Z[δ], which by , can be treated as the generalization of the ibonacci numbers, therefore, which are called here the δ-ibonacci numbers. The scope of this paper is to investigate basic properties of these new kinds of numbers. or example, Binet s formulae for δ-ibonacci numbers formulae connecting a n δ b n δ, n N, with ibonacci Lucas numbers are presented. It is important to emphasize that our δ-ibonacci numbers belong to the family of the so called quasi-ibonacci numbers of k-th, δ-as orders for k 2N 1, δ C. These numbers are, by definition, the elements of the following sequences of polynomials: {a n,i δ} n N Z[δ], δ C, i 1, 2,..., 1 2 ϕk, where ϕ is the Euler s totient function. If k is an odd prime number, then the quasi-ibonacci numbers of k-th, δ-as order are determined by the following identities: δ ξ l + ξ k l k 3/2 n an,1 δ + a n,i+1 δ ξ i l + ξ ik l, i1 for l 1, 2,..., k 1/2, n N where ξ : exp2 π i/k. More information general definitions of the quasi-ibonacci numbers are given in papers [12, 14]. We note that δ-ibonacci numbers, are the simplest members of the family of the quasi-ibonacci numbers of k-th, δ-as order. Moreover, in paper [12] [4] the basic properties of the quasi-ibonacci numbers of the 7-th, δ-as 11- th, δ-as order, respectively, are presented. In paper [14], which is a continuation of paper [12], the applications of the quasi-ibonacci numbers of the 7-th, δ-as order to the decomposition of some polynomials of the third degree are studied. They make it possible to generate new Ramanujan-type trigonometric identities! Remark 1.1. Most identities relations discussed in the paper are proved by an immediate application of identities The use of Binet s formulae for δ- ibonacci numbers which were proved in Section 4 is restricted in this paper only to some cases. By doing so, we want to promote an alternative, more creative method of generating verifying the identities for δ-ibonacci numbers. Our paper is divided into seven sections. In the second section, the definitions notations are given. In the third section, the basic formulae properties of δ-ibonacci numbers are derived. In the fourth section of the paper, the Binet formulae for δ-ibonacci numbers are proven. The relationships between δ-ibonacci numbers for different values of δ s are studied in the fifth section of the paper. In the sixth section, the reduction formulae for indices are given. Some summation convolution type formulae for δ-ibonacci numbers are derived in the last section of the paper.

3 312 Roman Witu la, Damian S lota 2. DEINITIONS AND NOTATIONS Let ξ expi2π/. Let us start with the following basic result: Lemma 2.1. a Any two among the following numbers: 1, β : ξ + ξ 4 2 cos 2π 1, α : ξ 2 + ξ 3 2 cos π are linearly independent over Q. Moreover, we have [6, 7]: α + β α β 1, α 2 α + 1 β 2 β + 1. b Let f k Q[δ] g k Q[δ], k 1, 2. Then, for any a, b R linearly independent over Q, if f 1 δa + g 1 δb f 2 δa + g 2 δb, for δ Q then f 1 δ f 2 δ g 1 δ g 2 δ, for δ C. Now, let us set δξ + ξ 4 n an δ + b n δξ + ξ 4 for δ C, n N. Then by Lemma 2.1 the following recurrence relations hold true: a 0 δ 1, b 0 δ 0, 2.2 a n+1 δ a n δ + δb n δ, 2.3 b n+1 δ δa n δ + 1 δb n δ, or 2.4 [ an+1 δ b n+1 δ ] [ 1 δ δ 1 δ ] [ an δ b n δ ]. The elements of sequences {a n δ} {b n δ} will be called the δ-ibonacci numbers. Table 1: The most important cases for Axxxxxx see [10] δ 2 1 1/2 2/3 1 2 a n δ A01448 A n 2n+1 3 n 3n+1 n+1 n/2 b n δ 3n 2n 2 n 2n 3 n 3n n 1 1 n n/2

4 δ-ibonacci numbers 313 Remark 2.2. We note that, also by Lemma 2.1, the following identity holds: δ ξ 2 + ξ 3 n a nδ + b nδξ 2 + ξ 3. Hence, by 2.1 we get the identity: δ ξ + ξ 4 n δ ξ 2 + ξ 3 n 2 a nδ b nδ : A nδ. The new auxiliary sequence {A nδ} shall be used in many applications of numbers {a nδ} {b nδ}, especially for the decomposition of certain polynomials. Remark 2.3. Let us highlight that from definition the previously mentioned fact can be inferred that a nδ, b nδ Z[δ], n 0,1, 2,... Thus, in view of Lemma 2.1, it may be concluded that, if i, G i Q[x 0, x 1,..., x 2n+1], i 1, 2, 1 [ a0δ,a 1δ,...,a nδ, b 0δ, b 1δ,..., b nδ ] for δ Q, then + ξ + ξ 4 2 [ a0δ, a 1δ,..., a nδ,b 0δ, b 1δ,..., b nδ ] G 1 [ a0δ, a 1δ,..., a nδ,b 0δ, b 1δ,..., b nδ ] + ξ + ξ 4 G 2 [ a0δ, a 1δ,..., a nδ,b 0δ, b 1δ,..., b nδ ], i [ a0δ,...,b nδ ] G i [ a0δ,..., b nδ ], for every i 1,2 δ R. A similar fact holds when ξ + ξ 4 is replace by ξ 2 + ξ 3. The two facts discussed above referred to as reduction rules, constitute a principal technical trick used almost throughout our paper. Once again, it should be emphasized that this method of proving the identities for elements of recurrence sequences practically has not been used in the literature. It is our hope that this paper shall contribute to the popularization of this method, because of its clarity ease of operation in contrast to the generating functions based method Binet s formulae based method. 3. BASIC ORMULAE AND PROPERTIES Lemma 3.1. The following relations hold: a b n 0 0, 3.1 a n 2 n/2, b 2n 2 0, b 2n n b 2 δ b 2n δ. b We have for the proof see Corollary 6.3 : 3.2 n k+1 a n c k kn+1 k+1 n b k n kn. k+1 k b n+1 δ b n δ δ a n δ b n δ ;

5 314 Roman Witu la, Damian S lota 3.4 a n+k δ a k δa n δ + b k δb n δ; 3. b n+k δ b k δa n δ + [ a k δ b k δ ] b n δ; 3.6 a n+1 δ b n+1 δ [ a 2 δ b 2 δ ] a n 1 δ b n 1 δ + b 2 δb n 1 δ 3.7 [ 1 δ 2 + δ 2] a n 1 δ b n 1 δ + δ2 δb n 1 δ 3.8 δb n+1 δ 1 δa n+1 δ + δ 2 + δ 1a n δ. d The recurrence formulae for elements of {a n δ}-as {b n δ}-as: 3.9 a n+2 δ + δ 2a n+1 δ + 1 δ δ 2 a n δ b n+2 δ + δ 2b n+1 δ + 1 δ δ 2 b n δ 0. e or a, b, c, d C, c + dξ + ξ 4 0 d 2 c 2 + cd 0 : 3.11 a + bξ + ξ 4 bd + ad ac c + dξ + ξ 4 d 2 c 2 + cd + ad bc d 2 c 2 + cd ξ + ξ4. Proof. a We have So, by 2.4 we get: [ a2n+1 2 b 2n+1 2 [ ] [ a2n 2 b 2n 2 [ ] ] 2 [ ] 2n [ a1 2 b 1 2 [ n 1 a 2 2 n 1 b 2 2 ]. ] [ ] [ n 0 Since b 2 δ δ 2 δ, we have b 2 δ b 2n δ b 2n 0 b 2n 2 0. c Identity 3.3 follows from 2.3. or the proof of first, we note that: ] n 2 n, ] δ ξ + ξ 4 m+n am+n δ + b m+n δξ + ξ 4. Next, the following decomposition could be generated: δ ξ + ξ 4 m+n 1 + δ ξ + ξ 4 m 1 + δ ξ + ξ 4 n

6 δ-ibonacci numbers 31 a m δ + b m δξ + ξ 4 a n δ + b n δξ + ξ 4 a m δa n δ + b m δb n δ + a m δb n δ + a n δb m δ b m δb n δ ξ + ξ 4. Comparing 3.12 with 3.13 we see that by reduction rules, identities hold. Identity 3.7 is derived from Next, by again, we get: δb n+1 δ δ 2 a n δ + 1 δδb n δ δ 2 a n δ + 1 δ a n+1 δ a n δ which implies 3.8. d By we obtain: a n+2 δ a n+1 δ 1 δa n+1 δ + δ 2 + δ 1a n δ, which implies 3.9. On the other h, by 3.3 we obtain: b n+2 δ + δ 2b n+1 δ + 1 δ δ 2 b n δ b n+2 δ b n+1 δ + δ 1 b n+1 δ b n δ δ 2 b n δ δ a n+1 δ b n+1 δ + δ 1δ a n δ b n δ δ 2 b n δ δ [ a n+1 δ a n δ δb n δ + δa n δ + 1 δb n δ b n+1 δ ], which is equal to zero, by again. The δ-ibonacci numbers are described in an explicit form in the following: Theorem 3.2. The following decompositions hold k+1 k + k 1, k Z; 3.14 a n δ 3.1 b n δ k1 n k k 1 δ k n k 1 k 1 k δ k. see also.6.7 where alternative formulae are given. Proof. Both formulae follow from Corollary 3.3. We have: 3.16 A n δ where L k denotes the k-th Lucas number. n k δ k L k,

7 316 Roman Witu la, Damian S lota Remark 3.4. The following formulae could easily be derived: a nδ nb n 1δ, b nδ n a n 1δ b n 1δ, bnδ n1 δ δ2 n 1 a. nδ 2 anδ Hence, the following relations could be deduced: 3.17 a 2nδ > 0; 3.18 b 2δb 2nδ 0, but, b 2nδ 0 b 2δ 0 δ 0 δ 2; 3.19 a 2nδ > b 2nδ; 3.20 b 2n+1δ > b 2nδ for δ > b 2n+1δ < b 2nδ for δ < 0; 3.22 a n+1δ > a nδ > 0 for δ < 0; 3.23 δb 2n+1δ 0, but b 2n+1δ 0 δ 0; [ ] a 2n+1δ > 0 for δ, BINET ORMULAE OR δ-ibonacci NUMBERS The characteristic equation of recurrence formulae has the following decomposition: 4.1 X 2 + δ 2 X + 1 δ δ 2 X 1 + δ 1 X 1 + δ π π X 1 2 δ cos X δ cos. Hence, the following two identities follow: Theorem 4.1 Binet formulae for a n δ-as b n δ-as. We have: 4.2 a n δ + 10 n 2 δ + δ + 2 δ δ n 2 δ + δ 2 δ δ 4.3 b n δ 2 2 for every n 1, 2,.... n n

8 δ-ibonacci numbers 317 Corollary 4.2. Using formulae the following identities can be generated: a n δ + 2 b n δ n 2 δ + δ + 1, b n δ 1a n δ 1 n 2 δ δ. 2 The next identity is derived by multiplying : 4.6 b 2 n δ a 2 n δ + a n δb n δ 1 δ δ 2 n. urthermore from we get: 4.7 a 2 n δ + b 2 n δ a 2nδ, 4.8 a n δb n δ a 2n δ + 2 b 2n δ 1 δ δ 2 n. Corollary 4.3. We have: 4.9 a n k δa n+k δ a 2 n δ b 2 n δ b n kδb n+k δ bk 2 δ1 δ δ 2 n k the Catalan s-type formula, { δ 2 1 δ δ 2 n 1 for k 1 the Simson s-type formula, δ 2 δ 2 δ + 1 δ δ 2 n 2 for k 2. urthermore, the Tagiuri s-type formula [3] holds: a n+k δa n+l δ a n δa n+k+l δ b n δb n+k+l δ b n+k δb n+l δ Moreover, we note that the following expression: 1 δ δ 2 n b k δb l δ. a n 2 δa n 1 δa n+1 δa n+2 δ a 4 n δ is independent from an 2 δ iff δ 0 or δ 1. or δ 1 we get the Gelin-Cesáro identity see [3,, 8]: n 2 n 1 n+1 n+2 4 n 1. Proof. Let us set x n δ r u n + s v n, n N. Then, we obtain: x 2 n δ x n kδx n+k δ r s u k v k 2 u v n 1. Hence, using the formula 4.9 follows.

9 318 Roman Witu la, Damian S lota Corollary 4.4. We have: 4.10 a 2 n δ 3 a 2n δ + b 2n δ δ δ 2 n, 4.11 b 2 n δ 2 a 2n δ b 2n δ 2 1 δ δ 2 n, 4.12 a 3 n δ 2 a 3n δ + b 3n δ δ δ 2 n a n δ, 4.13 bn 3 δ b 3n δ 3 1 δ δ 2 n b n δ, k 4.14 k bn 2k 2k 1 l l 1 δ δ 2 ln 2a 2k ln b 2k ln. l0 Remark 4.. rom 3.14 Corollaries the following identities for every 0 m 2n can be derived: m n k n m k k 1 m k 1 m n k m n k m n k m n k n m k k m k n L m k k L m k n m k k 1 L m k n m k k L m k 2 n L m m m m! 2 n L m m 2 1m m! 2 n L m m + 2 1m m! 2 n m 1 + 1m m m! 2 n m. m d m dδ m 1 δ δ2 n δ0, d m dδ m 1 δ δ2 n δ0, d m dδ m 1 δ δ2 n δ0, d m dδ m 1 δ δ2 n δ0, Also, see papers [1, 2] for interesting recurrence relations for the coefficients of polynomials 1 + δ + δ 2 n, n N.. THE RELATIONSHIP BETWEEN δ-ibonacci NUMBERS OR DIERENT VALUES O δ s Let us start with the following fundamental formulae, which make it possible to define numbers a n δ b n δ by a given a n b n with δ. Theorem.1. The following identities hold: δ.1 ζ n a n ζ δ.2 ζ n b n ζ n k ζ 1 n k a k δ n k ζ 1 n k b k δ

10 δ-ibonacci numbers 319 for ζ 1 ζ 0 δ 0. Proof. By 2.1 we have for ζ 0:.3 ζ + δξ + ξ 4 n ζ n 1 + δ n δ δ ζ ξ + ξ4 ζ n a n + ζ n b n ξ + ξ 4. ζ ζ On the other h, we obtain: ζ + δξ + ξ 4 n ζ δξ + ξ 4 n.4 n k ζ 1 n k 1 + δξ + ξ 4 k n k ζ 1 n k a k δ + n n ζ 1 k n k b k δ ξ + ξ 4. Using.3,.4 the reduction rules identities.1.2 follow. Corollary.2. or ζ 2, δ 2 we obtain a new identity as it seems :. 2 n 2n r Corollary.3. or δ 1 ζ 1/η we get:.6 a n η.7 b n η n k 3k r, for every r Z. n k 1 η n k η k k+1 n k 1 η n k η k k. Hence, for η 1, the following two known formulae follow: 2n 1 2 n n n k 1 2 kk+1, 2n 2 n n n k 1 2 kk. Remark.4. Comparing formulae.6.7 with formulae respectively, two new interesting identities can be observed:.8.9 n k 1 η n k η k k+1 n k 1 η n k η k k n k η k k 1, n k η k k,

11 320 Roman Witu la, Damian S lota i.e.,.10 0 n [1 η n k + 1 k] η k k k. Theorem.. The following four identities hold: 1.11 a n δ n+1 + b n δ n 1 + δ n a n 1 + δ.12 a n δ n + b n δ n δ n b n δ.13 n+1 a n δ n+2 b n δ 1 2 δ n a n 1 δ 1 2δ 1 δ.14 n a n δ n+1 b n δ 1 2 δ n b n. 1 2δ,, Proof. Immediately from the identity δ 1: ξ + ξ δξ + ξ δ δ ξ + ξ4 we obtain: 1 + ξ + ξ 4 n 1 + δξ + ξ 4 n 1 + δ n n, 1 + δ ξ + ξ4 i.e., n+1 + n ξ + ξ 4 a n δ + b n δξ + ξ δ n 1 1 a n + b n 1 + δ 1 + δ a n δ n+1 + b n δ n + a n δ n b n δ n ξ + ξ δ n a n δ ξ + ξ 4, δ n b n δ, by applied the reduction rules identities follow. The following identity can be obtained in a similar way: ξ + ξ δ ξ 2 + ξ δ ξ 2 + ξ 3 + ξ + ξ 4 δ ξ + ξ 4, 1 2 δ + 1 δξ + ξ δ δ 1 2δ ξ + ξ4.

12 δ-ibonacci numbers 321 Raising both sides of the above identity to the n-th power applying 2.1, we obtain: n+1 + n ξ + ξ 4 a n δ + b n δξ 2 + ξ 3 1 δ 1 δ 1 2δ n a n + b n ξ + ξ 4 1 2δ 1 2δ which, after some calculations, yields Theorem.6. We have:.17 a n 1 ε 2 1 ε n 1 1 a n εa n + b n εb n, 1 ε 1 ε.18 b n 1 ε 2 1 ε n a n εb n +a n b n ε b n εb n, 1 ε 1 ε 1 ε.19 1 ε ε δ n ε δ a n a n δa n ε a n δb n ε b n δb n ε, ε δ + ε ε ε δ n b n ε δ a n εb n δ a n δb n ε. ε δ + ε 1 Proof. Immediately from identity: ε 2 ξ + ξ ε ξ + ξ 4 1 ε + ξ + ξ 4, we obtain: a n 1 ε 2 + b n 1 ε 2 ξ + ξ 4 1 ε n a n ε + b n εξ + ξ a n + b n ξ + ξ 4, 1 ε 1 ε which, after easy calculations implies Next, we note that 1 + µ ξ + ξ 4 n 1 + δ ξ 2 + ξ 3 n 1 δ µ δ + µ δξ + ξ 4 n 1 δ µ δ n a n On the other h, we get: 1 + µ ξ + ξ 4 n 1 + δ ξ 2 + ξ 3 n µ δ µ δ + b n ξ + ξ 4. 1 δ µ δ 1 δ µ δ a n µ + b n µξ + ξ 4 n an δ + b n δξ 2 + ξ 3 n a n µa n δ b n µb n δ a n µb n δ + a n δb n µ a n µb n δ ξ + ξ 4. Comparing both of these decompositions by the reduction rules formulae can be deduced.

13 322 Roman Witu la, Damian S lota 6. REDUCTION ORMULAE OR INDICES Theorem 6.1 The following reduction formulae for indices hold: a ormulae from Section 3; b a mδ + b m δ a m δ a n δ b n δ 6.1 a m n δ a nδ + b n δ a n δ a n δ b n δ a mδ b m δ a n δ b n δ 6.2 b m n δ a nδ + b n δ a n δ a n δ b n δ ; c 6.3 a m n δ a n bm δ mδa n, a m δ 6.4 b m n δ a n bm δ mδb n, a m δ bmδ bn 6. a m n p δ a np bm δ a mδ m δap n a p, a m δ bmδ a n a mδ bmδ bn 6.6 b m n p δ a np bm δ a mδ m δap n b p. a m δ bmδ a n a mδ Proof. b We have: a m n δ + b m n δξ + ξ δ ξ + ξ 4 m n 1 + δ ξ + ξ 4 m 1 + δ ξ + ξ4 n a mδ + b m δξ + ξ 4 a n δ + b n δξ + ξ 4 formulae b from Lemma 3.1 e follows. c We have: a m n δ + b m n δξ + ξ δ ξ + ξ 4 m n am δ + b m δξ + ξ 4 n a n m δ bm δ bm δ a n + b n ξ + ξ 4, a m δ a m δ

14 δ-ibonacci numbers 323 which yields identities Similarly, identities can be deduced. Corollary 6.2. The following identity holds: 6.7 an δ b n δ a n+k δ b n δb n+k δ 1 δ δ 2 n a k δ. Proof. The identity follows from 3.4, Corollary 6.3. rom we get, for δ 1 : 6.8 mn+1 n m+1 a n m m mn m n m b n m mn mn m bn 6.10 mnp+1 np m m+1 ap n a p m+1 m bn 6.11 mnp m np m ap n b p m+1, next, for δ 1 : mn 1 n 2m 1 a n mn n 2m 1 b n etc. 2m 2m 1 2m 2m 1 m+1, m a n m+1 m+1, m a n m mn mn n k k 1 m k n k m+1, n k 1 k 1 k k m n k m+1, n k k 1 k 2m n k 2m 1, n k k k 2m n k 2m 1, Remark 6.4. All formulae from Corollary 6.3 are simultaneously generalizations variations of the known Church Bicknell s identities [7, p. 238]. Remark 6.. Professor W. Webb asked on the 13th International Conference on ibonacci Numbers Their Applications in Patras july 2008 on closed formulae for the sums N k r, k1 where r is a fixed positive integer. Admittedly, formulae 6.9, 6,11, etc., do not imply such closed formulae, but allow for the reduction the problem to the sum of the powers of the ibonacci numbers with indices not greater than N. or example, we have: 6.14 N k1 k N k1 k k k b k k+1 N k k1 l0 k l 1 l 1 l l k k l k+1,

15 324 Roman Witu la, Damian S lota 6.1 N k1 k N k bk k k2 a k k k b k+1 k k+1 k. a k k+1 k1 Remark 6.6. rom 1.1 we obtain: 1 + ξ + ξ 4 n ξ + ξ 4 n 1 L n+1 + L n ξ + ξ 4, i.e., ξ + ξ ξ + ξ 4 n L n+1 + L n ξ + ξ 4. Hence, by we get: a k 2 + b k 2 ξ + ξ 4 kn+1 + kn ξ + ξ 4 L k n+1 a k Ln L n+1 which, after some manipulations, gives us two new formulae: a k 2 kn+1 + b k 2 kn L k Ln n+1a k L n+1 Ln ξ + b k + ξ 4, L n+1 a k 2 kn + b k 2 kn+1 kn ak 2 kn + b k 2 kn 1 L k Ln n+1b k. L n+1 inally, taking into account equalities 3.1 we obtain: 6.16 k 2kn+1 L 2k Ln n+1 a 2k L n k L 2k+1n+1 L 2k+1 Ln n+1 a 2k+1 L n k 2kn L 2k Ln n+1 b 2k L n+1 2k 2 k r r r 1 Ln L 2k r n+1, r0 2k+1 r0 2k r0 2 k + 1 r r 1 Ln L 2k+1 r n+1, r 1 r 1 2 k r rl r n L 2k r n+1, 2k k L 2kn L 2k+1 Ln n+1 b 2k+1 1 r 1 2 k + 1 L n+1 r r0 rl r n L 2k+1 r n SOME SUMMATION AND CONVOLUTION TYPE ORMULAE Theorem 7.1. a Let µ, δ C N N. Then, we have: 7.1 µ δ + µ 1 µ 1 µ 1 µ δ µ n a n δ

16 δ-ibonacci numbers 32 δ 2 + δ 1µ N+1 a δ + µ N a N δ + µ µ δ µ δ + µ 1 µ 1 µ 1 µ δ µ n b n δ µn a N δ 1 µ N b N δ µ 1 µ δ. In the sequel, we obtain: 7.3 δ 7.4 δ a n δ a N δ + b N δ 1 b n δ a N δ b or every r, N N, we have: a rnδ + b rn δ 1 a rn δ 1 a r δ 1 b r δ a rn δ a rδ + b r δ 1 a r δ 1 a r δ 1 b r δ 7.6 b rn δ a rnδ 1 b rn δ a r δ 1 b r δ a rδ + b r δ 1 a r δ 1 a r δ 1 b r δ. Proof. We have: δ ξ + ξ 4 rn δ ξ + ξ 4 rn δ ξ + ξ 4 r 1 a rnδ b rn δξ + ξ 4 1 a r δ b r δξ + ξ 4 b rδ b rn δ + a rn δ 1 a r δ 1 a rn δ 1 br 2δ 1 a r δ 2 + br δ a r δ 1 + b rδ a rn δ 1 b rn δ a r δ 1 br 2 δ 1 a r δ 2 + br δ a r δ 1 ξ + ξ

17 326 Roman Witu la, Damian S lota On the other h, we have: 1 + δ ξ + ξ 4 r n arn δ + b rn δξ + ξ 4 a rn δ + ξ + ξ 4 b rn δ, which, by 7.7, implies Theorem 7.2. Let µ, δ, ω C k, l, N N. Then, we have: a 2 N 1 N N an a N 2 µ + δ µa n N n δ + b n µb N n δ, 2 N 1 N N an b N 2 µ + δ µb n N n δ + a N n δb n µ b n µb N n δ ; N b δ a n δa N n δ N + 1δ 3 a N δ + b N δ + 2 b N+1 δ, N δ b n δb N n δ N + 1δ 2 a N δ b N δ 2 b N+1 δ, N δ a n δb N n δ N + 1δ a N δ + 2 b N δ b N+1 δ. c In addition, if ω + a l δ 0, N N ω n N n a n l+k δ ω + a l δ N bl δ a k δa N ω + a l δ N N ω n N n b n l+k δ ω + a l δ N + b k δ a N bl δ + b k δb N ω + a l δ [ a k δb N bl δ ω + a l δ b N bl δ ω + a l δ, ] bl δ. ω + a l δ Proof. c irst, we note that Sδ; ω : 1 + δ ξ + ξ 4 k ω δ ξ + ξ 4 l N a k δ + b k δξ + ξ 4 ω + a l δ + b l δξ + ξ 4 N

18 δ-ibonacci numbers 327 ω + a l δ [ N ak δ + b k δξ + ξ 4 bl δ a N ω + a l δ ] bl δ + b N ξ + ξ 4 ω + a l δ ω + a l δ [ ] N bl δ bl δ a k δa N + b k δb N ω + a l δ ω + a l δ + ω + a l δ [ N bl δ a k δb N ω + a l δ ] bl δ bl δ + b k δ a N b N ξ + ξ 4. ω + a l δ ω + a l δ On the other h, by an application of the binomial formula to Sδ; ω, we get Sδ; ω N N N n ω N n 1 + δ ξ + ξ 4 n l+k N n ω N n a n l+k δ + ξ + ξ 4 N N n ω N n b n l+k δ. Comparing two decompositions of Sδ; ω formulae c follows. Remark 7.3. The formulae c of Lemma 7.2 are, in some sense, the generalizations of the following variations of the de Vries identities see [11], where only the case of ω l 1 is discussed: N N ω N n n nl+i α i ω + α l N β i ω + β l N, N N n ω N n L nl+i α i ω + α l N + β i ω + β l N, where α β in Lemma 2.1 are defined. The proof of can be obtained by an immediate application of the Binet s formula for the ibonacci Lucas numbers. Moreover, from both for δ 1 from we deduce the formulae: l+1 ω 1 + l+1 ω N i a N N L i a N which implies the following relations: l + i 1 b N ω + l+1 ω N α i ω + α l N β i ω + β l N, l ω + l+1 l ω + l+1 + L i 1 b N l ω + l+1 ω N α i ω + α l N + β i ω + β l N,

19 328 Roman Witu la, Damian S lota i ω + l+1 N a N l ω + l+1 i 1 Li 1 α i ω + α ln i 1 ω + l+1 N b N l ω + l+1 i Li α i ω + α ln + i 1 + Li 1 β i ω + β ln, i + Li β i ω + β ln. At the end of this section, two convolution identities will be presented. Theorem 7.4. We have: n k δ n k b k δ n k n k δ n k b k δ n k+1 n k δ n k a k δ n k 1, n k δ n k a k δ n k. inal remarks. As noticed by one of the reviewers, identities have a corresponding form for a general second order recurrence u 0 0, u 1 1, u n+1 Au n +B u n 1, n N. Then we have λ n u n λ+b u n 1 λ n u n λ+b un 1, where λ A + A 2 + 4B /2 λ A A 2 + 4B /2. Acknowledgments. The authors wish to express their gratitude to the Reviewers for several helpful comments concerning the first version of the paper. REERENCES 1. L. Carlitz: Some combinatorial identities. Univ. Beograd. Publ. Elektrotehn. ak. Ser. Mat. iz., , D. M. Cvetković, S. K. Simić: On enumeration of certain types of sequences. Univ. Beograd. Publ. Elektrotehn. ak. Ser. Mat. iz., , S. airgrieve, H. W. Gould: Product difference ibonacci identities of Simson, Gelin-Cesaro, Tagiuri generalizations. ibonacci Quart., R. Grzymkowski, R. Witu la: Calculus Methods in Algebra, Part One. WPKJS, Gliwice, 2000 in Polish.. A.. Horadam, A. G. Shannon: Generalization of identities of Catalan others. Port. Math., R. Knott: ibonacci golden ratio formulae T. Koshy: ibonacci Lucas Numbers with Application. Wiley, New York, J. Morgado: Note on some results of A.. Horadam A. G. Shannon concerning a Catalan s identity on ibonacci numbers. Port. Math.,

20 δ-ibonacci numbers S. Rabinowitz: Algorithmic manipulation of ibonacci identities. In: Applications of ibonacci Numbers, Vol. 6, eds. G. E. Bergum et al. Kluwer, 1996, pp N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences. njas/sequences/, P. C. G. de Vries: Problem 44, Nieuw Arch. Wiskd. 12. R. Witu la, D. S lota, A. Warzyński: Quasi-ibonacci numbers of seventh order. J. Integer Seq., , Article , R. Witu la, D. S lota: New Ramanujan-type formulas quasi-ibonacci numbers of order 7. J. Integer Seq., , Article R. Witu la, D. S lota: Quasi-ibonacci numbers of order 11. J. Integer Seq., , Article 07.8., Institute of Mathematics, Received September 14, 2008 Silesian University of Technology, Revised May 1, 2009 Kaszubska 23, Gliwice, Pol E mail: d.slota@polsl.pl

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Quasi-Fibonacci Numbers of the Seventh Order

Quasi-Fibonacci Numbers of the Seventh Order 1 2 3 4 6 23 11 Journal of Integer Sequences, Vol. 9 2006, Article 06.4.3 Quasi-Fibonacci Numbers of the Seventh Order Roman Witu la, Damian S lota and Adam Warzyńsi Institute of Mathematics Silesian University

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II

Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II International Mathematical Forum,, 008, no., 59-579 Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II Ayşe Alaca, Şaban Alaca Mathieu F. Lemire and Kenneth S. Williams

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα