ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ. 2 Α)Να βρείτε το ω για το οποίο το υπόλοιπο της διαίρεσης του P(x) με το x-ημω είναι ίσο με 2. Β)να λύσετε την εξίσωση Px ( ) (2 )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ. 2 Α)Να βρείτε το ω για το οποίο το υπόλοιπο της διαίρεσης του P(x) με το x-ημω είναι ίσο με 2. Β)να λύσετε την εξίσωση Px ( ) (2 )"

Transcript

1 .Δίνονται οι παραστάσεις: A,B=,Γ=συν i)να δείξετε ότι Α=ημ,Β=σφ,Γ=συν ii)να λύσετε την εξίσωση: Α+Β=log(lne) log iii)να λύσετε την εξίσωση: A00.Δίνεται το πολυώνυμο : P( ) 4, ω, Α)Να βρείτε το ω για το οποίο το υπόλοιπο της διαίρεσης του P() με το -ημω είναι ίσο με. Β)να λύσετε την εξίσωση P ( ) ( ) για την τιμή ω του προηγούμενου ερωτήματος. Γ)Να λύσετε την εξίσωση 6 P() 0 ln.δίνεται η συνάρτηση: f ( ) e a Α)Να εξετάσετε αν η γραφική παράσταση της f διέρχεται από την αρχή των αξόνων. Β)αν ισχύει f (), να βρείτε την τιμή του a Γ)Για α=-ln4 i)να αποδείξετε ότι : f( ) M, να ανήκει ii)να βρείτε τον αριθμό λ ώστε το σημείο στη γραφική παράσταση της f. Δ)να βρείτε το διάστημα στο οποίο η ευθείες y=- και y=6. C f βρίσκεται ανάμεσα στις 4.Δίνεται η συνάρτηση f ( ), Α)να βρείτε τη περίοδο, την μέγιστη και την ελάχιστη τιμή της και να σχεδιάσετε τη γραφική της παράσταση σε διάστημα μιας περιόδου. Β)Να βρείτε τα σημεία τομής της γραφικής παράστασης της f με τους άξονες. Γ)να λύσετε την εξίσωση f ( ) f ( ) στο διάστημα 0, 4 5 Δ)να αποδείξετε ότι f log log f log f log8 4 Efstathioupetros.weebly.com Σελίδα 04

2 Ε)Να βρείτε τα ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ a, για τα οποία το πολυώνυμο P( ) 6 a έχει παράγοντες f και f 4 5. Δίνονται οι παραστάσεις και Β=ημ i)να δείξετε ότι Α=εφα και A ii)να λύσετε την εξίσωση e 0 iii)να λύσετε την εξίσωση 4 6.Δίνεται το πολυώνυμο P( ) 7 a το οποίο έχει παράγοντα το - και το υπόλοιπο της διαίρεσης του με το + είναι -8. Α)Να δείξετε ότι α=7 και β=- Β)Να λύσετε την εξίσωση Γ)Να λύσετε την εξίσωση: Δίνεται η συνάρτηση ( ) log( 4 f 5 ) Α)Να βρείτε το πεδίο ορισμού της f. Β)Να βρείτε τα διαστήματα στα οποία η γραφική παράσταση της f βρίσκεται πάνω από την ευθεία y=log Γ) Να λύσετε στο διάστημα 0, την εξίσωση f 4 f 8. Για τη γωνία, ισχύει ότι 4 Α)Να δείξετε ότι 5 Β)Να βρείτε την τιμή της παράστασης log 00 Γ)Να λύσετε την εξίσωση log log 9.Το πολυώνυμο P( ) log a 5 log log 4 έχει παράγοντα το α)να βρείτε τα α,β β)να λύσετε την εξίσωση P()=0 γ)αν ρ είναι η μικρότερη λύση της εξίσωσης P()=0, να λύσετε την ανίσωση : 00 Efstathioupetros.weebly.com Σελίδα 05

3 0.Δίνεται το πολυώνυμο P( ) 6 7 του οποίου η τιμή για = είναι 0. i)να δείξετε ότι κ=6 ii)να λύσετε την εξίσωση P()=0 iii)να λύσετε την εξίσωση Pe ( ) 0 iv)να λύσετε την εξίσωση P(ln ) 0.Δίνονται οι συναρτήσεις f ( ) και g()=log i)να δείξετε ότι f ( ) ii)να βρείτε το πεδίο ορισμού της g iii)να λύσετε την εξίσωση f ( ) g(9) 0 0,.Θεωρούμε τα πολυώνυμα P( ) a και Q()=α όπου α>0, τα οποία είναι ίσα. i)να δείξετε ότι α= ii)να αποδείξετε ότι η εξίσωση P()=0 δεν έχει ακ εραιες ρίζες. P( ) P( ) iii)να λύσετε την εξίσωση Δινεται το πολυώνυμο P a οποίο έχει παράγοντα το 8. Α)Να προσδιοριστούν τα α,β Β)Για τις τιμές των α,β που βρήκατε να λύσετε την P()=0. Γ)να λύσετε την εξίσωση P 0 Δ)να λύσετε την ανίσωση P(log ) 0 ( ) log ln 7 6 το 4.Δίνεται το πολυώνυμο P( ) a 6 του οποίου το άθροισμα των συντελεστών είναι ίσο με 0 και ακόμη ισχύει P0 P 0 Α) Να αποδείξετε ότι α=-5 και β=8 Β)Να βρείτε τα διαστήματα στα οποία η γραφική παράσταση του P() βρίσκεται πάνω από την ευθεία y=0 Γ)να βρείτε το υπόλοιπο της διαίρεσης του P() με το e ln(log5 log40) Efstathioupetros.weebly.com Σελίδα 06

4 4y 5.Δίνεται το σύστημα λ. Έστω ότι 5 ( ) y (,y)=(α,β) είναι η λύση του συστήματος για λ=. Α)Να λύσετε το σύστημα για τις διάφορε τιμές του πραγματικού λ. β)να αποδείξετε ότι,, γ)να εξετάσετε αν υπάρχει γωνία φ, τέτοια ώστε ημφ=α και συνφ=β. δ)να λύσετε την ανίσωση e e 0 ε)να λύσετε την εξίσωση : a t t 6. Δίνεται το πολυώνυμο P( ) 7 a α,β. Το P() όταν διαιρείται με το πολυώνυμο δίνει πηλίκο 5-5. Α)Να αποδείξετε ότι α= και β= Β)Να λύσετε την ανίσωση P()<0 Γ)Να λύσετε την εξίσωση P 0 7.Δίνονται τα πολυώνυμα P a a ( ) ln ln ln 6 05 και Q( ) ln α>0 και β 0 τα οποία είναι ίσα. i)να βρείτε τις τιμές των α και β. ii)για α= και β=- να αποδείξετε ότι η γραφική παράσταση του P() βρίσκεται πάνω από τον άξονα των τετμημένων για κάθε 4 8.Δίνεται το πολυώνυμο P( ) ln k 6 a το οποίο είναι ου βαθμού και έχει παράγοντα το 6 Α)Να δείξετε ότι κ=e, α=-5 και β=6 Β)Να λύσετε την εξίσωση P()=0 Γ)Να λύσετε την εξίσωση P(ln)=0 Δ)Να λύσετε την εξίσωση 5 9.Δίνεται η συνάρτηση f( ) ω 0, Να βρείτε τις τιμές του ω για τις οποίες η f είναι α)στεθερή β) γνησίως αύξουσα γ)γνησίως φθίνουσα δ) να λύσετε την εξίσωση f() f() 6 Efstathioupetros.weebly.com Σελίδα 07

5 Δίνεται το πολυώνυμο ( ) P a το οποίο έχει άθροισμα συντελεστών 9 και ο σταθερός όρος είναι 7. Α)να δείξετε ότι α= και β=8 Αν επιπλέον το πολυώνυμο Q( ) 8 0 το οποίο log a διαιρούμενο με το 00 αφήνει υπόλοιπο Β)Να δείξετε ότι λ= Γ)Να λύσετε την ανίσωση P ( ) 0. Δίνεται η συνάρτηση f( ) ln Α) Να βρείτε το πεδίο ορισμού της f Β)Να λύσετε την εξίσωση f()=ln5+ Γ)Να λύσετε την ανίσωση f ( ) ln Δ)Να λύσετε την εξίσωση f( ) ln.έστω η συνάρτηση f( ) ln Α)Να αποδείξετε ότι η f είναι περιττή Β)Να λύσετε την εξίσωση f()=0 στο (-π,π) ln e.δίνεται η συνάρτηση f ( ) 4 και οι αριθμοί ln5 log log44 a00 e και log5 log 4 log Α)Να δείξετε ότι f ( ) και να βρείτε την μέγιστη και την ελάχιστη τιμή, καθώς και την περίοδο της. Β)Να δείξετε ότι α=4 και β= f ( ) a Γ(Να λύσετε την εξίσωση e e e f (06 ) ln a ln 4.Δίνεται η συνάρτηση f( ) ln ln a με <α<β η οποία είναι γνησίως φθίνουσα στο σύνολο των πραγματικών αριθμών. Α)Να συγκρίνετε τους αριθμούς lnα και lnβ. Β)Να αποδείξετε ότι: a Γ)Αν α=6 και β=4, τότε : i)να αποδείξετε ότι: f( ) Efstathioupetros.weebly.com Σελίδα 08

6 ii)να αποδείξετε ότι για κάθε ισχύει η ανισότητα : f f f iii)να λυθεί η εξίσωση : f ( ) f ( ), 5.Δίνεται το πολυώνυμο παράγοντα το +. i) Να δείξετε ότι λ= ii)να λύσετε την ανίσωση P( ) 4 8 το οποίο έχει P ( ) 0 iii)αν π() το πηλίκο της διαίρεσης του P() με το -4, να λύσετε την εξίσωση ( ) 6.Δίνεται το σύστημα Α)Να βρείτε τη λύση y 7 7 y του συστήματος, y 0 0 Β) Η γραφική παράσταση της συνάρτησης f () έχει κορυφή το σημείο 0, y0 i) να βρείτε τους αριθμούς β και γ ii) να λύσετε την ανίσωση f( ) 0 y f ( ) iii)να λύσετε το σύστημα y 6 7.Θεωρούμε το πολυώνυμο P() το οποίο είναι ου βαθμού και η διαίρεση του με το είναι τέλεια. Αν το άθροισμα των συντελεστών του είναι ίσο με και έχει ρίζα το 0,τότε : i)να δείξετε ότι : P() ii)να λύσετε την ανίσωση P( ) P( ) P( ) iii)να λύσετε την εξίσωση ln P ( ) ln 0 iv)να λύσετε την εξίσωση log8 P() 5 y a 8.Δίνεται η συνάρτηση f( ) Α)Να προσδιορίσετε το πεδίο ορισμού της. Β)Αν η γραφική παράσταση της διέρχεται από το σημείο Α(,8) να προσδιορίσετε το α. Γ)Να λυθεί η εξίσωση 4 f ( ) f ( ) f 0 Efstathioupetros.weebly.com Σελίδα 09

7 a 9.Δίνεται η συνάρτηση : f( ) a Α)Να βρείτε για ποιες τιμές του α η συνάρτηση είναι εκθετική συνάρτηση Β) Να βρείτε για ποιες τιμές του α η συνάρτηση είναι γνησίως αύξουσα. Γ)Για α= να λύσετε την ανίσωση f ( ) 8 f ( ) 4 0 Δ)Για α= να λύσετε την εξίσωση ln f ( ) ln( f ( ) 6) 4ln 0.Δίνεται η συνάρτηση f ( ) ln 4 ln 6 Α)Να βρείτε το πεδίο ορισμού Β)Να λύσετε την εξίσωση f( ) 0 Γ)Να λύσετε την ανίσωση f( ) 0.Δίνεται η συνάρτηση f ( ) ln e ln e 5 Α)Να βρείτε το πεδίο ορισμού της f. Β)Να λύσετε την εξίσωση f( ) ln Γ)Να λύσετε την ανίσωση f( ) Δίνεται η συνάρτηση f( ) ln 4 7 Α)Να βρείτε το πεδίο ορισμού της f. Β)Να αποδείξετε ότι η γραφική παράσταση της f διέρχεται από την αρχή των αξόνων. Γ)Να λύσετε την εξίσωση f( ) 0 f ( ) Δ)Να λύσετε την εξίσωση e f log y log.α)να αποδείξετε ότι για κάθε,y>0 ισχύει y Β)Αν,y>0 να λύσετε το σύστημα log y log y 0 log y 4.Δίνεται το πολυώνυμο P( ) log log,κ>0 Α)Να αποδείξετε ότι το χ- είναι παράγοντας του P(). Β)Να βρείτε τις τιμές του κ, ώστε το πολυώνυμο να έχει τρεις πραγματικές ρίζες. Γ)Για κ=0 να λύσετε : i)την ανίσωση P ( ) 0 Efstathioupetros.weebly.com Σελίδα 0

8 ii)την εξίσωση P( ), 0, a 5.Δίνεται η συνάρτηση f( ) 4 a e e e συστήματος: a7 7 9 όπου α,β οι λύσεις του Α)Να δείξετε ότι α= και β=6. Β)Να λύσετε την ανίσωση f( ) 0 5 Γ)Να λύσετε την εξίσωση e 5e f e 0 6.Δίνεται η συνάρτηση f ( ) ln ln Α)Να βρείτε το πεδίο ορισμού της Β)Να λύσετε την εξίσωση f( ) Γ)Να λύσετε την ανίσωση f ( ) f () Δ)Να λύσετε την εξίσωση f () f ( e) 7.Δίνεται η συνάρτηση f ( ) ln(log ) Α)Να βρείτε το πεδίο ορισμού της Β)Να βρείτε το σημείο τομής της γραφικής παράστασης της f με τον άξονα. Γ)Να λύσετε την εξίσωση f( )) 0 Δ)Να λύσετε την εξίσωση 0 f f ( ) f ( ) e 8. Δίνεται η συνάρτηση f ( ) ln e 5e 6 Α)Να βρείτε το πεδίο ορισμού της f. Β)Να λύσετε την ανίσωση f( ) ln Γ)Να λύσετε την εξίσωση f ( ) ln Δ)Να λύσετε το σύστημα ln ln y e y f (ln 4) Efstathioupetros.weebly.com Σελίδα

9 9. Δίνεται η συνάρτηση f ( ) ln a Α)Αν ln 6 ln ln 5 ln i)να αποδείξετε ότι τότε : f f ii)να λύσετε την εξίσωση e e Β)Αν η γραφική παράσταση τέμνει τον άξονα στο σημείο Α(,0) τότε: i)να αποδείξετε ότι α-β=0 ii)να λύσετε την ανίσωση f ( ) ln 6 e ( ) ( ) 4 Efstathioupetros.weebly.com Σελίδα

10 ΒΙΒΛΙΟΓΡΑΦΙΑ. ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΛΥΚΕΙΟΥ Γιάννη Μειντάνη, Εκδόσεις Παπαδημητρόπουλου.ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Γιώργος Μπαραλός, Εκδόσεις Παπαδημητρόπουλου. ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Μπάρλας Αναστάσιος, Εκδόσεις Ελληνοεκδοτική 4.ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Αλέξανδρος Τραγανίτης, Εκδόσεις Σαββάλας 5.ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Γιάννης Βιδάλης, Βασίλης Γκιμιίσης, Εκδόσεις Πατάκη 6.ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Δημήτρης Κεφαλάς, Αντώνης Σπέρτος, Εκδόσεις Πατάκη 7.ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Παπαδάκης Βασίλης, Εκδόσεις Σαββάλας Επίσης από τις παρακάτω ηλεκτρονικές διευθύνσεις: Σε όποιες ακήσεις μπροστά έχει το γράμμα Π σημαίνει ότι οι ασκήσεις αυτές έχουν μπει στις Προαγωγικές εξετάσεις στα Λύκεια της Στερεάς Ελλάδας και είναι στην ηλεκτρονική διεύθυνση : Efstathioupetros.weebly.com Σελίδα

ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ. 2 Α)Να βρείτε το ω για το οποίο το υπόλοιπο της διαίρεσης του P(x) με το x-ημω είναι ίσο με 2. Β)να λύσετε την εξίσωση Px ( ) (2 )

ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ. 2 Α)Να βρείτε το ω για το οποίο το υπόλοιπο της διαίρεσης του P(x) με το x-ημω είναι ίσο με 2. Β)να λύσετε την εξίσωση Px ( ) (2 ) .Δίνονται οι παραστάσεις: A,B=,Γ=συν i)να δείξετε ότι Α=ημ,Β=σφ,Γ=συν ii)να λύσετε την εξίσωση: Α+Β=log(lne) log iii)να λύσετε την εξίσωση: A00.Δίνεται το πολυώνυμο : P( ) 4, ω, Α)Να βρείτε το ω για το

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1 1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1 Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και 1. και. με λ Z,είναι γνησίως αύξουσα στο R. f x και g x. 2 f x y f x f y g x g y.

ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και 1. και. με λ Z,είναι γνησίως αύξουσα στο R. f x και g x. 2 f x y f x f y g x g y. ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Η γραφική παράσταση της συνάρτησης f (),. α) Να βρείτε την τιμή του λ R 5 β) Να βρείτε τις τιμές f και f γ) Να σχεδιάσετε τη γραφική παράσταση της f διέρχεται

Διαβάστε περισσότερα

1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1

1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1 ,, Β,,λ. Δίνονται τα σημεία Β.Αν τα Α,Β είναι συμμετρικά ως προς τον άξονα y y να βρείτε το λ. Β. Βρείτε τις τιμές του λ, ώστε το σημείο Β να βρίσκεται στο ο τεταρτημόριο του ορθοκανονικού συστήματος.

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R 1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση

Διαβάστε περισσότερα

θετικοί αριθμοί, να δείξετε ότι

θετικοί αριθμοί, να δείξετε ότι 1 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ 9 /05/ 01 Προαγωγικές Εξετάσεις Β τάξης Εξεταζόμενο μάθημα : Άλγεβρα Σελίδες : (ΔΥΟ) ΘΕΜΑ 1 ο Α. Αν 0, 1 και, 1 θετικοί αριθμοί, να δείξετε ότι log a 1 log 1 log (15 μονάδες)

Διαβάστε περισσότερα

x 1 δίνει υπόλοιπο 24

x 1 δίνει υπόλοιπο 24 ΓΕΝΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 3. Δίνεται το πολυώνυμο P() 6 α β το οποίο έχει παράγοντα το και όταν διαιρείται με το δίνει υπόλοιπο i. Να δείξετε ότι: α και β 6 ii. Να λύσετε την εξίσωση

Διαβάστε περισσότερα

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. x, τότε ισχύει f(4) f(2). x τότε ισχύει. αν 1.

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. x, τότε ισχύει f(4) f(2). x τότε ισχύει. αν 1. ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 5. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ. Νδο ηµ α Α) = εφα +συνα Β) π συνα εφ α = +ηµ α Γ) ηµ α= ηµ α συνα+ συν α ηµα ) συν α+ηµ α εφα= + εφα εφα Ε) ( + συνα) εφα=ηµ α Ζ) =εφα εφα+σφα. Νδο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή

Διαβάστε περισσότερα

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις) Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές

Διαβάστε περισσότερα

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για 5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς

Διαβάστε περισσότερα

Επανάληψη Συναρτήσεις Όριο Συνέχεια

Επανάληψη Συναρτήσεις Όριο Συνέχεια Επανάληψη Συναρτήσεις Όριο Συνέχεια 1) Δίνεται η συνάρτηση f(x) = ln (1 lnx) α) Να βρείτε το πεδίο ορισμού της f β) Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία γ) Να αποδείξετε ότι η f αντιστρέφεται

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5) ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ 1 ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο A. α) Αν α>0 και α 1,τότε για οποιουσδήποτε θ 1, θ >0 να δείξετε ότι log α (θ 1. θ )=log α θ 1 +log

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x) ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (o Γ Λυκείου).Να βρεθούν οι τιμές των α, β R ώστε: Α) τα σημεία (, ),(, ) να ανήκουν στη γραφική παράσταση της συνάρτησης α +β. Β)τα σημεία ( 0, ),( e, ) να ανήκουν στην γραφική παράσταση

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Συναρτήσεις Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 9 / 0 1 6 Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 10-610.178

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 / Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 / 1 / 0 1 6 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

i. Οι αντίθετες γωνίες έχουν το ίδιο ημίτονο Σ Λ iii. Ένα πολυώνυμο P(x) διαιρείται με το x-ρ αν και μόνο αν Ρ(ρ)=0 Σ Λ

i. Οι αντίθετες γωνίες έχουν το ίδιο ημίτονο Σ Λ iii. Ένα πολυώνυμο P(x) διαιρείται με το x-ρ αν και μόνο αν Ρ(ρ)=0 Σ Λ 1 0 ΓΕΛ ΚΑΡΔΙΤΣΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΕΝ.ΠΑΙΔΕΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.. ΘΕΜΑ Α Α 1. Να αποδείξετε ότι ημ ω+συν ω=1 Μον 10 Α. Να σημειώσετε το

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ

ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ Είναι γνωστό ότι η απόδειξη ανισοτήτων είναι ένα ζήτημα που παρουσιάζει ιδιαίτερες δυσκολίες για τους μαθητές. Οι δυσκολίες αυτές συνδέονται τόσο με το

Διαβάστε περισσότερα

g(x) =α x +β x +γ με α= 1> 0 και

g(x) =α x +β x +γ με α= 1> 0 και ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ

Διαβάστε περισσότερα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 / Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.

Διαβάστε περισσότερα

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31. 1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ .α) Να αποδείξετε ότι για οποιουσδήποτε πραγματικούς αριθμούς x,y ισχύει: x y x y x 6y 0 0 Β)Να βρείτε τους αριθμούς x,y ώστε x y x y 6 0 0.Δίνονται οι μη μηδενικοί πραγματικοί αριθμοί α,β με τους οποίους

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο. ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) 1. Δίνονται τα πολυώνυμα: P ( x) x x, Q( x) x x 1. Να βρεθούν: a) P( x) Q( x) ) P( x) Q( x) ) P( x) Q( x). Να βρεθεί η τιμή του λ R για την οποία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων στο R Πεδίο ορισμού συνάρτησης είναι η συναλήθευση των περιορισμών της συνάρτησης στο R, αν δεν έχει περιορισμούς λέμε ότι έχει πεδίο ορισμού το R. Όταν έχω πρέπει ν Α, Α Α Α Β Β ln Α, log Α Α> ln Β logα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Α. Αν α>0 με α, τότε για οποιουσδήποτε θ, θ,θ>0 και κ ισχύει log (θ θ ) log θ log θ Μονάδες 8 α α α Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Α ΕΚΔΟΣΗ:31/01/2012. R είναι δύο φορές παραγωγίσιμη και ισχύουν οι σχέσεις

Α ΕΚΔΟΣΗ:31/01/2012. R είναι δύο φορές παραγωγίσιμη και ισχύουν οι σχέσεις ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΑ ΣΥΛΛΟΓΗ 5 ΑΣΚΗΣΕΩΝ ΣΕ ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Α ΕΚΔΟΣΗ:3// ΑΣΚΗΣΗ 7 (από Περικλή Παντούλα) Η συνάρτηση είναι ορισμένη στο R, συνεχής στο σημείο και

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1 ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Συναρτήσεις Έστω συνάρτηση γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Να δείξετε ότι (), για κάθε R ( ) +, για κάθε R Έστω συνάρτηση µε πεδίο ορισµού και σύνολο τιµών το R και τέτοια ώστε ( ) ( ) e +,

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0 ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις: α) x x 10x 0 5 x 9x γ) x 8x 0 x x x 0 x (x ) 9(x ) ε) (x 1) (x 1) (x 1) 0. Να λύσετε τις εξισώσεις: 5 α) x 0 7 γ) (x ) 1 0 (x 1)

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ qwφιertyuiopasdfghjklzερυυξnmηq σwωψerβνtyuςiopasdρfghjklzcvbn mqwertyuiopasdfghjklzcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzcvλοπbnαmqwertyuiopasdfghjklz

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. 1.Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 1 x 4. x x x x x 5 iv) f ( x) v)f(x)=2x+ vi)f(x)= x 4x. x 2 2 1

ΣΥΝΑΡΤΗΣΕΙΣ. 1.Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 1 x 4. x x x x x 5 iv) f ( x) v)f(x)=2x+ vi)f(x)= x 4x. x 2 2 1 ) ( ) ΣΥΝΑΡΤΗΣΕΙΣ.Να βρείτε το πεδίο ορισμού των συναρτήσεων: 4 i) f ii)f iii)f()= 5 iv) f ( ) v)f()=+ vi)f()= 5 4 vii) f ( ) viii)f()=.να βρείτε το πεδίο ορισμού των συναρτήσεων: i) f ( ) 4 ii)f 9 iii)f()=

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ

ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΘΕΤΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ 1. Να λύσετε τα συστήματα: 4 1 17 x y α) 19 x y δ) 1 4 17 5 5 x y β) 15 1 1 y x 1 1 0 x y ε) 1 1 8 x y στ) γ) 5 5 a 1 7 1 1 5 x y 1 7 x y. Να λυθούν τα συστήματα:

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 / Συναρτήσεις Κώστας Γλυκός Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός

Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΑΛΓΕΒΡΑ ΘΕΜΑ Α Α1. Να δείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Px με το x ρ είναι ίσο με την τιμή του πολυωνύμου για

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ Δίνεται η εξίσωση fx x 4x Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η εξίσωση f x 0 έχει: α) ρίζα το β) δύο ρίζες πραγματικές και άνισες γ) ρίζες ετερόσημες δ) Αν 3,

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

Σταύρος Σ. Λίτσας. Μ α θ η μ α τ ι κ ό ς. Μιγαδικοί αριθμοί. ΞΑΝΘΗ Αύγουστος 2013 ΝΗΠΙΑΓΩΓΕΙΟ ΔΗΜΟΤΙΚΟ ΓΥΜΝΑΣΙΟ ΛΥΚΕΙΟ

Σταύρος Σ. Λίτσας. Μ α θ η μ α τ ι κ ό ς. Μιγαδικοί αριθμοί. ΞΑΝΘΗ Αύγουστος 2013 ΝΗΠΙΑΓΩΓΕΙΟ ΔΗΜΟΤΙΚΟ ΓΥΜΝΑΣΙΟ ΛΥΚΕΙΟ Σταύρος Σ Λίτσας Μ α θ η μ α τ ι κ ό ς Μιγαδικοί αριθμοί i =- ΞΑΝΘΗ Αύγουστος 0 C:\Users\Stavros\Desktop\ΜΙΓΑΔΙΚΟΙ internet\00 0 ΜΙΓΑΔΙΚΟΙ για internet Αdoc 7/07/ διάχυση της γνώσης Vincent Van Gogh Στη

Διαβάστε περισσότερα

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β.

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β. Γραμμικές Εξισώσεις. Η γραφική παράσταση της συνάρτησης = + β διέρχεται από το σημείο Α(, ). Να βρείτε τον αριθμό. ίνεται η ευθεία = + (α ). Να βρείτε την τιμή του α, ώστε η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ. στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Κ Ε Φ Α Λ Α Ι Ο 5 ο

ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ. στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Κ Ε Φ Α Λ Α Ι Ο 5 ο ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο 5 ο Ε Κ Θ ΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ερωτήσεις αντικειμενικού τύπου Ερωτήσεις Θεωρίας Θέματα της Τράπεζας Θεμάτων του Υπουργείου Προτεινόμενα

Διαβάστε περισσότερα

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ Θέματα Πανελλαδικών 000-05 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω η συνάρτηση Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Φάκελος : Άλγεβρα Β-Λυκείου Επιµέλεια : Φωτεινή Καλδή

Επαναληπτικές Ασκήσεις Φάκελος : Άλγεβρα Β-Λυκείου Επιµέλεια : Φωτεινή Καλδή www.mathematica.gr Επαναληπτικές Ασκήσεις Φάκελος : Άλγεβρα Β-Λυκείου Επιµέλεια : Φωτεινή Καλδή Ασκηση : ίνεται η συνάρτηση f () = ln ( 3 7 + 6 ). Να ϐρεθούν : α) Το πεδίο ορισµού της συνάρτησης f ϐ) Να

Διαβάστε περισσότερα

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο,

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο, Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 3 ωρών στις Συναρτήσεις και τα Όρια 9-5 Θέμα Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε.

1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. Ερωτήσεις πολλαπλής επιλογής 1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x 2 + 5 είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. τρίτου βαθµού 2. Αν το πολυώνυµο P (x)

Διαβάστε περισσότερα

Μαθηματικά για την B Λυκείου. ισχύει: Q 3. c 3. e 2 e 8. Άρα: Οπότε: Q ,2 10. t N 0,5, όπου t σε ώρες. Άρα: 0. Άρα: Γ)

Μαθηματικά για την B Λυκείου. ισχύει: Q 3. c 3. e 2 e 8. Άρα: Οπότε: Q ,2 10. t N 0,5, όπου t σε ώρες. Άρα: 0. Άρα: Γ) Τάξη: Β Εκθετική και Λογαριθμική Συνάρτηση Α. ΕΚΘΕΤΙΚΗ ΜΕΤΑΒΟΛΗ Πολλά φαινόμενα της πραγματικότητας συνδέονται με την έννοια της εκθετικής μεταβολής. Θα αναφέρουμε λίγα τέτοια προβλήματα για κατανόηση

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΣΥΣΤΗΜΑΤΑ 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ http://1lyk-ag-dimitr.att.sch.gr/ AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΙΑΤΑΞΗ: 1. Έστω ότι α < β και γ < δ. Να αποδείξετε ότι: αγ αδ βγ + βδ > 0 2. Αν α -1, δείξτε ότι α 3 + 1 α 2 + α 3. Αν x>1 δείξτε ότι: 2x 3

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις ΘΕΜΑ Α Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας ωρών στις Συναρτήσεις 0 9-05 Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ).. Αν η συνάρτηση f είναι -, είναι και γνησίως

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα Τράπεζα θεμάτων ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα ΘΕΜΑ 2 (16950) α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ Α. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι

Διαβάστε περισσότερα