g(x) =α x +β x +γ με α= 1> 0 και

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "g(x) =α x +β x +γ με α= 1> 0 και"

Transcript

1 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Να εξετάσετε ως προς τη μονοτονία τις παρακάτω συναρτήσεις: α) f() = + 3 β) g() = γ) h() = ηµ ln( + ) στο διάστημα π 3π, α) Η συνάρτηση f είναι της μορφής f() =α +β με α= < 0, άρα είναι γνησίως φθίνουσα. Κάθε συνάρτηση της μορφής f() =α +β, με α< 0 είναι γνησίως φθίνουσα. β) Η συνάρτηση g είναι της μορφής g() =α +β +γ με α= > 0 και επομένως είναι γνησίως φθίνουσα στο (, ] και γνησίως αύξουσα στο [, + ). β 4 = =, α Κάθε συνάρτηση της μορφής f() =α +β +γ, με α> 0 είναι γνησίως φθίνουσα στο β β (, ] και γνησίως αύξουσα στο [, + ). α α

2 π 3π γ) Για κάθε,, με < έχουμε: π 3π Επειδή η συνάρτηση ηµ είναι γνησίως φθίνουσα στο,, ηµ > ηµ () και ln γν. αυξ. < + < + ln( + ) < ln( + ) ln( + ) > ln( + ) () Προσθέτοντας τις (), () κατά μέλη έχουμε: ηµ ln(+ ) > ηµ ln( + ) h( ) > h( ) Συνεπώς η συνάρτηση h είναι γνησίως φθίνουσα. Αν f,g γνησίως φθίνουσες (ή γνησίως αύξουσες) στο Δ τότε με την χρήση των ανισοτικών σχέσεων που προκύπτουν αποδεικνύεται ότι f + g είναι γνησίως φθίνουσα (ή γνησίως αύξουσα αντίστοιχα) στο Δ.

3 Παράδειγμα. Να βρείτε τα ακρότατα των παρακάτω συναρτήσεων : f () = α) β) g() = +, με πεδίο ορισμού το A[, 6). γ) h() = 7 0 α) Η συνάρτηση f είναι της μορφής f() =α +β +γ με α= 3< 0 άρα η f παρουσιάζει μέγιστο στο β = = α ( 3) 3, το 4( 3) 6 4 = = =. 4α 4 ( 3) 3 Κάθε συνάρτηση της μορφής ελάχιστο αντίστοιχα) στο =α +β +γ με α< 0 (ή α> 0 ) παρουσιάζει μέγιστο (ή f() β το α. 4 α β) Έχουμε < 6 > < < < < 0 g() < Επομένως η g έχει ελάχιστο για = το g() = 0 και δεν έχει μέγιστο. Αν από το πεδίο ορισμού της συνάρτησης προκύπτει ισοδύναμα ανισότητα του, με εφαρμογή των ιδιοτήτων στις ανισότητες βρίσκουμε το σύνολο τιμών της συνάρτησης. Τότε εάν αυτό είναι διάστημα της μορφής [ αβ, ) η f παρουσιάζει ελάχιστο το α και δεν παρουσιάζει μέγιστο. γ) Η συνάρτηση έχει D h = και 7 0 () για κάθε με 7 = 0 για = 7. () h() 0. Άρα η h παρουσιάζει για = 7 ελάχιστο το -0. 3

4 Αν ο τύπος της συνάρτησης είναι της μορφής f() = g() + c ή της μορφής ν f() = (g()) + c, όπου ν μη μηδενικός άρτιος και υπάρχει 0 Df τέτοιο ώστε g( 0) = 0 τότε επειδή g() 0 ή (g()) ν 0, προκύπτει f() c δηλαδή η f παρουσιάζει ελάχιστο στο 0 το c. 4

5 Παράδειγμα 3. Αν 3 f () = 4 6 α) Να μελετήσετε ως προς την μονοτονία την β) Να προσδιορίσετε τα ακρότατά της. 3 f () = 4 6 και Η συνάρτηση ορίζεται στο όταν και και και και [0, ] = A α) Για οποιαδήποτε, στο [0,] με < ισοδύναμα έχουμε: < < > 6 > > < < <. Επομένως η f είναι γνησίως αύξουσα στο A [ 0, ] f( ) f( ) =. β) Για τα ακρότατα της f παρατηρούμε ότι λόγω της μονοτονίας της f είναι: < f() < f ( ) f() < και > 0 f() > f ( 0) f() > 0 Έτσι για [ 0, ] είναι f ( 0) f() f ( ) δηλαδή η f έχει ελάχιστη τιμή το ( ) μέγιστη τιμή το f( ) =. f 0 = 0και Από την υπόθεση < για τυχαία, στο πεδίο ορισμού της f, κατασκευαστικά καταλήγουμε σε ανίσωση της μορφής f( ) < f( ) ή f( ) > f( ) οπότε συμπεραίνουμε ότι η f είναι αντιστοίχως γνησίως αύξουσα ή γνησίως φθίνουσα. Αναζητούμε ακρότατα σε μια, f β. γνησίως μονότονη συνάρτηση στο [ αβ ] μεταξύ των τιμών f ( α ), ( ) 5

6 Παράδειγμα 4. Δίνεται η συνάρτηση 5 f() =. + α) Να αποδείξετε ότι η f είναι γνησίως αύξουσα σε καθένα από τα διαστήματα (,0] και [ 0, + ). β) Αποδείξτε ότι η f είναι γνησίως αύξουσα στο. Για με, ο λόγος μεταβολής της f είναι: 5 5 f( ) f( ) λ= = = ( )( + )( + ) α) Αν, (,0] τότε = και = οπότε 0 λ= > 0. ( + )( + ) Αν, [ 0, ) + τότε = και = οπότε 0 λ= > 0. ( + )( + ) Συνεπώς η f είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα (,0] και [ 0, + ). β) Επειδή η f είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα (,0] και [ 0, + ) έπεται ότι θα είναι γνησίως αύξουσα και στο (, + ) δηλαδή στο. Εναλλακτικά έχουμε: Αν (,0] και [ 0, ) θα είναι < και f( ) = < 0 < = f( ). + + Δηλαδή για κάθε συνδυασμό των, με < έχουμε f( ) < f( ) συνεπώς η f είναι γνησίως αύξουσα στο. Μερικές φορές (π.χ. όταν έχουμε απόλυτη τιμή ή συνάρτηση πολλαπλού τύπου) εξετάζουμε με τον λόγο μεταβολής ή με τον ορισμό, την μονοτονία σε υποδιαστήματα Aκαι A. Για την ένωσή τους χρειάζεται επιπλέον να ελέγχουμε με τον λόγο μεταβολής ή με τον ορισμό όταν A και A. 6

7 Παράδειγμα 5. A) Αν οι συναρτήσεις f, g είναι γνησίως μονότονες με διαφορετικό είδος μονοτονίας στο, να αποδείξετε ότι η σύνθεση f gείναι γνησίως μονότονη στο. Β) Αν η συνάρτηση f είναι γνησίως φθίνουσα και θετική στο να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο. f Γ) Αποδείξτε ότι η συνάρτηση h() = είναι γνησίως φθίνουσα στο. A) Υποθέτουμε ότι έχουμε τις συναρτήσεις f, g ορισμένες στο με την f γνησίως φθίνουσα στο και την g γνησίως αύξουσα στο. Έστω, με <, τότε f( ) > f( ) (αφού f γνησίως φθίνουσα στο αλλάζει την φορά της ανίσωσης) g(f ( )) > g(f ( )) (αφού g γνησίως αύξουσα στο διατηρεί την φορά της ανίσωσης) (g f )( ) > (g f )( ). Οπότε η συνάρτηση g f είναι γνησίως φθίνουσα στο. Όμοια αποδεικνύεται όταν f γνησίως αύξουσα και g γνησίως φθίνουσα. Β) Επειδή η f είναι γνησίως φθίνουσα και θετική στο, αν, με < τότε: < f( ) > f( ) < ( ) < ( ) f( ) f( ) f f γνησίως αύξουσα στο. οπότε η συνάρτηση f είναι Έτσι οι συναρτήσεις f και f ικανοποιούν τις προϋποθέσεις του Α και επομένως η σύνθεση f είναι γνησίως φθίνουσα στο. f Γ) Εφαρμογή του B: Αν θεωρήσουμε την συνάρτηση f() = η οποία είναι εκθετική με βάση α= και 0< < έχουμε την f να είναι γνησίως φθίνουσα και θετική στο. Προφανώς () = οπότε f h() = = f (). Άρα σύμφωνα με το Β η συνάρτηση h() f 7

8 είναι γνησίως φθίνουσα στο. Από την υπόθεση < για τυχαία, στο πεδίο ορισμού των f, g και χρησιμοποιώντας την μονοτονία τους καταλήγουμε σε ανίσωση της μορφής (f g)( ) < (f g)( ) ή (f g)( ) > (f g)( ). Γενικά η σύνθεση συναρτήσεων με διαφορετικό είδος μονοτονίας στο δίνει συνάρτηση γνησίως φθίνουσα στο ενώ η σύνθεση συναρτήσεων με ίδιο είδος μονοτονίας στο δίνει συνάρτηση γνησίως αύξουσα στο. 8

9 Παράδειγμα 6. Α) Να μελετήσετε την μονοτονία της f () = ln + e +. Β) Να λύσετε την ανίσωση + e + ln < e. Α) Για να ορίζεται η f στο πρέπει 0 < ln < ln () >. Για κάθε, ( 0, ) + με < έχουμε: e > 0 < e < e e < e () 0< < < (3) Προσθέτοντας τις (), (), (3) έχουμε ln + e + < ln + e + f ( ) < f ( ). Επομένως η f είναι γνησίως αύξουσα στο. Β) Η ανίσωση ισοδύναμα γράφεται: + e + ln < e + e + ln < + e + ln f () < f () και επειδή η f είναι γνησίως αύξουσα στο ( 0, + ) ισοδύναμα είναι 0< <. Επομένως οι λύσεις της ανίσωσης είναι ( 0,). Προσπαθούμε να φέρουμε την ανίσωση σε μορφή f(g()) < f(h()) ή f(g()) > f(h()) και εκμεταλλευόμαστε την μονοτονία της f ώστε να καταλήξουμε σε απλούστερη ανίσωση g() < h() ή g() > h(). 9

10 Παράδειγμα 7. A) Αν η f είναι γνησίως αύξουσα στο, η g είναι γνησίως φθίνουσα στο και ισχύει f() > 0, g() > 0 για κάθε να αποδείξετε ότι η συνάρτηση f g είναι γνησίως αύξουσα στο. Β) Να αποδείξετε ότι η συνάρτηση ln π h() = είναι γνησίως αύξουσα στο, ηµ π. π Γ) Αποδείξτε ότι για κάθε α, β στο, π με α<β ισχύει ηµβ ηµα α <β. Α) Για κάθε, με < είναι: f γνησίως αύξουσα: < f( ) < f( ) () g είναι γνησίως φθίνουσα και θετική: < g( ) > g( ) < () g( ) g( ) Με πολλαπλασιασμό των (), () αφού πρόκειται για θετικούς αριθμούς έχουμε: f( ) f( ) f f g( ) g( ) g g < ( ) < ( ) το οποίο σημαίνει ότι η f g είναι γνησίως αύξουσα στο. π Β) Η συνάρτηση ln είναι γνησίως αύξουσα και θετική στο, π αφού π >. Η συνάρτηση π ηµ είναι γνησίως φθίνουσα και θετική στο, π. Επομένως σύμφωνα με το Α ερώτημα η συνάρτηση π, π. ln h() = είναι γνησίως αύξουσα στο ηµ ln π π Γ) Επειδή η h() = είναι γνησίως αύξουσα στο, π ηµ. Για κάθε α, β, π με α<β είναι: lnα lnβ ηµβ ηµα ηµβ ηµα h( α ) < h( β) < ηµβ lnα < ηµα lnβ lnα < lnβ α < β. ηµα ηµβ 0

11 Από την μονοτονία κατάλληλης συνάρτησης f, στον ορισμό < f( ) < f( ) ή < f( ) > f( ) επιλέγοντας κατάλληλα, δημιουργούμε ανίσωση η οποία μετασχηματίζεται στην ζητούμενη. Η συνάρτηση που χρησιμοποιούμε προκύπτει κάθε φορά από μετασχηματισμό της προς απόδειξη ανίσωσης.

12 Παράδειγμα 8. Να αποδείξετε ότι η εξίσωση ln( e ) = 4e έχει μοναδική λύση. Πρέπει e > 0 > e. Ο αριθμός ρ= e είναι ρίζα της εξίσωσης αφού e ln(e e ) = e ln(e ) = 4e lne = 4e. Αρκεί να αποδείξουμε ότι είναι μοναδική με την χρήση της μονοτονίας. (Επειδή ο έλεγχος της μονοτονίας για την f() = ln( e ) είναι δύσκολος μετασχηματίζουμε την εξίσωση σε ισοδύναμη ώστε να προκύψει συνάρτηση της οποίας την μονοτονία μπορούμε να εξασφαλίσουμε) 4e = με, με < τότε < e < e ln( e ) < ln( e ) (). Θεωρούμε την συνάρτηση f() ln( e ) Αν (e, + ) =. Επίσης > e > 0 4e 4e < < > < (). e Με πρόσθεση των (), () προκύπτει f( ) < f( ) δηλαδή η f είναι γνησίως αύξουσα στο. 4e Συνεπώς η εξίσωση f () = 0 l n ( e ) = 0 l n ( e ) = 4e έχει μοναδική λύση. Aφού εξασφαλίσουμε με κάποιο τρόπο μια λύση της εξίσωσης (π.χ. προφανής) μετασχηματίζουμε την εξίσωση σε ισοδύναμη ώστε να προκύψει μονότονη συνάρτηση. Η μονοτονία της συνάρτησης εξασφαλίζει την μοναδικότητα.

13 Παράδειγμα 9. Α) Να μελετήσετε ως προς την μονοτονία και τα ακρότατα τη συνάρτηση f () = 5. 8 Β) Να αποδείξετε ότι η συνάρτηση f() = παρουσιάζει μέγιστο. Α) Για να ορίζεται στο η f() πρέπει [ ] ,5 A =. Αν 5 < 0 τότε [ 5,0] > 5 < 5 5 < 5 f ( ) < f ( ). Αν 0 < 5 τότε [0,5] < 5 > 5 5 > 5 f ( ) > f ( ). Επομένως η f είναι γνησίως αύξουσα στο [ 5,0] και γνησίως φθίνουσα στο [ 0,5 ]. Άρα αν 0 αν 0 αν 0 < θα είναι f() f ( 0) > θα είναι f() f ( 0) = θα είναι ( ) < (αφού f στο [ 5,0] < (αφού f στο [ 5,0] f() = f 0 = 5. Οπότε για κάθε [ 5,5] ισχύει ( ) θέση = 0 με μέγιστη τιμή ίση με f( 0) = 5. ), ), f () f 0 = 5 δηλαδή η f παρουσιάζει μέγιστο στην Επίσης παρατηρούμε ότι για κάθε [ 5,5] και επιπλέον ( ) ( ) 5 0 f 5 = f 5 = 0. 3

14 Δηλαδή για κάθε [ 5,5] ισχύει ( ) ( ) στις θέσεις = 5και = 5 με ελάχιστη τιμή ίση με ( ) ( ) f() f 5 = f 5 = 0 δηλαδή η f παρουσιάζει ελάχιστο f 5 = f 5 = 0. Β) Για κάθε είναι και επιπλέον f( 0) =. Άρα για κάθε είναι f() f ( 0) = δηλαδή η f παρουσιάζει μέγιστο στην θέση = 0με μέγιστη τιμή f( 0) =. Αν η f είναι γνησίως αύξουσα στο [ αγ, ] και γνησίως φθίνουσα στο [ γβ, ] τότε η f παρουσιάζει μέγιστο στην θέση γ με μέγιστη τιμή f ( γ ). Επίσης αν αποδείξουμε ότι για κάθε ισχύει f() κ για κάποιο κ και υπάρχει γ ώστε f ( γ ) =κτότε η f έχει μέγιστη τιμή στο το κ. 4

15 Παράδειγμα 0. Α) Αν η συνάρτηση g είναι γνησίως αύξουσα στο και για κάθε ισχύει f(f()) + g() = 0 () τότε να αποδείξετε ότι η f δεν είναι γνησίως μονότονη στο. B) Αν f(f()) + = 0 για κάθε τότε να δείξετε ότι η f δεν είναι γνησίως μονότονη. Α) Με άτοπο: Υποθέτουμε ότι η συνάρτηση f είναι γνησίως μονότονη στο. η Περίπτωση: f γνησίως αύξουσα στο. Τότε για κάθε, με < είναι: f f () g < f( ) < f( ) f(f( )) < f(f( )) g( ) < g( ) g( ) > g( ) > ΑΤΟΠΟ! η Περίπτωση: f γνησίως φθίνουσα στο. Τότε για κάθε, με < είναι: f f () g < f( ) > f( ) f(f( )) < f(f( )) g( ) < g( ) g( ) > g( ) > ΑΤΟΠΟ! Σε κάθε περίπτωση οδηγούμαστε σε άτοπο άρα η συνάρτηση f δεν είναι γνησίως μονότονη στο. Β) Εφαρμογή του Α ερωτήματος όπου g() = η οποία είναι της μορφής α +β με α> 0 δηλαδή γνησίως αύξουσα στο. Για να δείξουμε ότι μια συνάρτηση δεν είναι γνησίως μονότονη υποθέτουμε ότι είναι και για < κατασκευαστικά και με χρήση των δεδομένων καταλήγουμε σε άτοπο. 5

16 ΘΕΜΑ Γ Παράδειγμα. Έστω f: γνησίως μονότονη συνάρτηση, αν η C f τέμνει τους άξονες και yy στα σημεία με τετμημένη - και τεταγμένη αντίστοιχα. α) Να βρείτε το είδος μονοτονίας της f. β) Αν g γνησίως φθίνουσα συνάρτηση στο, να εξετάσετε την μονοτονία της g g και της f g. α) Η γραφική παράσταση της f διέρχεται (τέμνει τους άξονες) από τα σημεία Α(-,0) και Β(0,). Παρατηρούμε ότι για A < B ( < 0), ισχύει y A < y B (0 < ) και επειδή η f είναι γνησίως μονότονη θα είναι γνησίως αύξουσα. Αν f γνησίως μονότονη συνάρτηση της οποίας η C f διέρχεται από σημεία A( A, y A) και B( B, y B), τότε, αν ( A B), (ya y B) ομόσημοι η f είναι γνησίως αύξουσα, ενώ αν ( ), (y y ) ετερόσημοι η f είναι γνησίως φθίνουσα. A B A B β) Επειδή η g γνησίως φθίνουσα συνάρτηση στο, για κάθε, έχουμε: < g( ) > g( ) g(g( )) < g(g( )) (g g)( ) < (g g)( ) άρα η g g είναι γνησίως αύξουσα. f γν. αυξ. < g( ) > g( ) f(g( )) > f(g( )) (f g)( ) > (f g)( ) άρα η f g είναι γνησίως φθίνουσα. Αν g γνησίως μονότονη συνάρτηση τότε με την χρήση των ανισοτήτων που προκύπτουν από τον ορισμό της μονοτονίας αποδεικνύεται ότι η g g είναι γνησίως αύξουσα. Ενώ αν f,g γνησίως μονότονες με διαφορετικό είδος μονοτονίας τότε αποδεικνύεται ότι η f g (και η g f ) είναι γνησίως φθίνουσα. 6

17 Παράδειγμα. Έστω συνάρτηση 7 f () = με D f = [0, + ). α) Να εξετάσετε την f ως προς την μονοτονία. β) Να δείξετε ότι υπάρχει μοναδικό σημείο στο οποίο η C f τέμνει τον άξονα. γ) Να λύσετε την ανίσωση f( + ) > 0 στο [0, + ). 4 3 α) Για κάθε, [0, + ) με < έχουμε: < < > και < 3 > άρα 3 > > f ( ) > f ( ) Οπότε η f είναι γνησίως φθίνουσα. Αν για οποιαδήποτε, Df με < προκύπτει ισοδύναμα, με εφαρμογή των ιδιοτήτων στις ανισότητες, f( ) > f( ) τότε η f είναι γνησίως φθίνουσα, ενώ αν προκύψει f( ) < f( ) τότε η f θα είναι γνησίως αύξουσα. β) Για να δείξουμε ότι υπάρχει μοναδικό σημείο στο οποίο η C f τέμνει τον άξονα αρκεί να δείξουμε ότι η εξίσωση f() = 0 έχει μοναδική λύση στο [0, + ). Παρατηρούμε ότι f () = 0, δηλαδή μια ρίζα της f είναι το =. Ας υποθέσουμε ότι υπάρχει και άλλη ρίζα της εξίσωσης (f ( ) = 0). Αν < = επειδή f γνησίως φθίνουσα τότε f( ) > f( ) f( ) > 0 f( ) 0 άτοπο. Αν > = επειδή f γνησίως φθίνουσα τότε f( ) < f( ) f( ) < 0 f( ) 0 άτοπο. Συνεπώς η εξίσωση f() = 0 έχει μοναδική λύση στο [0, + ). Βρίσκουμε μία προφανή ρίζα της εξίσωσης f() = 0 στο D f, υποθέτουμε ότι έχει και η ρίζα ( < ή > ) και επειδή η f είναι γνησίως μονότονη καταλήγουμε σε κάτι άτοπο (f ( ) 0). 7

18 γ) άρα , για κάθε, οπότε 4 3 f γν. φθιν f( + ) > 0 f( + ) > f() + < < και επειδή 0 τελικά η λύση της ανίσωσης είναι: 0 <. < < <. Αν f γνησίως αύξουσα (ή γνησίως φθίνουσα) και f(g()) > f( ) με g(a) D f, Df τότε g() > (ή g() < αντίστοιχα) και ισοδύναμα λύνουμε την ανίσωση. 8

19 Παράδειγμα 3. Δίνεται συνάρτηση f για την οποία ισχύει: ότι η f δεν είναι γνησίως φθίνουσα. 5 3 f () e = 6f () για κάθε. Να δείξετε Η αρχική σχέση γίνεται f () e = 6f () f () + 6f () = e + (). Έστω ότι η f είναι γνησίως φθίνουσα, τότε για οποιαδήποτε, με < θα ισχύει f( ) > f( ) () () f ( ) > f ( ) (ν = 5, περιττός εκθέτης) 5 5 () f ( ) > f ( ) 6f ( ) > 6f ( ) (ν = 3, περιττός εκθέτης) Προσθέτοντας κατά μέλη έχουμε: () e γν. αυξ > + + > + > > f ( ) 6f ( ) f ( ) 6f ( ) e e e e Άτοπο, άρα η f δεν είναι γνησίως φθίνουσα. Όταν δίνεται συναρτησιακή σχέση για μια συνάρτηση f, και θέλουμε να δείξουμε ότι η f δεν είναι γνησίως φθίνουσα (ή γνησίως αύξουσα) στο A αρκεί να υποθέσουμε ότι είναι, δηλαδή για κάθε, A με < ισχύει ότι f( ) > f( ) ( ή f( ) < f( ) αντίστοιχα ) και να καταλήξουμε σε κάτι άτοπο. Ημερομηνία τροποποίησης: 3/8/0 9

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.)

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Δίνεται

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 9η Κατηγορία: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Για να βρούμε τη μονοτονία μιας συνάρτησης ακολουθούμε την εξής διαδικασία: Θεωρούμε, Δ, όπου Δ διάστημα του πεδίου ορισμού

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΗ 1η Να βρείτε το πεδίο ορισμού των συναρτήσεων: 5 α) f β) f 1 1 9 γ) f δ) f log 1 4 ημ ημ συν ε) f α) Για να ορίζεται η f() πρέπει και αρκεί + (1) Έχουμε: (1).(

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί Μία συνάρτηση f λέγεται: 1 γνησίως αύξουσα σ' ένα υποσύνολο Β του πεδίου ορισμού της όταν για κάθε 1, Β με 1 < ισχύει ότι f( 1 ) < f( ) γνησίως φθίνουσα σ' ένα υποσύνολο Β

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R ΠΕΡΙΣΤΕΡΙΟΥ Α. ΠΕΔΙΟ ΟΡΙΣΜΟΥ. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους 4 ι) () = 6 + 6 iv) () = log ( log4(- )) v) () = ii) () = iii) () = log ( + ) 5 log 4 vii) () = 5 + 4 viii) ()

Διαβάστε περισσότερα

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β], Θωμάς Ραϊκόφτσαλης ΣΥΝΕΧΕΙΑ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Μέθοδος Α Αν μας ζητείτε να αποδείξουμε ότι ισχύει ένα από τα εξής: Α. Η εξίσωση f() έχει μια τουλάχιστον ρίζα ξ (α,β), Α. Υπάρχει ξ (α,β) έτσι ώστε f(ξ),

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις ΘΕΜΑ Α Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας ωρών στις Συναρτήσεις 0 9-05 Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ).. Αν η συνάρτηση f είναι -, είναι και γνησίως

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ 2 (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις)

ΟΡΙΣΜΟΣ 2 (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις) ΟΡΙΣΜΟΣ Μια συνάρτηση : A λέγεται συνάρτηση -, όταν για οποιαδήποτε, A ισχύει η συνεπαγωγή: αν, τότε ( ) ( ) ΟΡΙΣΜΟΣ (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις) Μια συνάρτηση : A είναι συνάρτηση -,

Διαβάστε περισσότερα

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ Γ. Λυκείου Ανάλυση Κεφ. ο Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2 ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο.3 Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Συνάρτηση Όταν

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

1. Να βρεθεί το πεδίο ορισμου της συνάρτησης. 2.Να βρεθεί ο λєr ώστε πεδίο ορισμού της συνάρτησης: 3, να είναι το R.

1. Να βρεθεί το πεδίο ορισμου της συνάρτησης. 2.Να βρεθεί ο λєr ώστε πεδίο ορισμού της συνάρτησης: 3, να είναι το R. . Να βρεθεί το πεδίο ορισμου της συνάρτησης χ f() ln( 5) Πρέπει -ln(-3) χ-3> ln(-3) lne χ > 3-3 e χ > 3 e 3 χ > 3 Οπότε το Π.Ο. της συνάρτησης είναι Α f (, e3)u(e3, ).Να βρεθεί ο λєr ώστε πεδίο ορισμού

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και Ασκήσεις στη συνέχεια συναρτήσεων Άσκηση η Να βρεθούν τα ολικά ακρότατα των συναρτήσεων ) x, 0, ) x x a x x x, x x x x Άσκηση η Αν : a, συνεχής στο, τέτοια ώστε x x και x x Να αποδείξετε ότι η συνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων στο R Πεδίο ορισμού συνάρτησης είναι η συναλήθευση των περιορισμών της συνάρτησης στο R, αν δεν έχει περιορισμούς λέμε ότι έχει πεδίο ορισμού το R. Όταν έχω πρέπει ν Α, Α Α Α Β Β ln Α, log Α Α> ln Β logα

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) Κατηγορία η Συνθήκες ΘΜΤ Τρόπος αντιμετώπισης: Για να ισχύει το ΘΜΤ για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ( a) '( ) ) πρέπει: a Η συνάρτηση

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια

Διαβάστε περισσότερα

- 11 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

- 11 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - 11 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ) 1 Να βρεθεί η σχετική θέση των γραφικών παραστάσεων των συναρτήσεων f και g γα τις οποίες ισχύει: f()+1=g()+e (Η C f κάτω

Διαβάστε περισσότερα

ΣΥΝΕΠΕΙΕΣ Θ.Μ.Τ. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΕΥΡΕΣΗ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΕΠΕΙΕΣ Θ.Μ.Τ. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΕΥΡΕΣΗ ΣΥΝΑΡΤΗΣΗΣ Ενότητα 19 ΣΥΝΕΠΕΙΕΣ Θ.Μ.Τ. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΕΥΡΕΣΗ ΣΥΝΑΡΤΗΣΗΣ 1). Να βρεθεί η συνάρτηση f όταν: i) A, f ()=3 5 f(0)=1, ii) A=, f ()=συν-ημ f(π)=, Ασκήσεις για λύση - iii) A=, f ()=4e 6 f '(0)=f(0)=1,

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Νίκος Ζανταρίδης (Φροντιστήριο Πυραμίδα) ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ένα γενικό θέμα Ανάλυσης Χρήσιμες Προτάσεις Ασκήσεις για λύση Μικρό βοήθημα για τον υποψήφιο μαθητή της Γ Λυκείου λίγο πριν τις εξετάσεις Απρίλιος

Διαβάστε περισσότερα

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης 4 5 35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης Περίληψη: Στο ένθετο αυτό περιλαμβάνονται 35 βασικές προτάσεις, μικρά λήμματα χρήσιμα για τις εξετάσεις. Μας βοηθούν να «ξεκλειδώνουμε»

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x) ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (o Γ Λυκείου).Να βρεθούν οι τιμές των α, β R ώστε: Α) τα σημεία (, ),(, ) να ανήκουν στη γραφική παράσταση της συνάρτησης α +β. Β)τα σημεία ( 0, ),( e, ) να ανήκουν στην γραφική παράσταση

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ ΣΥΝΕΧΕΙΑ Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο τουr Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα)

Διαβάστε περισσότερα

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε τα πεδία ορισµού των συναρτήσεων µε τύπο: i) ii) iii) iv) v) 2. Δίνεται η συνάρτηση µε:. Να βρείτε µια περίοδο της. 3. Δίνεται η συνάρτηση µε:. Να αποδείξετε

Διαβάστε περισσότερα

1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:

1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων: Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:, g, h Απάντηση: Η με έχει παράγωγο 4 Μπορούμε όμως να εργαστούμε ως εξής: Είναι άρα 4 Η g με g έχει παράγωγο : g Η συνάρτηση h με h έχει

Διαβάστε περισσότερα

x είναι f 1 f 0 f κ λ

x είναι f 1 f 0 f κ λ 3 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ [Κεφάλαια, Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ Α.Βλέπε σχολικό βιβλίο, σελίδα 4.. Βλέπε σχολικό βιβλίο, σελίδα 88, 89. 3. α) ΣΩΣΤΟ, διότι αν η f παραγωγίσιμη στο χ

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Διατύπωση: Αν μια συνάρτηση είναι: συνεχής στο κλειστό διάστημα [ α β] και παραγωγίσιμη στο ανοικτό διάστημα ( α β) τότε υπάρχει ένα τουλάχιστον ξ ( α β) τέτοιο ώστε: ( ( β) ( α) β α Γεωμετρικά αυτό σημαίνει

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε ΕΠΑΝΑΛΗΠΤΙΚΑ ΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ Δίνεται η συνεχής συνάρτηση f : IR IR τέτοια ώστε f ( ) 1 για κάθε IR (1) και η γραφική της παράσταση διέρχεται από το σημείο i Να βρείτε τα κ και λ

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)

Διαβάστε περισσότερα

Ι. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ)

Ι. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ) Ι. Πραγματικές ΥΝΑΡΤΗΕΙ πραγματικής μεταβλητής (έως και ΑΝΤΙΤΡΟΦΗ). Η γραφική παράσταση της συνάρτησης f βρίσκεται κάτω από τον άξονα.. Δίνεται η συνάρτηση = f (). Οι τετμημένες των σημείων τομής της C

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ Θέματα Πανελλαδικών 000-05 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω η συνάρτηση Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου

Διαβάστε περισσότερα

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Γ Λυκείου

Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 598 Θε ματα Δεσμω ν 98- Επιμέλεια Κων/νος Παπασταματίου Σελίδα

Διαβάστε περισσότερα

5.1.1 Η θεωρία και τι προσέχουμε

5.1.1 Η θεωρία και τι προσέχουμε Κεφάλαιο 5 Συνέχεια συνάρτησης σε διάστημα Συνέπειες του Θεωρήματος Bolzano 5.. Η θεωρία και τι προσέχουμε Τα κύρια χαρακτηριστικά μιας συνεχούς συνάρτησης f ορισμένης σε ένα διάστημα Δ, είναι: i. Η γραφική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ Μονοτονία Συνάρτησης Έστω οι συναρτήσεις f, g, h, των οποίων οι γραφικές παραστάσεις φαίνονται στα επόμενα σχήματα («Σχήμα», «Σχήμα», «Σχήμα

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη Θέματα Πανελλαδικών 000-04 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου Να αποδείξετε

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

x A. Είναι δηλαδή: ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ

x A. Είναι δηλαδή: ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Σελίδα από 4 ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Βαγγέλης Μουρούκος Μπάμπης Στεργίου ΥΠΟ ΔΙΑΜΟΡΦΩΣΗ-ΔΕΝ ΕΧΟΥΝ ΓΙΝΕΙ ΔΙΟΡΘΩΣΕΙΣ Περίληψη Στο άρθρο αυτό επιχειρούμε να εντοπίσουμε, να καταγράψουμε

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Για να μελετήσουμε και να χαράξουμε τη γραφική παράταση μιας συνάρτησης ακολουθούμε τα παρακάτω βήματα: 1. Βρίσκουμε το πεδίο ορισμού της.. Εξετάζουμε την

Διαβάστε περισσότερα

( x) ( ) ( ) ( ) ( ) Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ. f x+ h f x. 5x 3 2. x x 2x. 3 x 2. x 2x. f x = log x. f x = ln x 4. log 9. 2x 7x 15. x x.

( x) ( ) ( ) ( ) ( ) Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ. f x+ h f x. 5x 3 2. x x 2x. 3 x 2. x 2x. f x = log x. f x = ln x 4. log 9. 2x 7x 15. x x. Κεφάλαιο - Συναρτήσεις I Πεδίο ορισµού συνάρτησης Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ίνονται οι συναρτήσεις: f( ) = +, (ii) f( ) = Να βρεθούν τα f( 0 ), f( ), f( ), f( α ), f( α+ β), f( α 5) ( ) ( ) f + h f, h Να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο

Διαβάστε περισσότερα

Εισαγωγή στην ανάλυση

Εισαγωγή στην ανάλυση Εισαγωγή στην ανάλυση Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ. Έστω Α ένα υποσύνολο του και Α. Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση Πραγματική συνάρτηση με πεδίο ορισμού το Α,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3) 3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο,, 3) ΘΕΜΑ Α. (i) Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής

Διαβάστε περισσότερα

ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ

ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Σελίδα από ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Βαγγέλης Μουρούκος Μπάμπης Στεργίου Περίληψη Στο άρθρο αυτό επιχειρούμε να εντοπίσουμε, να καταγράψουμε και να περιγράψουμε με σχετικά σύντομο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια: Παπαδόπουλος Παναγιώτης 1 Θεωρούμε τις συναρτήσεις f, g με f() = 3e + 10 + 1 και g() = 015 + 015 196 α) Να προσδιορίσετε το είδος μονοτονίας των f, g β) Να βρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f() ( )ln, >. Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα Δ (, ] και γνησίως αύξουσα στο διάστημα Δ [, ). Στη συνέχεια να βρείτε το σύνολο

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2) Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x

Διαβάστε περισσότερα

Προσεγγισεις. Aνισοτητες. Επ ι με λ ε ι α : Τακης Τσακαλακ ος

Προσεγγισεις. Aνισοτητες. Επ ι με λ ε ι α : Τακης Τσακαλακ ος Προσεγγισεις Aνισοτητες Επ ι με λ ε ι α : Τακης Τσακαλακ ος 1 ( Μ ι γ α δ ι κ ο ι ) ΜΕΘΟΔΟΣ Μ ο ρ φ η δ ο σ μ ε ν η ς σ χ ε σ η ς : Ανισοτικη σχεση παραστασεων μετρων μιγαδικου. Z η τ ο υ μ ε ν ο : Προσημο

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..: Κανόνες Παραγώγισης του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα