جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:"

Transcript

1 نظریه ي اطلاعات کوانتومی 1 ترم پاي یز مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم. اگر حالت سیستم ترکیبی جدایی پذیر باشد یعنی: ψ AB = ψ A ψ B, ψ A H A, ψ B H B آن گاه می توان گفت که سیستم A در حالت ψ A و سیستم B در حالت ψ B قرار دارد. اما اگر زیرسیستم ها درهم تنیده باشند یعنی ψ AB را نتوان جدا کرد حالت سیستم هاي A و B به تنهایی چگونه توصیف می شود در حالت کلی اگر سیستم مرکب با ماتریس چگالی ρ AB توصیف شود سیستم هاي A و B چگونه توصیف می شود در جلسه قبل این سو ال ها را مورد بررسی قرار دادیم. در این جلسه بحث را کامل می کنیم. 1 اثر و اثر جزي ی تعریف اثر به عنوان یک اپراتور به صورت زیر است: tr : L(H A ) C که به هر ماتریس چگالی یک عضو از میدان اعداد مختلط نسبت می دهد. فرض کنید } A 0 } A,..., 1 d یک پایه ي متعامد یکه براي H A باشد. نگاشت اثر جزي ی 1 را به صورت زیر تعریف می کنیم: tr A : L(H A ) L(H B ) L(H B ) d 1 tr A (ρ AB ) = ( i A I B ) ρ AB ( i A I B ). i=0 البته تعریف اثر جزي ی به پایه انتخاب شده ربطی ندارد (مستقل از این که چه پایه اي انتخاب کنیم به عملگر یکسانی می رسیم). یک راه مشاهده این موضوع این است که توجه کنیم که اثر جزي ی را معادلا می توان بصورت ضرب تانسوري دو عملگر نوشت: یک عملگر اثر (روي فضایی که می خواهیم آن را حذف کنیم) و یک عملگر همانی tr A = tr I L(HB ) : L(H A ) L(H B ) C L(H B ) = L(H B ) 1 Partial trace tr B = I L(HA ) tr : L(H A ) L(H B ) L(H A ) C = L(H A ). و 1

2 1.1 الحاقی اثر جزي ی اگر یک عملگر خطی به همراه یک ضرب داخلی داشته باشیم می توان از روي آن الحاقی را تعریف کرد. براي فضاي خطی عملگرها ضرب داخلی دو عملگر,A B را به صورت زیر تعریف می شود: (A, B) = tr(a B). الحاقی عملگر اثر عملگري خواهد بود با دامنه و برد زیر: tr : C L(H A ). tr (α) = αi. نشان می دهیم که این الحاقی برابر است با اگر tr الحاقی tr باشد باید داشته باشیم: M L(H A ), α C (α, tr(m)) C = (tr (α), M) L(HA ) ضرب داخلی سمت چپ ضرب معمولی اعداد مختلط است. پس (α, tr(m)) C = α tr(m) α tr(m) = (αi, M) L(HA ). از طرف دیگر در نتیجه (αi, M) L(HA ) = (tr (α), M) L(HA ) tr (α) = αi. و الحاقی اثر جزي ی را نیز می توان یافت. توجه کنید که tr A : L(H B) = C L(H B ) L(H A ) L(H B ), tr A = (tr I) = (tr I). و داریم tr A = tr I در نتیجه tr A (ρ B) = tr A (1 ρ B) = tr (1) I(ρ B ) = I A ρ B. بنابراین براي هر حالت ρ B داریم: 2

3 2.1 خواص اثر جزي ی نکته ي مهمی که در مورد اثر جزي ی وجود دارد این است که ترکیب دو اثر جزي ی معادل اثر جزي ی نسبت به ترکیب آنهاست. یعنی tr B (tr C (ρ ABC )) = tr C (tr B (ρ ABC )) = tr BC (ρ ABC ). به همین دلیل نمادگذاري هاي ρ A, ρ AB و مانند آن خوش تعریف هستند. همچنین اثر جزي ی خاصیت دوري بودن اثر را بصورت جزي ی به ارث می برد. براي هر عملگر دلخواه N AB روي فضاي تانسوري H A H B و هر عملگر M B روي فضاي H B داریم: tr B (N (I A M)) = tr B ((I A M) N) جهت اثبات ابتدا فرض کنید که N AB به شکل N A N B باشد. در این صورت tr B ((N A N B ) (I M)) = tr B (N A N B M) = (I tr)(n A (N B M)) = N A tr(n B M) = N A tr(mn B ) = (I tr)(n A (MN B )) = tr B ((I M)(N A N B )). حال از آن جایی که هر عملگر دلخواه N AB را می توان به صورت ترکیب خطی عملگرهاي به شکل N A N B نوشت رابطه ي مطلوب ما با توجه به خطی بودن باید براي هر N AB دلخواه درست باشد. از نتایج رابطه ي فوق مثلا این است که tr B ((A B) ρ (C D)) = tr B ((A DB) ρ (C I)). 3.1 اندازه گیري و اثر جزي ی فرض کنید می خواهیم سیستم A را اندازه گیري کنیم. در این صورت اگر عملگر POVM مربوط به سیستم A برابر E A باشد عملگر اندازه گیري روي سیستم ترکیبی E A I B خواهد بود و روي ماتریس چگالی سیستم مرکب اثر می کند. خاصیت مهم اثر جزي ی این است که می توان اندازه گیري E A I B را روي سیستم ترکیبی اعمال کرد و بعد سیستم B را دور انداخت (نسبت به B اثر جزي ی گرفت). یا اینکه از ابتدا B را دور انداخته و اندازه گیري را فقط روي A انجام داد. یعنی tr(e A ρ A ) = tr(e A tr B (ρ AB )) = tr((e A I)ρ AB ) 3

4 براي اثبات این تساوي توجه کنید که tr(e A (tr B (ρ AB ))) = (E A, tr B (ρ AB )) = (E A, (I L(HA ) tr L(HB ))ρ AB ) = ((I L(HA ) tr L(HB )) E A, ρ AB ) عملگر E A را می توان به صورت ضرب تانسوري نوشت 1: A E A = E در نتیجه tr(e A ρ A ) = ( (I tr L(HB )) (E ) A 1), ρ AB = (E A tr (1), ρ AB ) = (E A I, ρ AB ) = tr((e A I)ρ AB ). 4.1 تحول زمانی و اثر جزي ی اینکه تحول زمانی روي سیستم ترکیبی انجام شود سپس سیستم B دور انداخته شود همانند این است که از ابتدا سیستم B را دور بیندازیم و تحول زمانی را روي سیستم A اعمال کنیم. یعنی Uρ A U = tr B [(U I)ρ AB (U I)] اثبات: براي سادگی نگاشت Φ U را به صورت زیر تعریف می کنیم: Φ U : L(H A ) L(H A ) Φ U (X) = UXU. در این صورت داریم tr B [(U I)ρ AB (U I)] = (I tr)(φ U I)ρ AB اما Φ U I و I tr جابجا می شوند پس: tr B [(U I)ρ AB (U I)] = (Φ U I)(I tr)ρ AB = (Φ U I)(ρ A 1) = Uρ A U 1 = Uρ A U. tr B [(I U)ρ AB (I U )] = tr B (ρ AB ) = ρ A. تمرین 1 نشان دهید 4

5 5.1 اثر جزي ی و هنگردها p} i, ρ AB را روي یک سیستم ترکیبی داریم. اگر روي سیستم مرکب نسبت به B اثر جزي ی بگیریم فرض کنید هنگرد } i هنگردي چون } i p} i, ρ A ایجاد می شود. به هر کدام از هنگردها می توان یک ماتریس چگالی نسبت داد: ρ AB = i p i ρ AB i, τ A = i p i ρ A i. براي نشان دادن سازگاري اثر جزي ی با هنگردها باید ثابت کنیم که با گرفتن اثر جزي ی از ماتریس چگالی ρ AB به τ A می رسیم. با استفاده از خطی بودن tr B داریم: tr B (ρ AB ) = tr B ( i p i ρ AB i ) = i p i tr B (ρ AB i ) = i p i ρ A i = τ A نکته 1 اثر جزي ی در حالت کلی تحت جایگشت عملگر ها ناوردا نیست: (ρσ). tr B (σρ) tr B تمرین 2 نشان دهید tr B [(X A X B )(X A X B)] = tr B [(X A X B)(X A X B )]. 2 نحوه ي محاسبه ي اثر جزي ی فرض کنید که i و j دو بردار یکسان یا عمود بر هم در فضاي V باشند و k و l دو بردار یکسان یا عمود بر هم در فضاي W باشند. در این صورت با استفاده از تعریف اثر جزي ی داریم: tr B ( i j A k l B ) = I tr( i j A k l B ) = δ kl i j A. در حالت کلی تر.tr A (X A Y B ) = tr(x A )Y B از طرف دیگر هر عملگر خطی روي V W را می توان به صورت ترکیب خطی از عملگر هاي به فرم i j A k l B نوشت. بنابراین با توجه به خطی بودن اثر جزي ی می توان اثر جزي ی هر عملگر روي فضاي تانسوري را حساب کرد. محاسبه از روي نمایش ماتریسی: فرض کنید نمایش ماتریسی یک عملگر در دست است و می خواهیم اثر جزي ی آن را حساب کنیم. M AB L(H A ) L(H B ) dim(h A ) = d, dim(h B ) = d. در این صورت نمایش ماتریسی M AB با سایز dd dd خواهد بود و به صورت بلوکی به فرم زیر است: S 11 S S 1d S 21 S S 2d M AB =..... S d1 S d2... S dd 5

6 که در آن S ij ماتریسی d d است. اثر جزي ی گرفتن نسبت به B معادل است با آنکه به جاي هر بلوك ماتریس M AB اثرش را قرار دهیم. tr(s 11 ) tr(s 12 )... tr(s 1d ) tr(s 21 ) tr(s 22 )... tr(s 2d ) tr B (M AB ) =..... tr(s d1 ) tr(s d2 )... tr(s dd ) همچنین اثر جزي ی نسبت به A به صورت زیر بدست می آید: tr A (M AB ) = S 11 + S S dd. ρ AB = ψ ψ AB, ψ AB H A H B. حالت خاص: فرض کنید ρ AB خالص باشد در این صورت می توان تجزیه ي اشمیت ψ AB را در نظر گرفت: ψ AB = i λ i v i A w i B که { i v } پایه اي متعامد یکه براي H A و { i w } پایه اي متعامد یکه براي H B و λ -ها i اعداد حقیقی نامنفی هستند. ψ ψ = i,j λ i λ j v i v j A w i w j B در نتیجه ρ A = tr B (ρ AB )) = i λ 2 i v i v j A, ρ B = tr A (ρ AB )) = i λ 2 i w i w j B بسط هاي بالا در واقع تجزیه هاي طیفی عملگرهاي ρ A و ρ B هستند. نتیجه این که مقادیر ویژه ي ρ A و ρ B یکسان اند. این نکته براي هر حالت خالص ρ AB برقرار است. 3 سیستم هاي کلاسیک فرض کنید متغیر تصادفی X با مقادیر{ 1 n,... 2, {0, 1, و توزیع احتمال p i داده شده است. X = i را می توانیم متناظر با بردار i بگیریم. پس این متغیر تصادفی متناظر با یک هنگرد است: با احتمال p i سیستم در حالت i است. در نتیجه به متغیر تصادفی می توان یک ماتریس چگالی نسبت داد: ρ X = i p i i i. 6

7 ρ X ماتریسی است که روي قطر اصلی آن مقادیر احتمال قرار دارند. ρ X ماتریس چگالی است چون قطري است و مقادیر روي قطر آن همگی نامنفی هستند و همچنین جمع مقادیر روي قطر آن که همان اثر ماتریس است برابر 1 است. به طور مشابه دو متغیر تصادفی,X Y را می توان به صورت یک هنگرد دید که با احتمال (y p(x, حالت y x را می گیرد. در نتیجه ماتریس چگالی مربوط به آن به صورت زیر خواهد بود: ρ XY = x,y p(x, y) x x y y = x,y p(x, y) xy xy حال براي محاسبه ي توزیع هاي حاشیه اي کافی است اثر جزي ی بگیریم: ( ρ X = tr Y (ρ XY ) = tr Y p(x, y) x x y y ) = x,y x,y p(x, y) x x = x p(x) x x اثر جزي ی یک ماتریس قطري قطري است که کلاسیک بودن زیرسیستم هاي کلاسیک را تایید می کند. می دانیم که براي محاسبه ي میانگین و یا واریانس X داشتن توزیع حاشیه اي X کافی است و دیگر نیازي به شناختن توزیع مشترك,X Y نیست. در مکانیک کوانتومی اثر جزي ی دقیقا همین نقش توزیع حاشیه اي را دارد. براي مثال اگر سیستم ترکیبی,A B را داشته باشیم و بخواهیم با اندازه گیري روي سیستم A اطلاعاتی از آن بدست آوریم دیگر نیازي به ماتریس چگالی ρ AB نیست و کافی است ماتریس چگالی کاهیده 2 سیستم ) AB ρ A = tr B ρ) را داشته باشیم. به عبارت دیگر توزیع احتمال حاصل یک اندازه گیري روي بخش A را می توان از روي ρ A محاسبه کرد. توجه کنید که همان طور که در حالت کلی تساوي p(x)p(y) p(x, (y = برقرار نیست تساوي ρ AB = ρ A ρ B نیز لزوما برقرار نیست. 4 خلاصه نکات 1. ماتریس چگالی کاهیده مانند مفهوم توزیع چگالی حاشیه اي است و همان کاربرد ها را دارد. 2. متوسط حالت B مستقل از اندازه گیري روي A است هنگام اندازه گیري روي سیستم A توزیع احتمال متناظر را می توان مستقیما از روي ماتریس چگالی کاهیده حساب کرد. ) A. p(0) = tr( 0 0 ρ به طور کلی داریم tr((m A I B )X AB ) = tr(m A tr B (X AB )). 2 Reduced density matrix 3 No-signaling 7

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i. محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه نظریه اطلاعات کوانتمی 1 ترم پاییز 1392-1391 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: مرتضی نوشاد جلسه 28 1 تقطیر و ترقیق درهم تنیدگی ψ m بین آذر و بابک به اشتراك گذاشته شده است. آذر و AB فرض کنید

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 392-39 مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A

Διαβάστε περισσότερα

سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات

سايت ويژه رياضيات   درسنامه ها و جزوه هاي دروس رياضيات سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara

Διαβάστε περισσότερα

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است.

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است. محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه 1 محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد: تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

تحلیل الگوریتم پیدا کردن ماکزیمم

تحلیل الگوریتم پیدا کردن ماکزیمم تحلیل الگوریتم پیدا کردن ماکزیمم امید اعتصامی پژوهشگاه دانشهاي بنیادي پژوهشکده ریاضیات 1 انگیزه در تحلیل الگوریتم ها تحلیل احتمالاتی الگوریتم ها روشی براي تخمین پیچیدگی محاسباتی یک الگوریتم یا مساله ي

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { } هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف

Διαβάστε περισσότερα

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه

Διαβάστε περισσότερα

آزمایش 8: تقویت کننده عملیاتی 2

آزمایش 8: تقویت کننده عملیاتی 2 آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده

Διαβάστε περισσότερα

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x

Διαβάστε περισσότερα

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢ دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

جلسه ی ۴: تحلیل مجانبی الگوریتم ها

جلسه ی ۴: تحلیل مجانبی الگوریتم ها دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا

Διαβάστε περισσότερα

تصاویر استریوگرافی.

تصاویر استریوگرافی. هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

هندسه تحلیلی بردارها در فضای R

هندسه تحلیلی بردارها در فضای R هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد

Διαβάστε περισσότερα

جلسه ی ۵: حل روابط بازگشتی

جلسه ی ۵: حل روابط بازگشتی دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: Chi-Tsong Chen, Linear System Theory and Design, 1999.

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: Chi-Tsong Chen, Linear System Theory and Design, 1999. DVNCED CONTROL l Karmpour ssoca Prossor Frdows Uvrsy o Mashhad Rrc: Ch-Tsog Ch, Lar Sysm Thory ad Dsg, 999. Lcur lcur Basc Ida o Lar lgbra-par II Topcs o b covrd clud: Fucos o Squar Marx. Lyapuov Equao.

Διαβάστε περισσότερα

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

خالصه درس: نویسنده:مینا سلیمان گندمی و هاجر کشاورز امید ریاضی شرطی. استقالل متغیر های تصادفی پیوسته x و y استقالل و امید ریاضی

خالصه درس: نویسنده:مینا سلیمان گندمی و هاجر کشاورز امید ریاضی شرطی. استقالل متغیر های تصادفی پیوسته x و y استقالل و امید ریاضی به نام خدا آمار و احتمال مهندسی هفته 21 نیمسال اول ۴9-۴9 مدرس: دکتر پرورش ۴9/24/49 نویسنده:مینا سلیمان گندمی و هاجر کشاورز خالصه درس: امید ریاضی شرطی استقالل متغیر های تصادفی پیوسته x و y استقالل و امید

Διαβάστε περισσότερα

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و

Διαβάστε περισσότερα

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار بماند ولی در فیدبک مثبت هدف فقط باال بردن بهره است در

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

عنوان: رمزگذاري جستجوپذیر متقارن پویا

عنوان: رمزگذاري جستجوپذیر متقارن پویا دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم

Διαβάστε περισσότερα

به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان

به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان به نام ستاره آفرین قضیه ویریال درود بر ملت نجومی! در این درس نامه می خواهیم یکی از قضیه های معروف اخترفیزیک و مکانیک یعنی قضیه ی شریفه ی ویریال را به دست آوریم. به طور خالصه قضیه ی ویریال متوسط انرژی جنبشی

Διαβάστε περισσότερα

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی دانشکده ی علوم ریاضی ساختمان داده ۱۰ ا ذر ۹۲ جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی مدر س: دکتر شهرام خزاي ی نگارنده: معین زمانی و ا رمیتا اردشیری ۱ یادا وری همان طور که درجلسات پیش مطرح

Διαβάστε περισσότερα

CD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است.

CD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است. 1.چهار مثلث چوبی مساوي با اضلاع 3 و 4 و 5 داریم. با استفاده از این چهار مثلث چه تعداد چندضلعی محدب می توان ساخت نیازي به اثبات نیست و تنها کافی است چندضلعی هاي موردنظر را رسم کنید. چندضلعی محدب به چندضلعی

Διαβάστε περισσότερα

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت

Διαβάστε περισσότερα

شاخصهای پراکندگی دامنهی تغییرات:

شاخصهای پراکندگی دامنهی تغییرات: شاخصهای پراکندگی شاخصهای پراکندگی بیانگر میزان پراکندگی دادههای آماری میباشند. مهمترین شاخصهای پراکندگی عبارتند از: دامنهی تغییرات واریانس انحراف معیار و ضریب تغییرات. دامنهی تغییرات: اختالف بزرگترین و

Διαβάστε περισσότερα

تمرین اول درس کامپایلر

تمرین اول درس کامپایلر 1 تمرین اول درس 1. در زبان مربوط به عبارت منظم زیر چند رشته یکتا وجود دارد (0+1+ϵ)(0+1+ϵ)(0+1+ϵ)(0+1+ϵ) جواب 11 رشته کنند abbbaacc را در نظر بگیرید. کدامیک از عبارتهای منظم زیر توکنهای ab bb a acc را ایجاد

Διαβάστε περισσότερα

به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم

به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم پردازش گفتار به نام خدا نیمسال اول 59-59 دکتر صامتی تمرین سری سوم پیشبینی خطی و کدینگ شکلموج دانشکده مهندسی کامپیوتر زمان تحویل: 32 آبان 4259 تمرینهای تئوری: سوال 1. می دانیم که قبل از انجام تحلیل پیشبینی

Διαβάστε περισσότερα

فیلتر کالمن Kalman Filter

فیلتر کالمن Kalman Filter به نام خدا عنوان فیلتر کالمن Kalman Filter سیدمحمد حسینی SeyyedMohammad Hosseini Seyyedmohammad [@] iasbs.ac.ir تحصیالت تکمیلی علوم پایه زنجان Institute for Advanced Studies in Basic Sciences تابستان 95

Διαβάστε περισσότερα

Beta Coefficient نویسنده : محمد حق وردی

Beta Coefficient نویسنده : محمد حق وردی مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی در رساناها مانند یک سیم مسی الکترون های آزاد وجود دارند که با سرعت های متفاوت بطور کاتوره ای)بی نظم(در حال حرکت هستند بطوریکه بار خالص گذرنده

Διαβάστε περισσότερα

مود لصف یسدنه یاه لیدبت

مود لصف یسدنه یاه لیدبت فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

مینامند یا میگویند α یک صفر تابع

مینامند یا میگویند α یک صفر تابع 1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله

Διαβάστε περισσότερα

جلسه ی ۱۱: درخت دودویی هرم

جلسه ی ۱۱: درخت دودویی هرم دانشکده ی علوم ریاضی ساختمان داده ا بان جلسه ی : درخت دودویی هرم مدر س: دکتر شهرام خزاي ی نگارنده: احمدرضا رحیمی مقدمه الگوریتم مرتب سازی هرمی یکی دیگر از الگوریتم های مرتب سازی است که دارای برخی از بهترین

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

به نام حضرت دوست. Downloaded from: درسنامه

به نام حضرت دوست. Downloaded from:  درسنامه به نام حضرت دوست درسنامه کروی هندسه گردآوری: و تهی ه معتمدی ارسالن اصالح: سی د و بازبینی امیر سادات موسوی سالم دوستان همان طور که می دانیم نجوم کروی یکی از بخش های مهم المپیاد نجوم است. این علم شامل دو

Διαβάστε περισσότερα

مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد.

مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد. ) مسائل مدیریت کارخانه پوشاک تصمیم دارد مطالعه ای به منظور تعیین میانگین پیشرفت کارگران کارخانه انجام دهد. اگر او در این مطالعه دقت برآورد را 5 نمره در نظر بگیرد و فرض کند مقدار انحراف معیار پیشرفت کاری

Διαβάστε περισσότερα

ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( )

ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( ) دینامیک و ارتعاشات ad ad ω x, ω y 6, ω z s s ωω ˆ ˆ ˆ ˆ y j+ω z k 6j+ k A xx x ˆ yy y ˆ zz z ˆ H I ω i+ I ω j+ I ω k, ω x HA Iyyω y ˆ i+ Izz ωz k ˆ Ωω y ĵ پاسخ تشریحی توسط: استاد مسیح لقمانی A گزینه درست

Διαβάστε περισσότερα

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2. تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت جزوه تکنیک پالس فصل چهارم: مولتی ویبراتورهای ترانزیستوری فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

فصل چهارم تعیین موقعیت و امتدادهای مبنا

فصل چهارم تعیین موقعیت و امتدادهای مبنا فصل چهارم تعیین موقعیت و امتدادهای مبنا هدف های رفتاری پس از آموزش و مطالعه این فصل از فراگیرنده انتظار می رود بتواند: 1 راهکار کلی مربوط به ترسیم یک امتداد در یک سیستم مختصات دو بعدی و اندازه گیری ژیزمان

Διαβάστε περισσότερα

سینماتیک مستقیم و وارون

سینماتیک مستقیم و وارون 3 سینماتیک مستقیم و وارون بهنام میری پور فرد استادیار گروه مهندسی رباتیک دانشگاه صنعتی همدان همدان ایران bmf@hut.ac.ir B. Miripour Fard Hamedan University of Technology 1 در سینماتیک حرکت بررسی کند می

Διαβάστε περισσότερα

پروژه یازدهم: ماشین هاي بردار پشتیبان

پروژه یازدهم: ماشین هاي بردار پشتیبان پروژه یازدهم: ماشین هاي بردار پشتیبان 1 عموما براي مسایلی که در آنها دو دسته وجود دارد استفاده میشوند اما ماشین هاي بردار پشتیبان روشهاي متفاوتی براي ترکیب چند SVM و ایجاد یک الگوریتم دستهبندي چند کلاس

Διαβάστε περισσότερα

راهنمای کاربری موتور بنزینی )سیکل اتو(

راهنمای کاربری موتور بنزینی )سیکل اتو( راهنمای کاربری موتور بنزینی )سیکل اتو( هدف آزمایش : شناخت و بررسی عملکرد موتور بنزینی تئوری آزمایش: موتورهای احتراق داخلی امروزه به طور وسیع برای ایجاد قدرت بکار می روند. ژنراتورهای کوچک پمپ های مخلوط

Διαβάστε περισσότερα

Top Down Parsing LL(1) Narges S. Bathaeian

Top Down Parsing LL(1) Narges S. Bathaeian طراحی کامپایلر Top Down Parsing LL1) تعریف top down parsing Parse tree را از ریشه به سمت برگها می سازد. دو نوع LL1), LLk) Recursive descent مثال G = {S},{, ) }, P, S) S S S ) S ε ))$ مثال S S ) S ε ))$

Διαβάστε περισσότερα

6- روش های گرادیان مبنا< سر فصل مطالب

6- روش های گرادیان مبنا< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 6 روش های بهینه سازی شبیه سازی گرادیان مبنا Gradient-based Simulation Optimization methods 6- روش های گرادیان مبنا< سر فصل مطالب 2 شماره

Διαβάστε περισσότερα

آموزش SPSS مقدماتی و پیشرفته مدیریت آمار و فناوری اطالعات -

آموزش SPSS مقدماتی و پیشرفته مدیریت آمار و فناوری اطالعات - آموزش SPSS مقدماتی و پیشرفته تهیه و تنظیم: فرزانه صانعی مدیریت آمار و فناوری اطالعات - مهرماه 96 بخش سوم: مراحل تحلیل آماری تحلیل داده ها به روش پارامتری بررسی نرمال بودن توزیع داده ها قضیه حد مرکزی جدول

Διαβάστε περισσότερα

ثابت. Clausius - Clapeyran 1

ثابت. Clausius - Clapeyran 1 جدول 15 فشار بخار چند مایع خالص در دمای 25 C فشار بخار در دمایC (atm) 25 نام مایع 0/7 دیاتیل اتر 0/3 برم 0/08 اتانول 0/03 آب دمای جوش یک مایع برابر است با دمایی که فشار بخار تعادلی آن مایع با فشار اتمسفر

Διαβάστε περισσότερα

2/13/2015 حمیدرضا پوررضا H.R. POURREZA 2 آخرین گام در ساخت یک سیستم ارزیابی آن است

2/13/2015 حمیدرضا پوررضا H.R. POURREZA 2 آخرین گام در ساخت یک سیستم ارزیابی آن است 1 ارزیا ی م حمیدرضا پوررضا قد 2 آخرین گام در ساخت یک سیستم ارزیابی آن است 1 ف ی ا ط لاحات 3 :Degrees of Freedom (DOF) این اصطلاح در سیستمهاي ردیاب استفاده میشود و بنابه تعریف عبارتست از آزادي حرکت انتقالی

Διαβάστε περισσότερα

http://econometrics.blog.ir/ متغيرهای وابسته نماد متغيرهای وابسته مدت زمان وصول حساب های دريافتني rcp چرخه تبدیل وجه نقد ccc متغیرهای کنترلی نماد متغيرهای کنترلي رشد فروش اندازه شرکت عملکرد شرکت GROW SIZE

Διαβάστε περισσότερα

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

آشنایی با پدیده ماره (moiré)

آشنایی با پدیده ماره (moiré) فلا) ب) آشنایی با پدیده ماره (moiré) توری جذبی- هرگاه روی ورقه شفافی چون طلق تعداد زیادی نوارهای خطی کدر هم پهنا به موازات یکدیگر و به فاصله های مساوی از هم رسم کنیم یک توری خطی جذبی به وجود می آید شکل

Διαβάστε περισσότερα

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد.

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. تبدیل ها ن گاشت : D با یک و تنها یک عضو از مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. Rست که در آن هر عضو مجموعه تبد ی ل : نگاشتی یک به یک از صفحه به روی خودش است یعنی در تبدیل هیچ دو

Διαβάστε περισσότερα

خاستگاه های نظر یه میدان کوانتومی

خاستگاه های نظر یه میدان کوانتومی خاستگاه های نظر یه میدان کوانتومی وحیدکریمی پور- دانشکده فیزیک - دانشگاه صنعتی شریف ۲۷ مهر ۱۳۹۴ ۱ مقدمه در این درس می خواهیم خاستگاه های متفاوت نظریه میدان کوانتومی را معرفی کنیم. از ا نجا که این درس مقدمه

Διαβάστε περισσότερα

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.

Διαβάστε περισσότερα

ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري

ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري دان ش ک ده ي ع ل وم ری اض ی دان ش گ اه ص ن ع ت ی اص ف ه ان Copyright

Διαβάστε περισσότερα

الکتریسیته ساکن مدرس:مسعود رهنمون سال تحصیلى 95-96

الکتریسیته ساکن مدرس:مسعود رهنمون سال تحصیلى 95-96 الکتریسیته ساکن سال تحصیلى 95-96 مقدمه: همانطور که می دانیم بارهای الکتریکی بر هم نیرو وارد می کنند. بارهای الکتریکی هم نام یکدیگر را می رانند و بارهای الکتریکی نا هم نام یکدیگر را می ربایند. بار نقطه

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα