Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη αναζήτηση expectiminimax

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax"

Transcript

1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης

2 Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς ληροφόρησης εξέταση διαθέσιµης πληροφορίας Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Μ. Γ. Λαγουδάκης Ο µικρόκοσµος Τµήµα του ΗΜΜΥ Wumpus Πολυτεχνείο Κρήτης Σελίδα 2

3 Σήµερα Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική λογική µε προτάσεις Προτασιακός συµ ερασµός Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 3 model checking resolution forward chaining backward chaining

4 Λογικές Logics

5 Λογικές (Logics) Τυ ικές γλώσσες αναπαράσταση πληροφορίας µε στόχο την εξαγωγή συµπερασµάτων Σύνταξη (syntax) καλά σχηµατισµένες / διατυπωµένες προτάσεις συντακτικά σωστή: x+y=2, συντακτικά λανθασµένη: xy2+= Σηµασιολογία (semantics) νόηµα πρότασης = αλήθεια πρότασης σε κάθε δυνατό κόσµο Μ. Γ. Λαγουδάκης x+y=2 : αληθής Τµήµα αν x=y=1, ΗΜΜΥ ψευδής Πολυτεχνείο αν x=y=4 Κρήτης Σελίδα 5 Μοντέλα (models) µοντέλα: περιγραφή δυνατών κόσµων (µαθηµατική αφαίρεση) µοντέλο: καθορισµός αλήθειας ή ψεύδους κάθε σχετικής πρότασης m µοντέλο πρότασης p = η πρόταση p είναι αληθής στο µοντέλο m

6 Λογική Κάλυψη (Εntailment) Λογική κάλυψη (entailment) α β: η πρόταση α καλύ τει (entails) την πρόταση β ορισµός: (α β) (σε κάθε µοντέλο, α αληθής β αληθής) (α β) Μ(α) Μ(β), όπου Μ(p) = µοντέλα της πρότασης p Ερµηνεία η πρόταση β προκύπτει λογικά από την πρόταση α αν η α είναι αληθής, τότε και η β ρέ ει να είναι αληθής Μ. Γ. Λαγουδάκης η αλήθεια της Τµήµα β «εριέχεται» ΗΜΜΥ Πολυτεχνείο στην αλήθεια Κρήτης α Σελίδα 6 παράδειγµα: (x + y = 4) (4 = x + y) Παρατηρήσεις κάλυψη: σχέση µεταξύ προτάσεων βασισµένη στη σηµασιολογία λογική κάλυψη: διαφορετική από τη συνεπαγωγή

7 ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006 Παράδειγµα: για wumpus, χρυσόγούβα Ο Κόσµος του Wumpus Μέτρο πλέγµα για για κάθε χρήση βήµα βέλους α όδοσης µετακίνηση στροφή 4x4, P(γούβα)=0.2 αρπαγή Περιβάλλον εξακόντιση +90οή εµπρός 90ο Ε ενεργητές Μ. Γ. Λαγουδάκης [δυσοσµία, χρυσού αύρα, βέλουςλάµψη, Τµήµα γδούπος, ΗΜΜΥ κραυγή] Πολυτεχνείο Κρήτης Σελίδα 7 Αισθητήρες

8 υνατά Μοντέλα του Κόσµου Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 8

9 Μοντέλα της Βάσης Γνώσης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 9

10 Παράδειγµα Λογικής Κάλυψης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 10 α1= εν υπάρχει γούβα στο [1,2]. KB α1 α2= εν υπάρχει γούβα στο [2,2]. KB α2

11 Λογικός Συµ ερασµός (Logical Inference) Έλεγχος µοντέλων (model checking) έλεγχος αν η α είναι αληθής στα µοντέλα που η KB είναι αληθής εξαντλητική απαρίθµηση (πεπερασµένος αριθµός µοντέλων) Συµ ερασµός (inference) KB iα: ο αλγόριθµος i παράγει την πρόταση α από την KB Ορθότητα (soundness) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 11 παράγει µόνο καλυπτόµενες προτάσεις: KB iα KB α διατήρηση της αληθείας (truth preservation) Πληρότητα (completeness) παράγει οποιαδήποτε καλυπτόµενη πρόταση: KB α KB iα

12 ιαδικασία Συλλογιστικής Θεµελίωση (grounding) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 12 σύνδεση πραγµατικού κόσµου και βάσης γνώσης πώς γνωρίζουµε ότι η βάση γνώσης είναι αληθής στον κόσµο; άµεσες βραχυπρόθεσµες πηγές: αισθήσεις προτάσεις έµµεσες µακροπρόθεσµες πηγές: µάθηση γενικοί κανόνες

13 Προτασιακή Λογική Propositional Logic

14 Γ3,1 Σύνταξη Ατοµικές ροτάσεις (atomic sentences) Αληθές (πάντα αληθής πρόταση), Ψευδές (πάντα ψευδής πρόταση) προτασιακά σύµβολα: P, Q, R, W1,3, Λογικά συνδετικά (logical connectives) άρνηση (negation) : P (θετικά και αρνητικά λεκτικά literals) σύζευξη (conjunction) : P Q (συζευκτέοι) διάζευξη (disjunction) : P Q (διαζευκτέοι) Μ. Γ. Λαγουδάκης συνεπαγωγή (implication) Τµήµα ΗΜΜΥ : P Πολυτεχνείο Q (προϋπόθεση Κρήτης και επακόλουθο) Σελίδα 14 ισοδυναµία (equivalence), P Q (αµφίδροµη συνεπαγωγή) Προτεραιότητα (µεγαλύτερη),,,, (µικρότερη)

15 Σηµασιολογία P Q P P Q P Q P Q P Q Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 15 Αληθές Μοντέλο καθορίζει την τιµή αληθείας κάθε προτασιακού συµβόλου Πίνακας αληθείας (truth table) καθορίζει την τιµή αληθείας κάθε σύνθετης πρότασης Ψευδές Ψευδές Αληθές Αληθές Ψευδές Αληθές Ψευδές Αληθές Αληθές Αληθές Ψευδές Ψευδές Ψευδές Ψευδές Ψευδές Αληθές Ψευδές Αληθές Αληθές Αληθές Αληθές Αληθές Ψευδές Αληθές Αληθές Ψευδές Ψευδές

16 Μια Α λή Βάση Γνώσης Κόσµος του Wumpus µόνο µε γούβες Γi,j υπάρχει γούβα στο [i, j]; Ai,j υπάρχει αύρα στο [i, j]; Προτάσεις Α2,1 (Αξιώµατα) R5: Βάση γνώσης Γ1,1 Α1,1 R1: R2: Α1,1 (Γ1,2 Γ2,1) Μ. Γ. Λαγουδάκης R3: Α2,1 (Γ1,1 Γ2,2 Γ3,1) Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 16 R4: σύζευξη προτάσεων: KB = R1 R2 R3 R4 R5

17 Γ3,1 Συµ ερασµός µε Α αρίθµηση I απάντηση σε ερωτήσεις της µορφής: KB α; Α αρίθµηση µεταβλητές: Α1,1, Α2,1, Γ1,1, Γ1,2, Γ2,1, Γ2,2, η ΚΒ είναι αληθής σε 3 από τα 128 µοντέλα Λογική κάλυψη KB Γ1,2, KB Γ2,2, KB Γ2,2, KB Γ3,1, KB Γ3,1,... ορθός και πλήρης αλγόριθµος (αναζήτηση πρώτα σε βάθος) Μ. Γ. Πολυ λοκότητα Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 17 χρονική Ο(2n), χωρική Ο(n), για n προτασιακά σύµβολα Θεώρηµα Κάθε γνωστός αλγόριθµος συµ ερασµού για ροτασιακή λογική έχει εκθετική ολυ λοκότητα χειρότερης ερί τωσης ως ρος την είσοδο.

18 Α1,1 Α2,1 Γ1,1 Γ1,2 Γ2,1 Γ2,2 Γ3,1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006 Συµ ερασµός µε Α αρίθµηση II Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 18

19 Συµ ερασµός µε Α αρίθµηση III Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 19

20 (α β) ((α β) Λογική ((α β) (α β) (β α) Ισοδυναµία (Logical Equivalence) ( α) α (β α) γ) γ) (α (β γ)) (α (β γ)) προσεταιριστικότητα αντιµεταθετικότητα του του β) ανν (α β) και (β (α β) (α β) ( β α) ( α β) ((α β) (β α)) απαλοιφή αντιθετοαντιστροφή αµφίδροµης συνεπαγωγής διπλής α) άρνησης (α β) ( α β) συνεπαγωγής Μ. Γ. Λαγουδάκης (α β) (α (β γ)) (α (β γ)) ( α β) ((α β) ((α β) Τµήµα (a γ)) (a γ)) ΗΜΜΥ Πολυτεχνείο επιµεριστικότητα νόµος De Morgan Κρήτης του ως ως προς Σελίδα το 20

21 Εγκυρότητα (Validity) Έγκυρη ρόταση (ταυτολογία) είναι αληθής σε όλα τα µοντέλα παραδείγµατα: P P, P P, Ψευδές, (P (P Q)) Q αναγκαία αληθής, συνεπώς «κενή περιεχοµένου» λογικά ισοδύναµη µε την πρόταση Αληθές Θεώρηµα της αραγωγής (deduction theorem) Μ. Γ. Λαγουδάκης για κάθε α και Τµήµα β, (α β) ΗΜΜΥ ανν Πολυτεχνείο η (α β) είναι Κρήτης έγκυρη Σελίδα 21

22 Ικανο οιησιµότητα (Satisfiability) Πρόταση ικανοποιήσιµη: είναι αληθής σε ένα τουλάχιστον µοντέλο µη ικανοποιήσιµη: δεν είναι αληθής σε κανένα µοντέλο Ικανο οιησιµότητα πρόβληµα: υπάρχει µοντέλο m που ικανοποιεί την α; προσδιορισµός ικανοποιησιµότητας πρότασης πρώτο NP-πλήρες πρόβληµα Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 22 Αντιθετοαντιστροφή (contraposition) η α είναι έγκυρη αν και µόνο αν η α είναι µη ικανοποιήσιµη Α αγωγή σε άτο ο (α β) εάν και µόνο εάν η ρόταση (α β) είναι µη ικανο οιήσιµη

23 Προτασιακός Συµ ερασµός Propositional Inference

24 Συλλογιστική (Reasoning) Κανόνες συµ ερασµού εφαρµογή κανόνων συµπερασµού στη βάση γνώσης παραγωγή νέων συµπερασµάτων απο τη βάση γνώσης α όδειξη: ακολουθία εφαρµογής κανόνων συµπερασµού συνήθως απαιτείται είσοδος σε κάποια κανονική µορφή Έλεγχος µοντέλων Μ. Γ. Λαγουδάκης απαρίθµηση Τµήµα όλων των ΗΜΜΥ µοντέλων Πολυτεχνείο (εκθετική Κρήτης πολυπλοκότητα) Σελίδα 24 έλεγχος εγκυρότητας πρότασης στα µοντέλα βάσης γνώσης συστηµατική αναζήτηση στο χώρο των δυνατών µοντέλων ευρετική τοπική αναζήτηση στο χώρο των δυνατών µοντέλων

25 Κανόνες Συµ ερασµού (Inference Rules) Κανόνες λογικές ισοδυναµίες «τρόπος του θέτειν» (modus ponens) απαλοιφή του και (and-elimination) εισαγωγή του και (and-introduction) εισαγωγή του ή (or-introduction) Μ. Γ. Λαγουδάκης διπλή άρνηση Τµήµα (double ΗΜΜΥ negation) Πολυτεχνείο Κρήτης Σελίδα 25 µοναδιαία ανάλυση (unit resolution) ανάλυση (resolution) Ορθότητα εφαρµόσιµοι χωρίς έλεγχο µοντέλων α,β,γ δ α, β, γ δ

26 Κανόνες Συµ ερασµού (Ι) Λογικές ισοδυναµίες προκύπτουν δύο κανόνες Modus ponens («τρό ος του θέτειν») δοθείσας µιας συνεπαγωγής και της προϋπόθεσης συµπεραίνουµε το επακόλουθο Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Α αλοιφή του και Σελίδα 26 από µια σύζευξη συµπεραίνουµε οποιονδήποτε όρο της Εισαγωγή του και α β ( α β) ( β α ) σύζευξη προτάσεων που ισχύουν ( α β) ( β α ) α β α β,nn, α β α β α α, α, α, α α α α α

27 ,nn Κανόνες Συµ ερασµού (ΙΙ) Εισαγωγή του ή α, α, α, α διάζευξη προτάσεων που ισχύουν α α α α ι λή άρνηση α αναίρεση αρνήσεων α Μοναδιαία ανάλυση Μ. Γ. Λαγουδάκης αν δεν ισχύει Τµήµα ο ένας ΗΜΜΥ όρος µιας Πολυτεχνείο διάξευξης Κρήτης α Σελίδα β, β 27 θα πρέπει να ισχύει ο άλλος α Ανάλυση αφαίρεση συµπληρωµατικών όρων από δύο α β, β γ διαζεύξεις και σύµπτυξη των υπολοίπων α γ

28 Α όδειξη (Proof) Α όδειξη ρότασης ακολουθία εφαρµογής κανόνων συµπερασµού η οποία παράγει µια δεδοµένη πρόταση από µια αρχική βάση γνώσης Α όδειξη ως αναζήτηση καταστάσεις: πιθανές βάσεις γνώσης ενέργειες: εφαρµόσιµοι κανόνες συµπερασµού Μ. Γ. Λαγουδάκης διάδοχοι: βάση Τµήµα γνώσης ΗΜΜΥ εµπλουτισµένη Πολυτεχνείο µε Κρήτης συµπεράσµατα Σελίδα 28 στόχος: µονοπάτι/ακολουθία συµπερασµού ιαδικασία αναζήτησης προς τα εµπρός: από αρχική βάση γνώσης προς πρόταση-στόχο προς τα πίσω: από πρόταση-στόχο προς αρχική βάση γνώσης

29 R1: Γ1,1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006 R2:Α1,1 (Γ1,2 Γ2,1) R3:Α2,1 (Γ1,1 Γ2,2 Γ3,1) Βάση Γνώσης R4: Παράδειγµα Ι R5: Α1,1 Γ1,2 Α όδειξη Μ. Γ. Λαγουδάκης Γ1,2 Γ2,1 R6: (Α1,1 (Γ1,2 Γ2,1)) Τµήµα ΗΜΜΥ Πολυτεχνείο ((Γ1,2 Γ2,1) Κρήτης Α1,1) Σελίδα 29 R7: ((Γ1,2 Γ2,1) Α1,1) R8: ( Α1,1 (Γ1,2 Γ2,1)) R9: (Γ1,2 Γ2,1) R10:

30 Γ1,1 Παράδειγµα ΙΙ Α1,1 Α1,2 Γ2,2 Βάση γνώσης Γ1,3 R1: R11: Γ1,1 Γ2,2 Γ3,1 R2: Α1,1 (Γ1,2 Γ2,1) R12: Α1,2 (Γ1,1 Γ2,2 Γ1,3) R3: Α2,1 (Γ1,1 Γ2,2 Γ3,1) αντιθετοαντιστροφή: R4: Μ. Γ. Λαγουδάκης Γ1,2 Γ2,1 ((Γ1,2 Γ2,1) Τµήµα Α1,1) ΗΜΜΥ Πολυτεχνείο Γ1,1 Γ3,1 R13: R14: Γ3,1 από R3και R5: R15: Κρήτης Σελίδα 30 R7: ((Γ1,2 Γ2,1) Α1,1) από R15και R13: R8: ( Α1,1 (Γ1,2 Γ2,1)) R16: R9: (Γ1,2 Γ2,1) από R16και R1: R10: R17: R5: Α2,1 R6: (Α1,1 (Γ1,2 Γ2,1)) Α όδειξη Γ3,1

31 Μονοτονικότητα (Monotonicity) Μονοτονικότητα εάν KB α, τότε KB β το σύνολο των καλυπτόµενων προτάσεων δεν µειώνεται µε προσθήκη νέων πληροφοριών στη βάση γνώσης Συµ εράσµατα οι κανόνες συµπερασµού µπορούν να εφαρµόζονται ο οτεδή οτε Μ. Γ. Λαγουδάκης ικανοποιούνται Τµήµα οι προϋποθέσεις ΗΜΜΥ Πολυτεχνείο τους Κρήτης Σελίδα 31 τα συµπεράσµατα ενός εφαρµόσιµου κανόνα πρέπει να προκύπτουν άσχετα από το τι άλλο υπάρχει στη βάση γνώσης Μη µονοτονικότητα αναλογία µε την αλλαγή γνώµης στην ανθρώπινη συλλογιστική α

32 1 1 i1 ki k li= m 1 i 1 i+ 11 kk 11 j 1n j li= mj n l Πλήρης ανάλυση (full resolution) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 32 Ανάλυση (Resolution) Εφαρµογή + 1 διαζευκτικές πρότασεις µε κάποιο συµπληρωµατικό λεκτικό Μοναδιαία ανάλυση (unit resolution) l l, m + 1 l l l l l, m m l l l l m m m m Παραγοντο οίηση (factoring) απολοιφή πολλαπλών αντιγράφων λεκτικών στο συµπέρασµα

33 Πληρότητα Ανάλυσης Πληρότητα πλήρης στρατηγική αναζήτησης εξέταση όλων των κόµβων επαρκείς κανόνες συµπερασµού κάθε συµπέρασµα προσπελάσιµο Θεώρηµα η ανάλυση από µόνη της είναι επαρκής κανόνας συµπερασµού Πληρότητα διάψευσης (refutation completeness) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 33 η ανάλυση δεν µπορεί να «αποδείξει» το Α Β, δοθέντος του Α η ανάλυση µπορεί να απαντήσει εάν το Α Β είναι αληθές ή ψευδές Χρησιµότητα επιβεβαίωση ή διάψευση πρότασης, όχι απαρίθµηση συµπερασµάτων

34 Συζευκτική Κανονική Μορφή (Conjunctive Normal Form CNF) CNF κάθε πρόταση είναι ισοδύναµη µε µια σύζευξη διαζεύξεων λεκτικών clause: διάζευξη λεκτικών CNF: ( ) ( )... ( ) Α1,1 (Γ1,2 Γ2,1) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 34 ( Α1,1 Γ1,2 Γ2,1) ( Γ1,2 Α1,1) ( Γ2,1 Α1,1) k-cnf: ακριβώς k λεκτικά ανά clause (k 3) Μετατρο ή σε CNF απαλοιφή : (α β) ((α β) (β α)) απαλοιφή : (α β) ( α β) µετακίνηση : (α β) ( α β), (α β) ( α β), ( α) α επιµερισµός ως προς : (α (β γ)) ((α β) (a γ))

35 Αλγόριθµος Ανάλυσης Α όδειξη KB α ισοδύναµα, απόδειξη ότι η (KB α) είναι µη ικανοποιήσιµη Αλγόριθµος εισάγουµε την α στην KB µετατρέπουµε την (KB α) σε µορφή CNF εφαρµόζουµε τον κανόνα της ανάλυσης Μ. Γ. Λαγουδάκης σε οποιοδήποτε Τµήµα ΗΜΜΥ ζεύγος Πολυτεχνείο clauses µπορεί Κρήτης να εφαρµοστεί Σελίδα 35 αν συµπεράνουµε την κενή πρόταση (άτοπο) η πρόταση α καλύπτεται από την KB ειδάλλως η πρόταση α δεν καλύπτεται από την KB

36 Αλγόριθµος Ανάλυσης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 36

37 Παράδειγµα Ανάλυσης Α1,1 Βάση γνώσης KB = R2 R4= (Α1,1 (Γ1,2 Γ2,1)) Μετατρο ή (KB Γ1,2) σε CNF ( Γ1,2 Α1,1) ( Α1,1 Γ1,2 Γ2,1) ( Γ2,1 Α1,1) ( Α1,1) (Γ1,2) Ανάλυση Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 37 Α όδειξη Γ1,2

38 Πληρότητα Ανάλυσης Ολοκλήρωση ανάλυσης (resolution closure) όλες οι διαζευκτικές προτάσεις (clauses) που προκύπτουν από ανάλυση πεπερασµένο σύνολο προτάσεων σε πεπερασµένο σύνολο συµβόλων Θεώρηµα της θεµελιώδους ανάλυσης (ground resolution) Αν ένα σύνολο διαζευτικών ροτάσεων S είναι µη ικανο οιήσιµο, τότε η ολοκλήρωση της ανάλυσης τους RC(S) εριέχει την κενή ρόταση. Μ. Α όδειξη Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 38 απόδειξη της αντιθετοαντιστροφής αν η RC(S) εριέχει την κενή ρόταση, τότε το S είναι ικανο οιήσιµο κατασκευή µοντέλου για την S

39 Α1,1 Προτάσεις Horn Horn clauses διαζευκτικές προτάσεις µε ένα το ολύ θετικό λεκτικό π.χ. Θ1,1 Αύρα Οριστικές ροτάσεις (definite clauses) διαζεύξεις µε ακριβώς ένα θετικό λεκτικό (κανόνες) π.χ. Θ1,1 Αύρα Α1,1(σώµα Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο W1,1 W1,2 Α1,1 κεφαλή) λογικός προγραµµατισµός (Prolog) Κρήτης Σελίδα 39 Γεγονότα (facts) µόνο ένα θετικό λεκτικό, π.χ. Περιορισµοί ακεραιότητας (integrity constraints) µόνο αρνητικά λεκτικά, π.χ.

40 Συµ ερασµός µε ροτάσεις Horn Προς τα εµ ρός αλυσίδα εκτέλεσης (forward chaining) καθοδηγούµενη από τα δεδοµένα (data-driven) εάν ικανοποιούνται οι προϋποθέσεις, συµπεραίνουµε το επακόλουθο καλύπτεται η πρόταση-στόχος από τα δεδοµένα; Προς τα ίσω αλυσίδα εκτέλεσης (backward chaining) κατευθυνόµενη από τους στόχους (goal-directed) Μ. Γ. Λαγουδάκης για να ισχύει µια Τµήµα πρόταση, ΗΜΜΥ πρέπει Πολυτεχνείο να ισχύουν Κρήτης οι προϋποθέσεις Σελίδα της 40 είναι αληθείς όλες οι προϋποθέσεις της πρότασης-στόχου; Χρονική ολυ λοκότητα γραµµική ως προς το µέγεθος της βάσης γνώσης!

41 Ανα αράσταση µε Γράφηµα AND-OR Προτάσεις Horn P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης A Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 41 B

42 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 42 B

43 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 43 B

44 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 44 B

45 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 45 B

46 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 46 B

47 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 47 B

48 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 48 B

49 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 49 B

50 Forward Chaining Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 50

51 Ορθότητα και Πληρότητα Ορθότητα ο αλγόριθµος forward chaining είναι ορθός κάθε συµπερασµός είναι εφαρµογή του modus ponens Πληρότητα ο αλγόριθµος forward chaining είναι πλήρης κάθε λογικά καλυπτόµενη πρόταση µπορεί να αποδειχθεί Α όδειξη ληρότητας Μ. Γ. Λαγουδάκης σταθερό σηµείο Τµήµα (fixed ΗΜΜΥ point): Πολυτεχνείο δεν παράγονται Κρήτης συµπεράσµατα Σελίδα 51 κάθε προτασιακό σύµβολο έχει τιµή Αληθές ή Ψευδές (µοντέλο) έστω ξ Ψευδές, ενώ θα έπρεπε να είναι αληθές τότε θα υπάρχει (α β... γ ξ ) Ψευδής (α β... γ) Αληθής άτοπο, γιατί δεν θα ήταν ο αλγόριθµος στο σταθερό σηµείο

52 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 52 B

53 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 53 B

54 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 54 B

55 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 55 B

56 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 56 B

57 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 57 B

58 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 58 B

59 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 59 B

60 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 60 B

61 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 61 B

62 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 62 B

63 Μελέτη Σύγγραµµα Ενότητες 7.3, 7.4, 7.5 Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 63

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή

Διαβάστε περισσότερα

Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ. Ι.

Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ. Ι. Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ Ι. Χατζηλυγερούδης ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Τετάρτη/Τρίτη 5.00-7.00 µ.µ. (ΠΡΟΚΑΤ Τµήµατος

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

Εισαγωγή στις Περιγραφικές Λογικές

Εισαγωγή στις Περιγραφικές Λογικές Εισαγωγή στις Περιγραφικές Λογικές Σύνταξη, Σημασιολογία και Αλγόριθμοι Συλλογιστικής Γιώργος Στοΐλος Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Εθνικό Μετσόβιο Πολυτεχνείο 1. Εισαγωγή Ένα από τα προβλήματα

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #1

ιαφάνειες παρουσίασης #1 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

Ε ανάληψη. Χρόνος και όροι. Ιεραρχία. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. χρονοπρογραµµατισµός εργασιών. ιεραρχικά δίκτυα εργασιών

Ε ανάληψη. Χρόνος και όροι. Ιεραρχία. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. χρονοπρογραµµατισµός εργασιών. ιεραρχικά δίκτυα εργασιών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση σε µη Αιτιοκρατικά Πεδία Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Χρόνος και όροι χρονοπρογραµµατισµός εργασιών

Διαβάστε περισσότερα

οµηµένες Αναπαραστάσεις Γνώσης

οµηµένες Αναπαραστάσεις Γνώσης οµηµένες Αναπαραστάσεις Γνώσης! Η κλασική λογική δε µπορεί να αναπαραστήσει κλάσεις αντικειµένων.! Είναι επιθυµητή η µείωση του όγκου της γνώσης για ένα πρόβληµα.! Η πράξη απαιτεί µία περισσότερο διαισθητική

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Δημήτρης Πορτίδης / Στάθης Ψύλλος / Διονύσιος Αναπολιτάνος: Λογική. Η δομή του επιχειρήματος. Αθήνα: Νεφέλη 2007, 292 σ., 22.

Δημήτρης Πορτίδης / Στάθης Ψύλλος / Διονύσιος Αναπολιτάνος: Λογική. Η δομή του επιχειρήματος. Αθήνα: Νεφέλη 2007, 292 σ., 22. 1/6 2009-01 Πορτίδης/Ψύλλος/Αναπολιτάνος: Λογική Δημήτρης Πορτίδης / Στάθης Ψύλλος / Διονύσιος Αναπολιτάνος: Λογική. Η δομή του επιχειρήματος. Αθήνα: Νεφέλη 2007, 292 σ., 22. Κρίνει ο Αριστείδης Αραγεώργης

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Α4. Δίδεται ο παρακάτω αλγόριθμος

Α4. Δίδεται ο παρακάτω αλγόριθμος Διαγώνισμα 2014-15 Ανάπτυξη Εφαρμογών σε Πραγματικό Περιβάλλον Επώνυμο Όνομα Εξεταζόμενο μάθημα Γ Λυκείου Κυριακή 02/11/2014 Τμήμα Ημερομηνία Τάξη Θέμα Α A1. Επιλέξτε Σωστό ή Λάθος για τις παρακάτω προτάσεις:

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο Μαθηματικών Δυτικής Θεσσαλονίκης gthom@otenet.gr ΕΙΣΑΓΩΓΗ Έχουν γίνει αρκετές απόπειρες στο παρελθόν για τη διδασκαλία στοιχείων της μαθηματικής λογικής

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α. 1. Αν το Α έχει την τιµή 10 και το Β την τιµή 20 τότε η έκφραση (Α > 8 ΚΑΙ Β < 20) Ή (Α > 10 Ή Β = 10) είναι αληθής 2. Σε περίπτωση εµφωλευµένων βρόχων, ο εσωτερικός

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Σηµειώσεις στο µάθηµα ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ. ιδάσκων : Χαράλαµπος Κορνάρος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Σηµειώσεις στο µάθηµα ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ. ιδάσκων : Χαράλαµπος Κορνάρος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Σηµειώσεις στο µάθηµα ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ιδάσκων : Χαράλαµπος Κορνάρος ηµιουργία του ηλεκτρονικού αρχείου Χρήστος Πηλιχός Φοιτητής του Τµήµατος

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Ντετερμινιστικά Πεπερασμένα Αυτόματα 14-Sep-11 Τυπικός Ορισμός Ντετερμινιστικών

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 27 Μαρτίου 2013 Περίληψη Σκοπός της παρούσας εργασίας είναι η εξοικείωσή σας με τις θεμελιώδεις θεωρητικές και πρακτικές πτυχές

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Chapter 7, 8 : Completeness

Chapter 7, 8 : Completeness CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές

Γλώσσες Προγραμματισμού Μεταγλωττιστές Γλώσσες Προγραμματισμού Μεταγλωττιστές Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Γλώσσες Προγραμματισμού Εισαγωγικά Γλώσσα Μηχανής Γλώσσες υψηλού επιπέδου Μεταγλωττιστές

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI

Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Σχεσιακή Άλγεβρα Τελεστές Συνένωσης

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Mαθηματική Λογική και Λογικός Προγραμματισμός

Mαθηματική Λογική και Λογικός Προγραμματισμός ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΤΗΜΑΤΩΝ ΦΕΒΡΟΥΑΡΙΟΥ 2004 Θέμα 1 ο : Αποδείξτε με τον κανόνα της επίλυσης τα ακόλουθα Α. Η πρόταση (Α (Β C)) & (A B) & (A C) είναι μη επαληθεύσιμη Β. Η Β είναι αποδείξιμη από το Δ={ (Β

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ κ ΙΑΓΩΝΙΣΜΑ Α ΘΕΜΑ 1 Α. Να γράψετε τους αριθµούς της στήλης Α και δίπλα το γράµµα της Στήλης Β που αντιστοιχεί

Διαβάστε περισσότερα

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Πνευματικά Δικαιώματα 2007 Ίδρυμα ECDL (ECDL Foundation www.ecdl.org) Όλα τα δικαιώματα είναι κατοχυρωμένα. Κανένα μέρος αυτού του εγγράφου δεν μπορεί να αναπαραχθεί

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Max Planck Institute for Software Systems (MPI-SWS)

Max Planck Institute for Software Systems (MPI-SWS) Μια ταπεινή προσπάθεια κατανόησης του χαλαρού μοντέλου μνήμης της C/C++ Βίκτωρ Βαφειάδης Max Planck Institute for Software Systems (MPI-SWS) Σημασιολογία των παράλληλων προγραμμάτων Μοντέλα μνήμης (memory

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες ----Πράκτορες

Ευφυείς Τεχνολογίες ----Πράκτορες Ευφυείς Τεχνολογίες ----Πράκτορες Ενότητα 4: Αρχιτεκτονικές Ευφυών Πρακτόρων Δημοσθένης Σταμάτης demos@it.teithe.gr www.it.teithe.gr/~demos Μαθησιακοί Στόχοι της ενότητας 4 H κατανόηση των διαφόρων μοντέλων/αρχιτεκτονικών

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Βάλβης Δημήτριος Μηχανικός Πληροφορικής ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα

Διαβάστε περισσότερα

«ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΚΑΙ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΤΟ ΛΥΚΕΙΟ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Αναστασία Δ. Λύρη

«ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΔΕΙΞΗ ΚΑΙ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΤΟ ΛΥΚΕΙΟ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Αναστασία Δ. Λύρη ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΗ : ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΟΛΗ : ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΥΓΧΡΟΝΕΣ ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΠΤΥΧΙΑΚΟ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΒΑΙΚΕ ΕΝΝΟΙΕ ΑΓΟΡΙΘΜΩΝ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΩΤΟΥ ΑΘΟΥ 1. ηµειώστε το γράµµα αν η πρόταση είναι σωστή και το γράµµα αν είναι λάθος. 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Κεφάλαιο 1 ο Εισαγωγή στην Πληροφορική 1.1 Εισαγωγικές Έννοιες - Ορισμοί Πληροφορία (information) είναι η αποδιδόμενη σημασία σε ένα παρατηρούμενο συμβάν ή αντικείμενο, καθώς αυτό ταυτοποιείται με μια

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σύνολα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ορισμός Συνόλου Σύνολο είναι μια συλλογή

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ,

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ Αγ. Στέφανος 1-12-2014 ΗΜΟΣ ΙΟΝΥΣΟΥ Αριθ. Πρωτ.: 38090 ΙΕΥΘΥΝΣΗ ΟΙΚ. ΥΠΗΡΕΣΙΩΝ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ Αγ. Στέφανος 1-12-2014 ΗΜΟΣ ΙΟΝΥΣΟΥ Αριθ. Πρωτ.: 38090 ΙΕΥΘΥΝΣΗ ΟΙΚ. ΥΠΗΡΕΣΙΩΝ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ Αγ. Στέφανος 1-12-2014 ΗΜΟΣ ΙΟΝΥΣΟΥ Αριθ. Πρωτ.: 38090 ΙΕΥΘΥΝΣΗ ΟΙΚ. ΥΠΗΡΕΣΙΩΝ ΠΡΟΣ Την Οικονοµική Ε ιτρο ή ήµου ιονύσου ΘΕΜΑ: «Σύνταξη Ολοκληρωµένου Πλαισίου ράσης (Ο.Π..)

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

ΑΝΑΚΟΙΝΩΣΗ για την ρόσληψη ροσω ικού µε σύµβαση εργασίας ιδιωτικού δικαίου ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ ΙΜΗΝΗΣ ΙΑΡΚΕΙΑΣ Ο ΗΜΑΡΧΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΝΑΚΟΙΝΩΣΗ για την ρόσληψη ροσω ικού µε σύµβαση εργασίας ιδιωτικού δικαίου ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ ΙΜΗΝΗΣ ΙΑΡΚΕΙΑΣ Ο ΗΜΑΡΧΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Θεσσαλονίκη 14/6/2012 ΗΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ Βασ. Γεωργίου 1Α - 546 40 Αρ. Πρωτ: 51987 ΙΕΥΘΥΝΣΗ ΠΡΟΣΩΠΙΚΟΥ ΤΜΗΜΑ ΠΡΟΣΩΠΙΚΟΥ Ι ΙΩΤΙΚΟΥ ΙΚΑΙΟΥ ΑΝΑΚΟΙΝΩΣΗ για την ρόσληψη ροσω ικού µε σύµβαση

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

ΤΕΧΝΟΓΛΩΣΣΙΑ VIII ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΣΚΟΝΤΕΣ: ΜΑΪΣΤΡΟΣ ΓΙΑΝΗΣ, ΠΑΠΑΚΙΤΣΟΣ ΕΥΑΓΓΕΛΟΣ ΑΣΚΗΣΗ: ΔΙΟΡΘΩΣΗ ΕΚΦΡΑΣΕΩΝ (Β )

ΤΕΧΝΟΓΛΩΣΣΙΑ VIII ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΣΚΟΝΤΕΣ: ΜΑΪΣΤΡΟΣ ΓΙΑΝΗΣ, ΠΑΠΑΚΙΤΣΟΣ ΕΥΑΓΓΕΛΟΣ ΑΣΚΗΣΗ: ΔΙΟΡΘΩΣΗ ΕΚΦΡΑΣΕΩΝ (Β ) ΤΕΧΝΟΓΛΩΣΣΙΑ VIII ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΣΚΟΝΤΕΣ: ΜΑΪΣΤΡΟΣ ΓΙΑΝΗΣ, ΠΑΠΑΚΙΤΣΟΣ ΕΥΑΓΓΕΛΟΣ ΑΣΚΗΣΗ: ΔΙΟΡΘΩΣΗ ΕΚΦΡΑΣΕΩΝ (Β ) ΣΚΟΠΟΣ Σκοπός της άσκησης είναι ο σχεδιασμός και η υλοποίηση συστήματος διόρθωσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΜΒΟΥΛΙΟΥ ΕΝΤΑΞΗΣ ΜΕΤΑΝΑΣΤΩΝ του ήµου Λαµιέων

ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΜΒΟΥΛΙΟΥ ΕΝΤΑΞΗΣ ΜΕΤΑΝΑΣΤΩΝ του ήµου Λαµιέων ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΜΒΟΥΛΙΟΥ ΕΝΤΑΞΗΣ ΜΕΤΑΝΑΣΤΩΝ του ήµου Λαµιέων Άρθρο 1 (Άρθρο 7, αρ. 1 Ν. 3852/2010) ιοίκηση ήµου Ο δήµος διοικείται α ό το δηµοτικό συµβούλιο, την οικονοµική ε ιτρο ή, την ε ιτρο

Διαβάστε περισσότερα

ΕΡΜΗΝΕΙΑ ΤΟΥ ΣΥΝΤΑΓΜΑΤΟΣ άρθρο 20 παρ. 1 του Συντάγµατος ΙΚΑΙΩΜΑ ΠΡΟΣΩΡΙΝΗΣ ΙΚΑΣΤΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ

ΕΡΜΗΝΕΙΑ ΤΟΥ ΣΥΝΤΑΓΜΑΤΟΣ άρθρο 20 παρ. 1 του Συντάγµατος ΙΚΑΙΩΜΑ ΠΡΟΣΩΡΙΝΗΣ ΙΚΑΣΤΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ ΕΘΝΙΚΟ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΟΜΕΑΣ ΗΜΟΣΙΟΥ ΙΚΑΙΟΥ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΗΜΟΣΙΟΥ ΙΚΑΙΟΥ ΣΥΝΤΑΓΜΑΤΙΚΟ ΙΚΑΙΟ ΚΑΘΗΓΗΤΗΣ: Α. ΗΜΗΤΡΟΠΟΥΛΟΣ ΕΡΜΗΝΕΙΑ ΤΟΥ ΣΥΝΤΑΓΜΑΤΟΣ άρθρο 20 παρ. 1 του

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ Ανάπτυξη Εφαρµογών ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Α κ Θέµα 1 ο Α. Να γράψετε στο τετράδιο σας τον αριθµό κάθε µιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη: Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΥΠΗΡΕΣΙΑ ΣΠΟΥΔΩΝ ΚΑΙ ΦΟΙΤΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ. Χωρ. Αίθ. Α.Θ Όνομα Διδάσκοντος 10039 001. Φείδας Χρήστος 10040 1200-1329 Δ.. Π..

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΥΠΗΡΕΣΙΑ ΣΠΟΥΔΩΝ ΚΑΙ ΦΟΙΤΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ. Χωρ. Αίθ. Α.Θ Όνομα Διδάσκοντος 10039 001. Φείδας Χρήστος 10040 1200-1329 Δ.. Π.. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ //22 ΥΠΗΡΕΣΙΑ ΣΠΟΥΔΩΝ ΚΑΙ ΦΟΙΤΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ R43 ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Σελ: 22 39 ΕΠΛ Ε 2-329 Α9 9 7 Φείδας Χρήστος 4 ΕΠΛ Α 2-39 Π3 3 3 4 ΕΠΛ Β 4-9 Π4 3 3 73 ΕΠΛ 2 9-29 ΧΩΔ 74 ΕΠΛ 2 Α

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Βασικές Αλγοριθμικές Δομές 2 Εισαγωγή Οι αλγοριθμικές δομές εκφράζουν διαφορετικούς τρόπους γραφής ενός αλγορίθμου.

Διαβάστε περισσότερα

Όνομα : Επώνυμο: Τάξη : Καθηγητής : Ημ/νία : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (18-11-2012) Γ3, Γ4 ΑΝ Α < Β ΤΟΤΕ ΑΛΛΙΩΣ ΤΕΛΟΣ_ΑΝ

Όνομα : Επώνυμο: Τάξη : Καθηγητής : Ημ/νία : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (18-11-2012) Γ3, Γ4 ΑΝ Α < Β ΤΟΤΕ ΑΛΛΙΩΣ ΤΕΛΟΣ_ΑΝ Όνομα : Επώνυμο: Τάξη : ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΛΑΤΕΙΑ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 13 - ΤΗΛ. 2108048919 ΠΛΑΤΕΙΑ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 29 - ΤΗΛ. 2108100606 www.dinamiko.gr, email: info@dinamiko.gr Καθηγητής

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΠΡΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ ΦΟΡΕΙΣ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΥΠΟΒΟΛΗ ΕΝΤΥΠΩΝ ΟΑΕ ΣΤΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ «ΕΡΓΑΝΗ»

Ο ΗΓΙΕΣ ΠΡΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ ΦΟΡΕΙΣ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΥΠΟΒΟΛΗ ΕΝΤΥΠΩΝ ΟΑΕ ΣΤΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ «ΕΡΓΑΝΗ» ΠΑΡΑΡΤΗΜΑ Ο ΗΓΙΕΣ ΠΡΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ ΦΟΡΕΙΣ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΥΠΟΒΟΛΗ ΕΝΤΥΠΩΝ ΟΑΕ ΣΤΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ «ΕΡΓΑΝΗ» Οδηγίες καταχώρησης Υ οστήριξη: Σας γνωρίζουµε ότι: α) στο Πληροφοριακό Σύστηµα ΕΡΓΑΝΗ-κατά

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το

Διαβάστε περισσότερα

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Κεφάλαιο 6ο Εισαγωγή στον Προγραµµατισµό Μέρος Πρώτο (6.1, 6.2 και 6.3) Α. Ερωτήσεις Σωστού Λάθους 1. Η γλώσσα µηχανής είναι µία γλώσσα υψηλού επιπέδου.

Διαβάστε περισσότερα

1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία. Ï.Å.Ö.Å.

1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία. Ï.Å.Ö.Å. 1 Γ' ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1: Α. 1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

Απόστολος Μιχαλούδης

Απόστολος Μιχαλούδης ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΑΠΟ ΤΗ ΛΟΓΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΚΑΙ ΑΠΟ ΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΣΤΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΑΠΟ ΤΗ ΛΟΓΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΚΑΙ ΑΠΟ ΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΣΤΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΑΠΟ ΤΗ ΛΟΓΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΚΑΙ ΑΠΟ ΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΣΤΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Θεματική Ενότητα: Πολλαπλές Ερμηνευτικές Προσεγγίσεις Βασίλειος Τσακανίκας Γεώργιος Τσαπακίδης vasilistsakanikas@yahoo.gr

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Μετάφραση και δικαιώματα διανοητικής ιδιοκτησίας (DGT/2013/TIPRs)

Μετάφραση και δικαιώματα διανοητικής ιδιοκτησίας (DGT/2013/TIPRs) Μετάφραση και δικαιώματα διανοητικής ιδιοκτησίας (DGT/2013/TIPRs) Τελική έκθεση Ιούλιος 2014 ΣΥΝΟΨΗ Σκοπός της μελέτης αυτής είναι να παρουσιάσει ορισμένα από τα κυριότερα ζητήματα που αφορούν τα δικαιώματα

Διαβάστε περισσότερα

Λογικός Προγραμματισμός

Λογικός Προγραμματισμός Λογικός Προγραμματισμός Σημειώσεις Διδασκαλίας (Εκδοση 2.1) Θεμιστοκλής Ν. Παναγιωτόπουλος Επίκουρος Καθηγητής Τμήμα Πληροφορικής Πανεπιστήμιο Πειραιά Πειραιάς 2001 Πρόλογος Οι σημειώσεις αυτές γράφτηκαν

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1. ΔΗΜΙΟΥΡΓΙΑ ΕΓΓΡΑΦΩΝ ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1.1. Ορισµός εγγράφου, προτύπου, πρωτεύοντος και δευτερεύοντος εγγράφου 1.2. Πρότυπα 1.2.1. Δηµιουργία, µεταβολή, χρήση και διαγραφή προτύπων εγγράφων 1.2.2.

Διαβάστε περισσότερα

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα;

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα; ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι πρέπει να ικανοποιεί ένα κομμάτι κώδικα ώστε να χαρακτηριστεί ως υποπρόγραμμα; Τα υποπρογράμματα πρέπει

Διαβάστε περισσότερα