Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016."

Transcript

1 Prvi razred A kategorija 1. Neka je operacija,, na skupu G = {1, 2, 3,..., 2016} zadata donjom tablicom (Unutar tablice na svim mestima koja nisu eksplicitno navedena nalazi se broj 5.) Ispitati da li je operacija,, asocijativna. 2. Dat je oxtrougli ABC u kom vaжi AB < AC. Taqka D je sredixte stranice BC, a p je prava simetriqna pravoj AD u odnosu na simetralu BAC. Ako je P podnoжje normale iz temena C na pravu p, dokazati jednakost AP D = BAC. 3. Svaka taqka trodimenzionalnog prostora je obojena jednom od dve boje: crvenom ili plavom. Pritom, ako su tri taqke A, B i C obojene istom bojom i vaжi AB = AC, onda je i sredixte duжi BC obojeno istom tom bojom. Dokazati da postoji kvadar qija su sva temena obojena istom bojom Proizvod binomnog koeficijenta 21 i nepoznatog neparnog broja iznosi Odrediti cifre oznaqene zvezdicom

2 Drugi razred A kategorija 1. Odrediti broj preslikavanja f : {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} koja zadovoljavaju: f(x, x) = x za sve x {1, 2, 3, 4} i f(x, f(x, y)) = f(x, y) za sve x {1, 2, 3, 4}. 2. Na i sve funkcije f : R R takve da vaжi f(x)f(x y) + f(y)f(x + y) = x 2 + f(y) 2 za sve x, y R. 3. Na i sva rexenja (p, a, b, m) jednaqine gde je p prost broj i a, b, m N 0. p a 9 b = m 2, 4. Dat je ABC. Neka je D sredixte duжi BC. Neka je k kruжnica opisana oko ABD. Na luku AB kom ne pripada taqka D uoqimo taqku E takvu da vaжi EDB = DAC. Neka normala iz A na AD seqe pravu BC u taqki F. Neka je G druga preseqna taqka prave F E sa k; izuzetno, ako je F E tangenta na k, tada definiximo G E. Dokazati: DG = DB.

3 Tre i razred A kategorija 1. Dat je ABC. Simetrala BAC seqe stranicu BC u taqki D. Neka je M sredixte duжi BD. Uoqimo kruжnicu k koja prolazi kroz taqku A, dodiruje stranicu BC u taqki D, i seqe duжi AM i AC u taqkama P i Q, redom (P, Q A). Dokazati da su taqke B, P i Q kolinearne. 2. Da li postoji prirodan broj n takav da su n 2015 i n 2015 imaju taqno 2015 delilaca? prirodni brojevi koji 3. U toku je veliki skup n mudraca koji sede za okruglim stolom. Svaki mudrac ili uvek laжe ili uvek govori istinu. Mesta na kojima mudraci sede su numerisana od 1 do n poqevxi od nekog mesta i idu i redom u smeru kazaljke na satu gledano odozgo. Novinar, жele i da utvrdi koji su mudraci laжljivci, ixao je redom oko stola i intervjuisao mudrace, i za svako k, k = 1, 2,..., n, mudrac na k-tom mestu mu je rekao da su slede ih k mudraca od njega u smeru kazaljke na satu gledano odozgo svi laжljivci. a) Za koje vrednosti n je mogu e da mudraci daju ovaj skup izjava? b) Za koje vrednosti n (među onim vrednostima za koje je ovakav skup izjava mogu ) novinar i dalje ne e biti u stanju da utvrdi za svakog mudraca da li je laжljivac ili istinoljubac? c) Za n = 2016 odrediti na kojim mestima sede mudraci istinoljupci. 4. Neka je data funkcija f : R R koja nije konstantna takva da vaжi f(x)f(x y) + f(y)f(x + y) = f(x) 2 + f(y) 2 za sve x, y R. Dokazati: f(x + y) = f(x) + f(y) za sve x, y R.

4 Qetvrti razred A kategorija 1. Oznaqimo sa A, B i C, redom, podnoжja visina iz temena A, B i C u ABC. Neka su I A, I B i I C centri upisanih kruжnica u AB C, BA C i CA B, redom. Dokazati da je ortocentar I A I B I C ujedno i centar upisane kruжnice u ABC. 2. Neka su x 1, x 2,..., x n realni brojevi. Poznato je da za svako i, i {1,..., n}, postoji prirodan broj k takav da vaжi x i + x i x i+k 1 0 (gde indekse posmatramo cikliqno po modulu n). Dokazati: x 1 + x x n Dat je prirodan broj n. Dokazati da za svaki neparan broj x postoji prirodan broj y takav da vaжi y y x (mod 2 n ). 4. Kaжemo da se mnogougao M 0 u ravni moжe obmotati sa n kopija ako postoje mnogouglovi M 1, M 2,..., M n podudarni s mnogouglom M 0 takvi da vaжi: 1 svaka dva mnogougla M i i M j, 0 i < j n, imaju disjunktne unutraxnjosti; 2 svaki od mnogouglova M 1, M 2,..., M n ima bar jednu zajedniqku rubnu taqku s mnogouglom M 0 ; 3 S n i=0 M i je mnogougao takav da je strogo u njegovoj unutraxnjosti sadrжan mnogougao M 0. Da li postoji mnogougao kojim se ne moжe poploqati ravan, a koji se moжe obmotati sa 8 kopija?

5 Prvi razred B kategorija 1. a) Polinom x 8 + x predstaviti kao proizvod tri polinoma stepena bar 1. 1 b) Racionalisati imenilac razlomka Posmatrajmo broj {z } 9 puta {z } 10 puta {z... 20} 20 puta (dakle, posmatrani broj dobijen je nadovezivanjem broja 1 zapisanog jednom, broja 2 zapisanog dva puta, broja 3 zapisanog tri puta itd. do broja 20 zapisanog dvadeset puta). Ispitati da li je posmatrani broj: a) deljiv sa 9; b) deljiv sa 11; c) potpun kvadrat; d) deljiv sa Da li postoji permutacija (a 1, a 2, a 3, a 4, a 5 ) brojeva 1, 2, 3, 4, 5 takva da vaжi (a 1 + a 2 )(a 2 + a 3 )(a 3 + a 4 )(a 4 + a 5 )(a 5 + a 1 ) = (a 1 + a 3 )(a 3 + a 5 )(a 5 + a 2 )(a 2 + a 4 )(a 4 + a 1 )? 4. U jednakokrakom ABC, AB = BC, taqka M je podnoжje visine iz temena B, a simetrala BAC seqe stranicu BC u taqki K. Ako vaжi 2BM = AK, odrediti uglove tog trougla. 5. Dat je konveksan qetvorougao ABCD. Konstruisati pravu koja prolazi kroz teme A i deli taj qetvorougao na dva dela jednakih povrxina.

6 Drugi razred B kategorija 1. Rexiti nejednaqinu 2. Rexiti sistem jednaqina log x (x 2 4x + 4) < 2. 3x 2 + 2xy + 6y 2 = 24; x 4 + 4y 4 = Odrediti sve prirodne brojeve n za koje je potpun kvadrat prirodnog broja n + 10 n + 19 n 4. Posmatrajmo sistem jednaqina y 1 + y y 1000 = 2016; y n = x 22n n za n = 1, 2, 3,..., (Dakle, sistem ima 1001 jednaqinu i ukupno 2000 nepoznatih.) Koliko rexenja (x 1, x 2,..., x 1000, y 1, y 2,..., y 1000 ) ima posmatrani sistem u skupu nenegativnih celih brojeva? 5. Dat je oxtrougli ABC. Konstruisati normalu na stranicu AB koja deli ABC na dva dela jednakih povrxina.

7 Tre i razred B kategorija 1. Dati su vektori a = ( 3, 2, 1) i b = (1, 1, 3). Odrediti, ako postoji, realan broj r takav da vektor (1, r, 2) gradi ugao od 60 sa vektorom a ( b a). 2. Data je traka podeljena na jediniqne kvadrati e. Dva igraqa naizmeniqno upisuju X u proizvoljan kvadrati, pod uslovom da on nije ve popunjen. Dobija prvi igraq koji postigne da nakon njegovog poteza postoje bar 3 uzastopna kvadrati a obeleжena slovom X. Dokazati da prvi igraq ima pobedniqku strategiju. 3. Prirodni brojevi a, b i c su takvi da je broj a + b + c prost i vaжi Dokazati: a = b = c = 1. ab + bc + ac a 2 + b 2 + c U pravouglom trouglu teжixne linije koje odgovaraju katetama zaklapaju ugao ϕ za koji vaжi tg ϕ = 3. Na i uglove tog trougla Za pozitivne realne brojeve a i b oznaqimo S(a, b) = min a, b, 1 a + 1. b Na i najve u mogu u vrednost izraza S(a, b) i za koje a i b se ta vrednost dostiжe.

8 Qetvrti razred B kategorija 1. Dat je polinom P (x) = 3x 5 + ax 4 35x 3 + bx x + c qije su dve nule x 1 = 1 i x 2 = 2, i vaжi x 3 x 4 x 5 = 2. Na i koeficijente a, b i c i preostale nule. 2. Tetkica s Okruжnog takmiqenja ponovo pixe po tabli, ovaj put po slede em obrascu. Na poqetku je na tabli napisana promenljiva x. U jednom koraku tetkica bira proizvoljna dva izraza koja postoje na tabli (ukljuquju i mogu nost da uzme isti izraz dva puta) i na tablu dopisuje njihov proizvod. Koliko najmanje koraka je potrebno da bi se na tabli dobio izraz x 1025? 3. Prirodan broj n ima slede u osobinu: za svako k iz intervala 2 k m (gde je m unapred fiksiran prirodan broj) broj kn je potpun k-ti stepen (drugim reqima, 2n je potpun kvadrat, 3n je potpun kub,..., mn je potpun m-ti stepen). Odrediti najve i prirodan broj m za koji postoji takav prirodan broj n. 4. Za koje vrednosti realnih parametara a i b sistem xyz + z = a; xyz 2 + z = b; x 2 + y 2 + z 2 = 4 ima jedinstveno rexenje u skupu realnih brojeva? 5. Tetraedar ABCD ima duжine ivica AB = 1 i BD = 2, a BAD i ABC su pravi. Sfera dodiruje pljosni ABD i BCD u taqkama A i C, redom. Na i polupreqnik te sfere.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1. 09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija 18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Prvi razred A kategorija

Prvi razred A kategorija Prvi razred A kategorija 1. Neka su A, B i C konaqni skupovi za koje vaжi Dokazati da tada vaжi A C + B C = A B. A B C A B. (Za skupove X i Y oznaqili smo X Y = (X \Y ) (Y \X), xto se naziva simetriqna

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. imaju istu vrednost.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. imaju istu vrednost. 00200 Prvi razred A kategorija Neka su a 1 < a 2 < < a n dati realni brojevi. Na i sve realne brojeve x za koje je izraz x a 1 + x a 2 + + x a n najmanji. Na i sve trojke međusobno razliqitih dekadnih cifara

Διαβάστε περισσότερα

OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija

OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija UQENIKA SREDNjIH XKOLA, 19.0201 Prvi razred, A kategorija Da li postoje prirodni brojevi a, b, c takvi da je 2010 = (a + b) (b + c) (c + a)? U ravni su date kruжnice k 1 i k 2 i prava p koja seqe k 1 u

Διαβάστε περισσότερα

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 8.201 Prvi razred A kategorija Aca, Branka, Vera i Goran su od nastavnika matematike dobili zadatak da izraqunaju koliqnik dva pozitivna realna broja, i to: Aca da izraquna a 1 : a 2, Branka da izraquna

Διαβάστε περισσότερα

Prvi razred A kategorija

Prvi razred A kategorija 20201 Prvi razred A kategorija Na krakovima AC i BC jednakokrakog trougla ABC date su taqke M i N, redom, tako da je CM + CN = AC. Dokazati da sredixte duжi M N pripada sredƭoj liniji tog trougla koja

Διαβάστε περισσότερα

Prvi razred, A kategorija

Prvi razred, A kategorija UQENIKA SREDƫIH XKOLA, 20201 Prvi razred, A kategorija Neka je E sredixte stranice CD kvadrata ABCD. Ako normala u taqki D na dijagonalu BD seqe pravu AE u taqki F, dokazati da su taqke B, C i F kolinearne.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Prvi razred, A kategorija

Prvi razred, A kategorija UQENIKA SREDƫIH XKOLA, 10201 Prvi razred, A kategorija Neka je K taqka simetriqna ortocentru H trougla ABC u odnosu na sredixte stranice BC. Dokazati da je AK preqnik opisane kruжnice trougla ABC. Dati

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2015/2016

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2015/2016 DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 015/016 Kraljevo, 016 Organizacioni odbor 58. Drжavnog takmiqenja iz matematike 1. Nenad Slavkovi, rukovodilac XU Kraljevo predsednik. Dr Dragoljub

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki Matematiqka gimnazija u Beogradu 30.01.2007. Vektori Milivoje Luki 1. Linearne kombinacije vektora Vektor v je linearna kombinacija vektora v 1, v 2,..., v n ako postoje skalari (odn. realni brojevi) λ

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Potencija taqke. Duxan uki

Potencija taqke. Duxan uki Potencija taqke Duxan uki Neka su dati krug k i taqka u ravni. Posmatrajmo proizvoljnu pravu l kroz i njene preseqne taqke B i sa krugom k. Proizvod B ne zavisi od izbora prave l. Zaista, ako sa D oznaqimo

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 20201 Prvi razred A kategorija Za realne brojeve a, b, c vaжe nejednakosti b c a, c a b, a b c. Dokazati da je jedan od brojeva a, b, c jednak zbiru preostala dva. U trougao ABC sa stranicama BC = a, CA

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQEƫA SREDƫOXKOLACA 2005/2006.

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQEƫA SREDƫOXKOLACA 2005/2006. DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQEƫA SREDƫOXKOLACA 005/006. Beograd VrƬaqka BaƬa 006 Organizaciju takmiqeƭa su pomogli: ORGANIZACIONI ODBOR 48. REPUBLIQKOG TAKMIQEƫA IZ MATEMATIKE.. 3. 4.

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Paskalova teorema, pol i polara verzija 2.0:

Paskalova teorema, pol i polara verzija 2.0: askalova teorema, pol i polara verzija 2.0: 10.2.2015. uxan uki Teoreme kojima se ovde bavimo su u stvari tvrđenja iz projektivne geometrije, tako da imaju i dokaze unutar projektivne geometrije. Ipak,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Glava 1. Trigonometrija

Glava 1. Trigonometrija Glava 1 Trigonometrija 1.1 Teorijski uvod Neka su u ravni Oxy dati krug k = {x, y) R R : x +y = 1} i prava p = {x, y) R R : x = 1}. Predstavimo skup realnih brojeva na pravoj p, kao brojevnoj pravoj, tako

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Zadaci iz Topologije A

Zadaci iz Topologije A Zadaci iz Topologije A 1. Neka je X neprazan skup i Φ : P(X P(X funkcija za koju vaжi: (1 Φ( = ; (2 A Φ(A za sve A P(X; (3 Φ(A B = Φ(A Φ(B za sve A, B P(X; (4 Φ(Φ(A = Φ(A za sve A P(X. Dokazati da postoji

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

REXENjA ZADATAKA OKRUЖNOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija

REXENjA ZADATAKA OKRUЖNOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija REXENj ZDTK OKRUЖNOG TKIQENjENj IZ TETIKE UQENIK SREDNjIH XKOL, 8.0.009. Prvi razred, kategorija. naliza. Kakoje N 90, sledi da kruжnica nad kao preqnikom sadrжi i N. Konstrukcija. ko su i N simetriqne u odnosu

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Matematiqka gimnazija u Beogradu Dodatna nastava iz matematike Inverzija. Milivoje Luki

Matematiqka gimnazija u Beogradu Dodatna nastava iz matematike Inverzija. Milivoje Luki Matematiqka gimnazija u Beogradu Dodatna nastava iz matematike 10.12.2005. Inverzija Milivoje Luki milivoje.lukic@gmail.com Inverzija sa centrom O i polupreqnikom r je preslikavanje ψ O,r : E 2 \{O} E 2

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Seminar Druxtva matematiqara Srbije, Beograd, Polinomi u nastavi matematike u osnovnoj i sredƭoj xkoli

Seminar Druxtva matematiqara Srbije, Beograd, Polinomi u nastavi matematike u osnovnoj i sredƭoj xkoli Seminar Druxtva matematiqara Srbije, Beograd, 12.02.2017. Polinomi u nastavi matematike u osnovnoj i sredƭoj xkoli dr Vladimir Balti, Matematiqka gimnazija, baltic@matf.bg.ac.yu Polinomi su izuzetno bitna

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2010/2011. Beograd, 2011.

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2010/2011. Beograd, 2011. DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 010/011. Beograd, 011. Organizacioni odbor 53. Drжavnog takmiqenja iz matematike 1. Profesor dr Zoran Kadelburg, predsednik DMS. Marko Radovanovi,

Διαβάστε περισσότερα

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA Rexenja zadataka

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA Rexenja zadataka Ministarstvo prosvete, nauke i tehnolokog razvoja Drutvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA Reenja zadataka Prvi razred A kategorija. Od poqetnog broja mogu e je

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2014/2015

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2014/2015 DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 014/015 Zajeqar, 015 Organizacioni odbor 57. Drжavnog takmiqenja iz matematike 1. Prof. dr Aleksandar Lipkovski, predsednik DMS. Dr Bojan

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

SREDNjOXKOLACA 2016/2017

SREDNjOXKOLACA 2016/2017 DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 016/017 Beograd, 017 Organizacioni odbor 59. Drжavnog takmiqenja iz matematike 1. Dejan Josipovi, direktor Devete gimnazije,,mihailo Petrovi

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Sli cnost trouglova i Talesova teorema

Sli cnost trouglova i Talesova teorema Sli cnost trouglova i Talesova teorema Denicija. Dva trougla ABC i A B C su sli cna ako su im sva tri ugla redom podudarna a i ako su im odgovaraju ce stranice proporcionalne tj. a = b b = c c. Stav 1.

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična. Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b

Διαβάστε περισσότερα

Testiranje statistiqkih hipoteza

Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene

Διαβάστε περισσότερα

REXENjA ZADATAKA OPXTINSKOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija

REXENjA ZADATAKA OPXTINSKOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija . REXENjA ZADATAKA OPXTINSKOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA,.0.009. Prvi razred, A kategorija Kako je A sredite duжi MN, sledi da je XA = XM + XN. Analogno je XB = XR + XS. XP + XQ i XC

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste

Διαβάστε περισσότερα