אלגוריתמים בתורת הגרפים חלק שני

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "אלגוריתמים בתורת הגרפים חלק שני"

Transcript

1 גירסה אלגוריתמים בתורת הגרפים חלק שני מסמך זה הינו השני בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת לפרופסור שמעון אבן ז"ל, על העזרה העצומה שעזר לי בהבנת החומר ובשאלות רבות עליהן ענה לי כאשר למדתי את הנושא. שמעון אבן היה מרצה שהערכתי מאוד ותרומתו למסמך זה היתה משמעותית. מקורות: המסמך מבוסס במידה רבה על הרצאותיו של פרופסור שמעון אבן משנת 2002 וכן על שאלות רבות עליהן שמעון אבן ענה לי. ספרו של שמעון אבן מ- 1979, Graph Algorithms פרקים מספרו החדש של שמעון אבן, שפורסמו בשנת 2002 חלקים מהרצאות וידאו של פרופסור ראובן בר יהודה בנושא אלגוריתמים בתורת הגרפים. המסמכים כוללים נקודות רבות ממקורות אלו, ובנוסף תובנות רבות, דוגמאות ורעיונות שאספתי במהלך לימוד הקורס. עמוד 1

2 עצים יהי (E G(V, גרף לא מכוון (סופי או אינסופי). נאמר כי G חסר מעגלים אם אין מעגלים פשוטים ב- G. יהי (E G(V, גרף לא מכוון (סופי או אינסופי). נאמר כי G הוא עץ אם הוא קשיר וחסר מעגלים. משפט יהי גרף (E,G(V, אזי כל הטענות הבאות שקולות: א. G עץ. ב. G חסר מעגלים, והוספת קשת כלשהי בהכרח תיצור מעגל ("חסר מעגלים מקסימלי"). ג. G חסר חוגים עצמיים ולכל שתי צמתים, יש מסלול פשוט יחיד ביניהם המחבר אותן. ד. G קשיר, וכל השמטת קשת תפגום בקשירות ("קשיר מינימלי"). הוכחה. a b c d נוכיח a. G קשיר וחסר מעגלים (עץ). G חסר מעגלים והוספת קשת כלשהי אליו בהכרח תיצור מעגל. a b נתון: צ"ל: y לפי ההוספה היה מסלול. x נניח שנוסיף קשת y הקשירות, ומכאן שאחרי הוספה של קשת כלשהי יתקבל מעגל.... x עקב. b c נתון: G חסר מעגלים וכן כי הוספת קשת כלשהי בהכרח תיצור מעגל. צ"ל: G חסר חוגים עצמיים ולכל שתי צמתים, יש מסלול פשוט יחיד ביניהם המחבר אותן. טריוואלי כי G חסר חוגים עצמיים, מכיוון שהנתון כי G חסר מעגלים גורר באופן מיידי שהוא חסר חוגים עצמיים. צריך כעת להוכיח כי בין שני צמתים קיים מסלול. ידוע כי הוספת קשת בין כל שני צמתים,x y תגרום להופעת מעגל. ידוע שהמעגל יהיה מעגל בין x אל y ולאחר מכן בחזרה אל x. מכאן אנו יודעים שהיה קיים המסלול בין x אל y, בו נצעד במעגל שנוצר. נרצה להוכיח יחידות, שקיים רק מסלול אחד כזה. עמוד 2

3 נניח שקיימים שני מסלולים המחברים בין x אל y, שהם שני הצמתים הכי קרובים אחד אל השני המקיימים את התכונה, שקיימים שני מסלולים המחברים ביניהם. אם המסלולים מתנגשים ביניהם בדרך, נגדיר מחדש את x ו- y אל נקודות ההתנגשות. אם המסלולים לא מתנגשים, הרי שיש בידינו מעגל, בסתירה לנתון. c d נתון: צ"ל: G חסר חוגים עצמיים ולכל שתי צמתים, יש מסלול פשוט יחיד ביניהם המחבר אותן. G קשיר, וכל השמטת קשת תפגום בקשירות ("קשיר מינימלי"). הקשירות מתקבלת באופן טריוואלי, כי בין כל שתי צמתים קיים מסלול. צריך להוכיח כעת כל השמטת קשת תפגום בקשירות. נניח בשלילה שקיימת קשת שניתן להשמיטה מבלי לפגוע בקשירות. אזי קיימת קשת נוספת המקשרת בין x ל- y, ומכאן שקיים מעגל, בסתירה לנתון. d a נתון: G קשיר, וכל השמטת קשת תפגום בקשירות ("קשיר מינימלי"). צ"ל: G עץ - גרף קשיר וחסר מעגלים. מכיוון שהקשירות נתונה, צריך רק להוכיח כי G חסר מעגלים. אם קיים מעגל, הרי שקיימת קשת שניתן להסירה - כל קשת כלשהי על המעגל ניתנת להשמטה - ועדיין לשמור על הקשירות - עדיין קיים מסלול בין הצמתים. משפט. V יהי גרף G(V,E) סופי, כך ש n אזי, הטענות הבאות שקולות: =. E = n 1. E א. G עץ. ב. G חסר מעגלים, וגם ג. G קשיר, וגם 1 n = עלה הוא צומת שדרגתו 1. טענה לכל עץ סופי לא טריויאלי, יש לפחות שני עלים. עמוד 3

4 עצים מכוונים r. נאמר כי r הוא שורש אם ניתן להגיע יהי (E G(V, גרף מכוון, ותהי צומת R מ- r אל כל צומת, v V כלומר אם קיים מ- r מסלול מכוון אל כל אחת מהצמתים בגרף. הערה בגרף קשיר היטב, כל הצמתים הינן שורשים. G הוא עץ מכוון אם יש לו שורש וגרף התשתית שלו הינו עץ. משפט d ( ) 0 in r = יהי G גרף מכוון, אזי הטענות הבאות שקולות. G הוא עץ מכוון. 1. יש ב- G שורש וממנו מסלול יחיד לכל צומת. 2. v r, d ( ) 0 = r din וגם v) 1 in( יש שורש,r כך ש:.3 יש ל- G שורש, והשמטת קשת תקלקל זאת. 4. גרף התשתית של G קשיר, וקיים צומת r, כך ש- 5. משפט. =. v r, d ( v) = 1 in וגם יהי (E G(V, גרף מכוון סופי. נאמר כי (E G(V, הינו עץ מכוון אמ"מ גרף התשתית שלו חסר מעגלים, וכן קיימת צומת אחת עבורה = r, d ועבור כל שאר הצמתים מתקיים: = v d in ( ) 1 in ( ) 0 עמוד 4

5 אינדוקציה, שמורות והוכחות נוכחות של תוכניות אינקודציה חד ממדית דוגמא נתונה שורת אבני דומינו ואצבע. מהו תנאי מספיק כדי שכל הדומינו יפלו? תשובה אפשרית נוכיח כי הראשון נופל, ונוכיח כי אם מישהו כלשהו נופל, זה שאחריו נופל. אם נוכיח זאת, הוכחנו שכל הדומינו יפלו. דוגמא בהינתן אינדקס של מספר סידורי כלשהו בסידרת פיבונצי, מהו תנאי מספיק על מנת שנוכל למצוא את מספר הפיבונצי המתאים לו? במקרה זה נצטרך שני תנאי התחלה - קיום איבר ראשון וקיום איבר שני. באמצעותם נוכל למצוא לכל n את מספר הפיבונצי המתאים לו. דוגמאות אלו הינן דוגמאות לאינדוקציה חד ממדית. אינדוקציה דו ממדית דוגמא. A נתון שעכבר אחד חולה במחלה n n עכברים יושבים לאורך משבצות של לוח שח - מדבקת. מה התנאים שהמחלה תתפשט על הלוח? על מנת להשיב, צריך לדעת איך המחלה מתפשטת למשל, נוכל להגדיר כי בכל. Ai, j נשים לב שעם תנאי כזה, הבעיה היא למעשה אינדוקציה A i, j + 1 יחידת זמן, חד ממדית. תנאי אחר יכול להיות למשל:. A A + + i, j i 1, j 1 עמוד 5

6 קשר בין אינדוקציה אל מדעי המחשב אלמנטים רבים במדעי המחשב מתבססים על אינדוקציה. לולאות, רקוסיה וכו', כולם מתבססים על אינדוקציה. דוגמא xi i נניח כי נרצה לחשב את הביטוי: נציע פתרון: s = 0; for (i = 0; i < N; ++i) { s = s + x i ; } אתחול: צעד: השמורה: אתחל את s ב- 0.. x i הוסף בצעד ה- i של האלגוריתם, יש ב- s את סכום כל האיברים עד המקום הנוכחי. האתחול נועד לקיים את השמורה, והוא בעצם טוען כי סכומם של 0 איברים הוא 0. x i נניח כעת כי במקום חיבור, היינו צריכים להכפיל אתחול: אתחל את s ב- 1. צעד: הכפל ב-. איברים. x i בצורה דומה נטפל בבעיות רבות אחרות בסגנון: = AND 1 s= s and x i = or 0 s= s or x i MIN s= min( s, x i ) MAX s= max( s, x i ) x i 1 s= s x i x i 0 s= s+ x i רוצים לחשב אתחול צעד עמוד 6

7 דוגמא מצא: 107, % 10 תוך כדי שימוש רק בפעולת חיסור. פתרון: נחסר 10 מ- 107, ונקבל 97. לאחר מכן, נחסר 10 מ- 97 ונקבל 87, וכך הלאה.. x mod10= השמורה שלנו: אם בצעד ה- i אנו מגיעים אל, אזי מתקיים x mod10 i x i דוגמא יהי G גרף בעל דרגות זוגיות וקשיר. ידוע כי יש בו מעגל אויילרי. נרצה למצוא אלגוריתם המוצא אותו. פתרון: ניקח מצב באמצע התוכנית: הנחת האינדוקציה: יש לנו מעגל, שנוצר על ידי טיול ממצה. הנחה נוספת - אם יש קשת שבה עדיין לא ביקרנו, היא נוגעת בקשת כלשהי שביקרנו בה (נובע מקשירות הגרף). הנחה שלישית - הדרגות של הצמתים בהם לא ביקרנו זוגיות. בסיס: בתחילה כל הגרף מקיים את הנחת האינדוקציה. עמוד 7

8 V V, E E עץ פורש מינימום יהי הגרף נאמר כי הגדרות,G( V, E) G ( V, E ) ויהי הגרף E הינו תת גרף של אם מתקיים כי. G ( V, ) G( V, E) תת גרף מושרה צמתים של (E G(V, הוא גרף הנקבע על ידי בחירת צמתים מהגרף G, ולאחר מכן בחירה של כל הקשתות המחברות בין הצמתים שנבחרו. תת גרף מושרה קשתות של (E G(V, הוא גרף הנקבע על ידי בחירת קשתות מהגרף G, ולאחר מכן בחירה של הצמתים אליהם הקשתות מחוברות. יהי הגרף (E )G V, גרף סופי, קשיר, לא מכוון, ובו מתקיים כי לכל צומת, e E E E נניח כי נמצא.l( e ) > 0, כך ש- e E l( e) קשיר וגם G ( V, E ) מינימלי. מכיוון שאנו מניח כי G קשיר, וכן שאורך קשתותיו מינימלי, הרי נוכל לומר גם כי הוצאת כל קשר תקלקל את הקשירות. מכיוון שכך, ולפי המשפט הראשון שראינו על עצים, נובע כי G עץ. עץ המקיים תכונות אלו נקרא עץ פורש מינימום.. X חלוקה של קבוצה G הינה שתי קבוצות זרות,X, Y כך ש Y=G משפט יהי גרף E),G( V, ותהי X, Y חלוקה של.V e הקשת הקטנה ביותר המחברת צומת מ- X אל צומת מ- Y, אזי קיים עץ תהי E פורש מינימום הכיל את. e עמוד 8

9 האלגוריתם של Prim למציאת עץ פורש מינימום Procedure PRIM(G, l, T ) for every v V do λ( v) choose a vertex s V λ( s) 0 ε( s) φ TEMP V T φ while TEMP φ do choose a vertex v TEMP for which λ( v) is minimum TEMP TEMP\ { v} T T ε( v) e for every v u do if u TEMP and λ( u) > l( e) then do λ( u) l( e) ε( u) { e} T הינו תת גרף של G, שהוא עץ. TEMP זוהי קבוצת צמתים, שעדיין לא ב- T במהלך האלגוריתם. הרעיון של האלגוריתם: אנו מתחילים מצומת אחת, וכל בפעם מוסיפים עלה חדש, v אל העץ T, עד שכל הצמתים צורפו אליו. כאשר אנו מצרפים צומת חדש ל- T, אנו בודקים את כל הקשתות המחוברות אליו. אנו שומרים מהי הקשת הקצרה ביותר המחברת אל T, ושומרים את האורך שלה ואת הקשת עצמה. מכיוון כי G קשיר, כאשר האלגוריתם מסתיים T מכיל עץ פורש. טענה העץ T המתקבל מהאלגוריתם של PRIM הינו עץ פורש מינימום של G. עמוד 9

10 משפט Cayley משפט זה והטענות הנלוות אליו עוסקים במספר העצים הפורשים של גרף נתון.. V = { 1, 2,..., n} נניח כי העצים נוצרים על ידי קבוצת צמתים נתונה - עבור 2=n, ניתן ליצור רק עץ פורש יחיד. עבוד =n 3, ישנם 3 עצים אפשריים: משפט n 2 מספר העצים הפורשים עבור גרף בעל n צמתים הינו n. האלגוריתם של Kruskal למציאת עץ פורש מינימום להלן האלגוריתם של Kruskal למציאת עץ פורש מינימום של גרף לא-מכוון וקשיר : l : E R בעל פונקצית אורך על הקשתות G (1) sort E in non-decreasing order of length, let e 1, e2,..., e E be the sorted edges (2) T φ (3) for j, starting with j=1 and ending with j= E, do: (4) if V, T { e }) is circuit-free, then ( j (5) T T e } { j תהי A T עבור איזשהו עץ פורש מינימום T. קשת e תקרא בטוחה עבור A אם. A { e} קיים עץ פורש מינימום `T כך ש: `T הבחנה: A כנ"ל מגדירה עץ פורש מינימום אם ורק אם אין ב- E קשתות בטוחות עבור A. טענה,S ( חלוקה. אם u ו- v נמצאים בצדדים שונים של החלוקה, אזי כל מסלול יהי ) S בינם מכיל לפחות קשת חתך אחת. טענה עמוד 10

11 אם נוסיף לעץ פורש קשת חדשה e ונוציא מהמעגל שנסגר קשת כלשהי `e, אזי נקבל עץ פורש. משפט,S ( חלוקה אשר אינה מכילה תהי A T עבור איזשהו עץ פורש מינימום T, ויהי ) S S, ( היא אף קשת מ- A. אזי הקשת e בעלת האורך המינימלי ביותר בחלוקה ) S בטוחה עבור A. הוכחה e p.a בטוחה עבור e ולכן A { e} אם e T אז בוודאי T u,, e = ( אזי אחרת. e T אם נוסיף את e ל- T ייסגר מעגל פשוט יחיד. נניח כי (v מבחירת e מתקיים כי הצמתים u ו- v נמצאים בצדדים שונים של החלוקה, והמעגל ו- v u הוא המסלול הפשוט היחיד בין (p u הפשוט היחיד שנסגר ב- T הוא: v ~ u ב- T ). לפי טענה 1, במסלול p יש לפחות קשת חתך אחת, `e. אזי לאחר הוספת e ל- T, נוציא את הקשת `e שנמצאת על המעגל הפשוט היחיד שנסגר. לפי טענה 2 קיבלנו עץ פורש, שנסמנו `T. הקשת `e אינה ב- A (משום שהקשת `e היא קשת חתך ולפי. A { e`} `T מתקיים: ולכן אינו מכילה אף קשת מ- A ). (,S הנתונים החלוקה ) S כל שנותר להראות הוא ש- `T הוא עץ פורש מינימום. (e )l. לכן מתקיים: l( e`) ולכן, ( S, הקשת e היא מינימלית בחלוקה ) S w( T ) w( T`) = w( T ) + l( e) l( e`) w( T ) לכן נסיק כי:, כלומר `T עץ פורש מינימום. w ( T`) = w( T ) רעיון האלגוריתם של Kruskal ניתן לראות שבתחילת האלגוריתם כל צומת מהווה רכיב עצמאי. בכל שלב של האלגוריתם אנו מוצאים קשת קלה ביותר אשר מחברת שני רכיבים שונים, ומוסיפים אותה לעץ הפורש (תוך "איחוד" שני הרכיבים שהיא חיברה לרכיב אחד חדש). אנו למעשה מוסיפים לקבוצה T רק קשתות שבטוחות עבורה. לפי המשפט אשר הוכחנו וההבחנה מה של קשת בטוחה, יתקיים כי בסיום האלגוריתם הקבוצה T מכילה עץ פורש מינימום של G. סיבוכיות.O( סיבוכיות האלגוריתם היא: ) E E log עמוד 11

12 למת ה- של קנינג אם G הוא גרף אין סופי (מכוון) עם שורש r, ודרגות יציאה סופיות לכל צומת, אז יש מסלול מכוון אינסופי המתחיל ב- r. הערה אם דרגת היציאה הייתה יכולה להיות אינסופית, הטענה לא הייתה נכונה. דוגמא: נניח נתונה צומת אחת r שמחוברת ל- צמתים 1, 3, 2,..., שכל אחת מהן היא עלה. במקרה זה איננו יכולים להרכיב מסלול מכוון אינסופי. הוכחת הלמה נבנה תת גרף T שהוא עץ פורש מכוון של G, בצורה הבאה: נמחק את כל הקשתות הנכנסות אל השורש. ) 0 = ) r.( din ( -,v0,...,v1 vi המסלול הקצר ביותר מ- r אליו., v = i+ 1 יהי v צומת כלשהו ויהי v ( d ( in v ) = 1 ). v i נמחק את כל הקשתות הנכנסות אל v מלבד זו המגיעה מ- R נשאר השורש של הגרף. מהנחות אלו, נקבל כי T הוא עץ. כעת נוכיח את הלמה עבור העץ, והטענה תהיה נכונה גם עבור הגרף. ל- r מספר סופי של בנים, כמו כן ל- r מספר אינסופי של צאצאים. לכל בן של r מספר מסוים של צאצאים. לאחד מהם לפחות מספר אינסופי של צאצאים, לפי הטענות שהצגנו בשורה הקודמת. נבחר את הבן עם מספר הצאצאים האינסופי. הוא הצומת הבאה במסלול שלנו.. r i נסמנו ב- כעת נוכל להפעיל עליו את אותה הטענה שהפעלנו על r, וכך לקבל את המסלול שלנו. מ.ש.ל עמוד 12

13 שימושים ריצוף המישור (Wang) מרצפת הינה ריבוע שעל כל צלע שלו אות השייכת לשפה שנבחרה. ניתן לחבר שתי מרצפות רק אם הצלעות שלהן שנוגעות אחת בשניה בעלות אותה אות. ישנם מספר לא מוגבל של מרצפות מכל אחד מהסוגים. מספר הסוגים הוא סופי. השאלה בה נתעניין האם ניתן לרצף את המישור בעזרת המרצפות? זוהי בעיה בלתי כריעה. לא קיים אלגוריתם היודע להכריע אם בהינתן אוסף מרצפות ניתן או לא ניתן לרצף את המישור. עם זאת, Wang הוכיח: אם ניתן לרצף את הרביע הראשון של המישור בעזרת סט נתון וסופי של t סוגי מרצפות, אזי ניתן לרצף את כל המישור. נשים לב שאם מספר סוגי המרצפות שבעזרתן נרצף את הרביע הראשון אינו סופי, טענה זו אינה מתקיימת. דוגמא (הדוגמא לקוחה מחוברת התרגולים של הקורס "אלגוריתמים בתורת הגרפים" בטכניון): נתונה קבוצת המשפחות הבאות של אריחים: לכל זוג סדור של מספרים טבעיים (i,j) יש משפחה של אריחים עם תווית של 1-i בצד מערב, i בצד מזרח, j בצד צפון ו- 1-j בצד דרום. טענה: בעזרת קבוצת משפחות אלו, ניתן לרצף את הרביע הצפון מזרחי. הוכחה: נתייחס לרביע הצפון מזרחי כמערך דו-מימדי אינסופי כאשר בכל תא במערך אנו צריכים לשים אריח בודד. נניח כי מספור התאים של מערך זה הוא מהצורה: (k,m), כאשר הכוונה היא לתא ה- k בשורה ה- m. מספור השורות הוא מ 1, והוא גדל כלפי כיוון צפון. מספור התאים בכל שורה הוא גם מ 1, והוא גדל כלפי כיוון מזרח (כלומר האריח הדרום-מערבי ביותר ברביע הוא האריח (1,1)). נשים בתא ה- (k,m) אריח מהמשפחה.(k,m) זה ריצוף חוקי של הרביע הצפון מזרחי לפי הגדרת משפחות האריחים. טענה: בעזרת קבוצת משפחות אלו, לא ניתן לרצף את כל המישור. הוכחה: נניח בשלילה שכן. נבחר אריח שרירותי בריצוף זה, נניח כי זהו אריח מהמשפחה.(i,j) אזי האריח שנמצא ממערב לאריח זה, הוא בעל תווית מזרחית של 1-i. ולכן זה אריח מהמשפחה.(i-1,j) כעת, נפעיל את אותו השיקול על האריח מהמשפחה,(i-1,j) ונקבל כי משמאלו קיים אריח מהמשפחה.(i-2,j) כך נגיע בסופו של דבר לאריח מהמשפחה (j,0). לאריח שכזה לא ייתכן אריח שכן מכיוון מערב, כי משפחות האריחים מוגדרות רק עבור מספרים טבעיים. לכן קיבלנו כי ממערב לאריח מהמשפחה (i,j) יש בדיוק i אריחים. זאת סתירה לכך שכל המישור מרוצף. עמוד 13

אלגוריתמים בתורת הגרפים חלק ראשון

אלגוריתמים בתורת הגרפים חלק ראשון גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

logn) = nlog. log(2n

logn) = nlog. log(2n תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).

פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ). מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

גרפים אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 הגדרה: מגן דוגמאות: זוגות לא סדורים כיוון שבקבוצה סדר לא חשוב.

גרפים אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 הגדרה: מגן דוגמאות: זוגות לא סדורים כיוון שבקבוצה סדר לא חשוב. אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 אתר הקורס.clickit3 מרצה : בני מוניץ הציון: מבחן סופי: 80% שיעורי בית 20% ואפשרות לבוחן אמצע 20% מגן גרפים הגדרה: תהי V קבוצה סופית לא ריקה. ותהי E קבוצה

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

תורת הגרפים - סימונים

תורת הגרפים - סימונים תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא

Διαβάστε περισσότερα

אלגוריתמים בתורת הגרפים חלק רביעי

אלגוריתמים בתורת הגרפים חלק רביעי גירסה 00 232003 אלגוריתמים בתורת הגרפים חלק רביעי מסמך זה הינו הרביעי בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר) ברצוני להודות תודה מיוחדת

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

מבני נתונים ואלגוריתמים תרגול #8-9

מבני נתונים ואלגוריתמים תרגול #8-9 מבני נתונים ואלגוריתמים תרגול #89 מציאת מסלולים קצרים הבעיה: נתון גרף ממשוקל רוצים למצוא את המסלול הקצר בין זוג קודקודים עיקרון הרלקסציה של קשת: בדיקה האם ניתן לשפר מסלול מ s ל v ע"י מעבר דרך קודקוד u:?

Διαβάστε περισσότερα

מבני נתונים ויעילות אלגוריתמים

מבני נתונים ויעילות אלגוריתמים מבני נתונים ויעילות אלגוריתמים (8..05). טענה אודות סדר גודל. log טענה: מתקיים Θ(log) (!) = הוכחה: ברור שמתקיים: 3 4... 4 4 4... 43 פעמים במילים אחרות:! נוציא לוגריתם משני האגפים: log(!) log( ) log(a b

Διαβάστε περισσότερα

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t. תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................

Διαβάστε περισσότερα

אלגברה לינארית 1 יובל קפלן

אלגברה לינארית 1 יובל קפלן אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1

חשבון אינפיניטסימלי 1 חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

מבני נתונים אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון:

מבני נתונים אדמיניסטרציה דר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון: מבני נתונים בס"ד, ט' אדר א' תשע"א: שעור 1 אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון: בחינת מגן 20%. תרגילים: 14 13, מורידים את האחד הכי גרוע. 10% מהציון. אתר: www.cs.huji.ac.il/~dast

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

אוטומטים- תרגול 8 שפות חסרות הקשר

אוטומטים- תרגול 8 שפות חסרות הקשר אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית,

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס תורת הקבוצות (80200) באוניברסיטה העברית, תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות L

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

מודלים חישוביים פתרון תרגיל 5

מודלים חישוביים פתרון תרגיל 5 מודלים חישוביים פתרון תרגיל 5 כתוב אוטומט דטרמיניסטי לשפות הבאות מעל הא"ב.Σ={,} א. *Σ. q, ב. q, ג. {ε}, q, q ד. } = 3 {w w mod, q, q,, ה. ''} {w w does not contin the sustring q 4 q 3 q q כתוב אוטומט דטרמיניסטי

Διαβάστε περισσότερα

מבני נתונים (234218) 1

מבני נתונים (234218) 1 מבני נתונים (234218) 1 חומר עזר לבחינה 13 בספטמבר 2016 שימו לב: מותר לצטט טענות המופיעות בדף זה ללא הוכחה. כל טענה אחרת, שאינה מופיעה באופן מפורש, יש לנמק באופן מלא. נימוקים מהצורה "בדומה לטענה שבחומר

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2 סריקה לעומק רכיבים אי-פריקים רכיבים קשירים היטב מיון טופולוגי פרק 3 ב- Kleinberg/Tardos פרק 3.3-5 ב- al Cormen et קשירות נעיין שוב בבעיית הקשירות: ל- t? האם יש מסלול מ- s קשירות נעיין שוב בבעיית הקשירות:

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשסט 467 אלגברה א', סמסטר חורף תשס"ט, פתרונות לשיעורי הבית, עמוד מתוך 6 467 אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט תוכן עניינים : גליון שדות... גליון מרוכבים 7... גליון מטריצות... גליון 4 דירוג,

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

סיכום אינפי 2 19 ביוני 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין

סיכום אינפי 2 19 ביוני 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין סיכום אינפי 2 9 ביוני 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך. סוכם ע"י נגה רוטמן בשעות לא הגיוניות בעליל,

Διαβάστε περισσότερα

תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות.

תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות. תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות. A = 1,4,7,17,20 B = 1, a, b, c 2 נאמר ש x שייך ל A ונסמן x A אם x הוא

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα

במשחקים בצורה אסטרטגית: השחקנים בוחרים אסטרטגיות במקביל ובצורה בלתי תלויה. מייד לאחר מכן מסתיים המשחק. נרצה לדון במשחקים מסוג אחר: השחקנים משחקים לפי

במשחקים בצורה אסטרטגית: השחקנים בוחרים אסטרטגיות במקביל ובצורה בלתי תלויה. מייד לאחר מכן מסתיים המשחק. נרצה לדון במשחקים מסוג אחר: השחקנים משחקים לפי 1 משחקים בצורה רחבה במשחקים בצורה אסטרטגית: השחקנים בוחרים אסטרטגיות במקביל ובצורה בלתי תלויה. מייד לאחר מכן מסתיים המשחק. נרצה לדון במשחקים מסוג אחר: השחקנים משחקים לפי תורות. לכל שחקן יש מספר תורות.

Διαβάστε περισσότερα

מושגים: קשיר. o בעל 1 קשתות בדיוק.

מושגים: קשיר. o בעל 1 קשתות בדיוק. 1 גרפים / חזרה כללית: סיכומים למבחן בקורס אלגוריתמים סמסטר א' 2008-9 (פרופ' מיכה שריר) מושגים: גרף: גרף,, V קבוצת קודקודים, קבוצת קשתות. מכוון: הקשתות הן זוגות סדורים, לא מכוון: הקשתות הן קבוצה בת שני

Διαβάστε περισσότερα

תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010

תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010 תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010 רשם: שיר פלד, באמצעות L Y X גרסה 161 תיקונים יתקבלו בברכה במהלך ההפסקות או בכתובת מייל shirpeled@cs במבחן: להוכיח משפט אחד מתוך שניים ולפתור

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעד (2014) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

מבני נתונים עצים שיעור 7

מבני נתונים עצים שיעור 7 בס ד מבני נתונים עצים שיעור 7 שי גולן כ ח בניסן, תשע ו 6 במאי 2016 תקציר בתרגול זה נתחיל לדון בעצים. נגדיר עצים כלליים ועצים בינאריים, ונציג את ההגדרות הבסיסיות בתחום. נתרגל הוכחת תכונות של עצים באמצעות

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

תורת הקבוצות בפברואר 2012 תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012

תורת הקבוצות בפברואר 2012 תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012 תורת הקבוצות 80200 אור דגמי, ÓÖ Ñ ºÓÖ 11 בפברואר 2012 אתר אינטרנט: ØØÔ»» Ñ ºÓÖ תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012 1 תוכן עניינים תוכן עניינים תוכן עניינים מבוא.............................................

Διαβάστε περισσότερα

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך

Διαβάστε περισσότερα

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r ל' ' פונקציות פרימיטיביות רקורסיביות חישוביות הרצאה 4 האם כל פונקציה מלאה היא פרימיטיבית רקורסיבית? לא נראה שתי הוכחות: פונקציות רקורסיביות (המשך) זיהוי שפות ע''י מכונות טיורינג הוכחה קיומית: קיימות פונקציות

Διαβάστε περισσότερα

חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות

חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות 13 בינואר 211 מרצה: אילון לינדנשטראוס מתרגל: רון רוזנטל סוכם ע י: אור שריר פניות לתיקונים והערות: tnidtnid@gmail.com אתר הסיכומים שלי: http://bit.ly/huji_notes

Διαβάστε περισσότερα

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z. פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית

Διαβάστε περισσότερα

דוגמה: יהי T עץ בינארי כפי שמתואר בציור הבא:

דוגמה: יהי T עץ בינארי כפי שמתואר בציור הבא: של שאלות מבחינות פתרונות.1 שאלהזוהופיעהבמבחןמועדג 01 דוגמה: יהי T עץ בינארי כפי שמתואר בציור הבא: הגדרות: עבור צומת בעץ בינארי T נסמן ב- T את תת העץ של T ששורשו. (תת העץ הזה כולל את ). נגדיר את תת העץ

Διαβάστε περισσότερα

לוגיקה למדעי המחשב תרגולים

לוגיקה למדעי המחשב תרגולים לוגיקה למדעי המחשב תרגולים ניצן פומרנץ 17 ביוני 2015 אתר הקורס: במודל בשבוע הראשון התרגילים ייועלו גם ל www.cs.tau.ac.il/~shpilka/teaching לירון כהן: liron.cohen@math.tau.ac.il (לא לשלוח שאלות על החומר

Διαβάστε περισσότερα

מבני נתונים הגבלת אחריות פרק - 1 אלגוריתמי מיון ואנליזה אסימפטוטית. מיון בועות Sort Bubble מאת : סשה גולדשטיין,

מבני נתונים הגבלת אחריות פרק - 1 אלגוריתמי מיון ואנליזה אסימפטוטית. מיון בועות Sort Bubble מאת : סשה גולדשטיין, 009 מבני נתונים סיכום למבחן, יולי sashag@cs מאת : סשה גולדשטיין, 7:50,3.7.09 עדכון אחרון : בשעה הגבלת אחריות הסיכום להלן הוא האינטרפרטציה שלי של החומר, שממש לא חייבת להיות נכונה או מייצגת את זו של הסגל.

Διαβάστε περισσότερα

ניתן לקבל אוטומט עבור השפה המבוקשת ע "י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות:

ניתן לקבל אוטומט עבור השפה המבוקשת ע י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות: שאלה 1 בנה אוטומט המקבל את שפת כל המילים מעל הא"ב {,,} המכילות לפחות פעם אחת את הרצף ומיד אחרי כל אות מופיע הרצף. ניתן לפרק את השפה לשתי שפות בסיס מעל הא"ב :{,,} שפת כל המילים המכילות לפחות פעם אחת את

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

יווקיינ לש תוביציה ןוירטירק

יווקיינ לש תוביציה ןוירטירק יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב

Διαβάστε περισσότερα

אלגברה לינארית 2 משפטים וטענות

אלגברה לינארית 2 משפטים וטענות אלגברה לינארית 2 משפטים וטענות סוכם ע"פ הרצאות פרופ' מ.קריבלביץ' 1.2 אידאלים של פולינומים הגדרה 1.13 יהי F שדה. קבוצת פולינומים [x] I F נקראת אידיאל ב [ x ] F אם מתקיים:.0 I.1.2 לכל f 1, f 2 I מתקיים.f

Διαβάστε περισσότερα

עצי 2-3 תזכורת: בנים. דוגמאות: Chapter 19: B trees ( ) Chapter 15: Augmenting data structures ( )

עצי 2-3 תזכורת: בנים. דוגמאות: Chapter 19: B trees ( ) Chapter 15: Augmenting data structures ( ) עצים מאוזנים Lecture 5 of Geiger & Itai s slide brochure www.cs.technion.ac.il/~dang/courseds תזכורת: משפחת עצים נקראת מאוזנת אם ( h. = (log עצי -3 ועצי דרגות עצי AVL הם עצים מאוזנים. עצי 3- מהווים דוגמא

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 11

אלגברה ליניארית 1 א' פתרון 11 אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)

Διαβάστε περισσότερα

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα