Vanjska simetrija kristâla

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Vanjska simetrija kristâla"

Transcript

1 Vanjska simetrija kristâla Franka Miriam Brückler PMF-MO, Zagreb Listopad Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

2 Vizualna simetrija Što je simetrija? Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

3 Vizualna simetrija Što je simetrija? U svakodnevici pod simetrijom prije svega doživljavamo geometrijsku zrcalnu simetriju. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

4 Vizualna simetrija Što je simetrija? U svakodnevici pod simetrijom prije svega doživljavamo geometrijsku zrcalnu simetriju. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

5 Vizualna simetrija Što je simetrija? U svakodnevici pod simetrijom prije svega doživljavamo geometrijsku zrcalnu simetriju. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

6 Može li malo preciznije? Što je simetrija? Geometrijski objekt X (zanimaju nas isključivo slučajevi kad je X R n, n = 1, 2, 3) je simetričan ako posjeduje bar jedan element simetrije. Element simetrije je točka, pravac ili ravnina obzirom na koji se može zrcaliti ili za neki nenul kut rotirati promatrani objekt tako da se poklopi sam sa sobom. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

7 Može li malo preciznije? Što je simetrija? Geometrijski objekt X (zanimaju nas isključivo slučajevi kad je X R n, n = 1, 2, 3) je simetričan ako posjeduje bar jedan element simetrije. Element simetrije je točka, pravac ili ravnina obzirom na koji se može zrcaliti ili za neki nenul kut rotirati promatrani objekt tako da se poklopi sam sa sobom. Razlikujemo centre simetrija, ravnine simetrija i osi simetrija (gire) te složene elemente simetrije. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

8 Centri simetrije Što je simetrija? Centralna simetrija ili inverzija obzirom na centar C R n je izometrija 1 : R n R n sa svojstvom da za sve T R n vrijedi da je C polovište dužine polovište dužine T 1(T ). Ako za neki centar C vrijedi 1(X ) = X kažemo da X posjeduje centralnu simetriju. Inverzija se često označava i s i. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

9 Centri simetrije Što je simetrija? Centralna simetrija ili inverzija obzirom na centar C R n je izometrija 1 : R n R n sa svojstvom da za sve T R n vrijedi da je C polovište dužine polovište dužine T 1(T ). Ako za neki centar C vrijedi 1(X ) = X kažemo da X posjeduje centralnu simetriju. Inverzija se često označava i s i. Slika: C 2 H 2 F 2 Cl 2 Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

10 Ravnine simetrije Što je simetrija? Ravninska simetrija ili zrcaljenje obzirom na ravninu Π je izometrija m : R 3 R 3 sa svojstvom da za sve točke T R 3 vrijedi da se polovište dužine Tm(T ) podudara sa sjecištem okomice iz T na Π s Π. Ako za neku ravninu Π vrijedi m(x ) = X kažemo da X posjeduje zrcalnu simetriju. Zrcaljenje se takoder često označava sa σ, a ravnina simetrije s P. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

11 Ravnine simetrije Što je simetrija? Ravninska simetrija ili zrcaljenje obzirom na ravninu Π je izometrija m : R 3 R 3 sa svojstvom da za sve točke T R 3 vrijedi da se polovište dužine Tm(T ) podudara sa sjecištem okomice iz T na Π s Π. Ako za neku ravninu Π vrijedi m(x ) = X kažemo da X posjeduje zrcalnu simetriju. Zrcaljenje se takoder često označava sa σ, a ravnina simetrije s P. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

12 Osi simetrije Što je simetrija? Rotacijska simetrija ili rotacija oko osi (pravca) o za kut α je izometrija r : R 3 R 3 sa svojstvom da za sve točke T R 3 vrijedi da je OT = Or(T ) i da je kut izmedu OT i Or(T ) jednak α, gdje je O probodište pravca o s ravninom kroz T koja je okomita na o. Ako za neku os o i kut α 0 vrijedi r(x ) = X kažemo da X posjeduje rotacijsku simetriju. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

13 Osi simetrije Što je simetrija? Rotacijska simetrija ili rotacija oko osi (pravca) o za kut α je izometrija r : R 3 R 3 sa svojstvom da za sve točke T R 3 vrijedi da je OT = Or(T ) i da je kut izmedu OT i Or(T ) jednak α, gdje je O probodište pravca o s ravninom kroz T koja je okomita na o. Ako za neku os o i kut α 0 vrijedi r(x ) = X kažemo da X posjeduje rotacijsku simetriju. Dogovorno se bira najmanji kut rotacije α > 0 jer očito vrijedi da ako je rotacija za α rotacijska simetrija, onda je i rotacija za svaki njegov cjelobrojni višekratnik takoder rotacijska simetrija. Ako je α = 2π n odgovarajuću rotaciju označavamo s C n ili jednostavno s n, dok os tada označavamo s L n. Za n = 2, 3, 4, 6 odgovarajući elementi simetrije (osi) zovu se digira, trigira, tetragira, heksagira. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

14 Osi simetrije Što je simetrija? Rotacijska simetrija ili rotacija oko osi (pravca) o za kut α je izometrija r : R 3 R 3 sa svojstvom da za sve točke T R 3 vrijedi da je OT = Or(T ) i da je kut izmedu OT i Or(T ) jednak α, gdje je O probodište pravca o s ravninom kroz T koja je okomita na o. Ako za neku os o i kut α 0 vrijedi r(x ) = X kažemo da X posjeduje rotacijsku simetriju. Dogovorno se bira najmanji kut rotacije α > 0 jer očito vrijedi da ako je rotacija za α rotacijska simetrija, onda je i rotacija za svaki njegov cjelobrojni višekratnik takoder rotacijska simetrija. Ako je α = 2π n odgovarajuću rotaciju označavamo s C n ili jednostavno s n, dok os tada označavamo s L n. Za n = 2, 3, 4, 6 odgovarajući elementi simetrije (osi) zovu se digira, trigira, tetragira, heksagira. Napomenimo da se centralna simetrija može promatrati kao kompozicija rotacije za kut π i zrcaljenja obzirom na ravninu okomitu na os rotacije. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

15 Što je simetrija? (a) (b) (c) (d) Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

16 Što je dakle simetrija? Što je simetrija? Simetrija objekta X R 3 je svaka izometrija f prostora R 3 takva da je f (X ) = X. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

17 Što je dakle simetrija? Što je simetrija? Simetrija objekta X R 3 je svaka izometrija f prostora R 3 takva da je f (X ) = X. Trivijalna simetrija je identiteta I : R 3 R 3 ; ona je simetrija svakog objekta. Objekt smatramo simetričnim ako posjeduje bar jednu netrivijalnu simetriju. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

18 Što je dakle simetrija? Što je simetrija? Simetrija objekta X R 3 je svaka izometrija f prostora R 3 takva da je f (X ) = X. Trivijalna simetrija je identiteta I : R 3 R 3 ; ona je simetrija svakog objekta. Objekt smatramo simetričnim ako posjeduje bar jednu netrivijalnu simetriju. Sve izometrije prostora mogu se realizirati kao kompozicije zrcaljenja, no iz praktičnih razloga se razlikuju razne vrste izometrija. Uz već navedene izometrije (inverzije, zrcaljenja, rotacije) još se kao simetrije objekata pojavljuju i: Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

19 Što je dakle simetrija? Što je simetrija? Simetrija objekta X R 3 je svaka izometrija f prostora R 3 takva da je f (X ) = X. Trivijalna simetrija je identiteta I : R 3 R 3 ; ona je simetrija svakog objekta. Objekt smatramo simetričnim ako posjeduje bar jednu netrivijalnu simetriju. Sve izometrije prostora mogu se realizirati kao kompozicije zrcaljenja, no iz praktičnih razloga se razlikuju razne vrste izometrija. Uz već navedene izometrije (inverzije, zrcaljenja, rotacije) još se kao simetrije objekata pojavljuju i: Translacija za neki vektor a: izometrija t a : R 3 R 3 sa svojstvom da za sve točke T R 3 vrijedi da je orijentirana dužina Tt a (T ) predstavnik vektora a. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

20 Što je simetrija? Rotoinverzija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s n; Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

21 Što je simetrija? Rotoinverzija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s n; Rotorefleksija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s ñ; Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

22 Što je simetrija? Rotoinverzija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s n; Rotorefleksija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s ñ; Simetrija klizne ravnine: kompozicija zrcaljenja obzirom na neku ravninu s translacijom u smjeru paralelnom toj ravnini; Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

23 Što je simetrija? Rotoinverzija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s n; Rotorefleksija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s ñ; Simetrija klizne ravnine: kompozicija zrcaljenja obzirom na neku ravninu s translacijom u smjeru paralelnom toj ravnini; Vijčana simetrija: kompozicija rotacije oko neke osi s translacijom u smjeru te osi. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

24 Što je simetrija? Rotoinverzija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s n; Rotorefleksija: kompozicija rotacije za kut α s inverzijom; ako je α = 2π n, onda se pripadna rotoinverzija označava s ñ; Simetrija klizne ravnine: kompozicija zrcaljenja obzirom na neku ravninu s translacijom u smjeru paralelnom toj ravnini; Vijčana simetrija: kompozicija rotacije oko neke osi s translacijom u smjeru te osi. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

25 Što je simetrija? Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

26 Što je simetrija? Kod kristala su, kako ćemo kasnije dokazati, moguće samo osi simetrije (bilo rotacije bilo rotoinverzije ili rotorefleksije) reda 2, 3, 4 ili 6. Sve rotorefleksne osi tih redova mogu se shvatiti kao rotoinverzne: 1 = 2, 2 = 1, 3 = 6, 4 = 4, 6 = 3. Mi stoga u daljnjem nećemo spominjati rotorefleksiju. Napomenimo ovdje da je engleski izraz za rotorefleksiju improper rotation te se u prikazima simetrija kristala i molekula one preferiraju u odnosu na rotoinverziju. Slika: Ekvivalencije rotoinverzija i rotorefleksija Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

27 Zone, forme Forme Svaki kristal/mineral možemo u geometrijskom smislu shvatiti kao poliedar. Njegove strane zovemo plohama; one su konveksni poligoni. 1 Za danu ravninu u R 3 pripadni (zatvoreni) poluprostor je skup svih točaka koje su s jedne od dviju mogućih strana te ravnine, uključivši samu ravninu. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

28 Zone, forme Forme Svaki kristal/mineral možemo u geometrijskom smislu shvatiti kao poliedar. Njegove strane zovemo plohama; one su konveksni poligoni. Forma je skup svih sukladnih ploha kristala. Plohe jedne forme su nužno povezane elementima simetrije tj. iz bilo koje od njih se primjenom neke od simetrija mogu generirati sve ostale plohe iz iste forme. 1 Za danu ravninu u R 3 pripadni (zatvoreni) poluprostor je skup svih točaka koje su s jedne od dviju mogućih strana te ravnine, uključivši samu ravninu. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

29 Zone, forme Forme Svaki kristal/mineral možemo u geometrijskom smislu shvatiti kao poliedar. Njegove strane zovemo plohama; one su konveksni poligoni. Forma je skup svih sukladnih ploha kristala. Plohe jedne forme su nužno povezane elementima simetrije tj. iz bilo koje od njih se primjenom neke od simetrija mogu generirati sve ostale plohe iz iste forme. Za svaku formu promotrimo presjek poluprostora 1 odredenih ravninama u kojima leže plohe forme. Otvorena forma je ona za koju je taj presjek neomeden skup, a zatvorena forma je ona za koju je taj presjek omeden. 1 Za danu ravninu u R 3 pripadni (zatvoreni) poluprostor je skup svih točaka koje su s jedne od dviju mogućih strana te ravnine, uključivši samu ravninu. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

30 Zone, forme Forme Svaki kristal/mineral možemo u geometrijskom smislu shvatiti kao poliedar. Njegove strane zovemo plohama; one su konveksni poligoni. Forma je skup svih sukladnih ploha kristala. Plohe jedne forme su nužno povezane elementima simetrije tj. iz bilo koje od njih se primjenom neke od simetrija mogu generirati sve ostale plohe iz iste forme. Za svaku formu promotrimo presjek poluprostora 1 odredenih ravninama u kojima leže plohe forme. Otvorena forma je ona za koju je taj presjek neomeden skup, a zatvorena forma je ona za koju je taj presjek omeden. 1 Za danu ravninu u R 3 pripadni (zatvoreni) poluprostor je skup svih točaka koje su s jedne od dviju mogućih strana te ravnine, uključivši samu ravninu. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

31 Zone, forme Glavne otvorene forme su pinakoid (u formi su samo dvije paralelne plohe), prizma (plohe forme su četverokuti koji čine plašt prizme) i piramida (plohe forme su trokuti koji čine plašt piramide). Prema poligonu kojeg dobijemo ako prizmu/piramidu siječemo okomito na njenu os razlikujemo rompske, trigonske, tetragonske, heksagonske, ditrigonske, ditetragonske i diheksagonske prizme i piramide. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

32 Zone, forme Glavne otvorene forme su pinakoid (u formi su samo dvije paralelne plohe), prizma (plohe forme su četverokuti koji čine plašt prizme) i piramida (plohe forme su trokuti koji čine plašt piramide). Prema poligonu kojeg dobijemo ako prizmu/piramidu siječemo okomito na njenu os razlikujemo rompske, trigonske, tetragonske, heksagonske, ditrigonske, ditetragonske i diheksagonske prizme i piramide. Glavne zatvorene forme su dipiramida (forma je unija dviju zrcalnosimetričnih piramida), trapezoedar (formu čine deltoidi), romboedar (formu čini šest sukladnih paralelograma) i skalenoedar (formu čine trokuti kojima su sve tri stranice različite duljine). Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

33 Zone, forme Glavne otvorene forme su pinakoid (u formi su samo dvije paralelne plohe), prizma (plohe forme su četverokuti koji čine plašt prizme) i piramida (plohe forme su trokuti koji čine plašt piramide). Prema poligonu kojeg dobijemo ako prizmu/piramidu siječemo okomito na njenu os razlikujemo rompske, trigonske, tetragonske, heksagonske, ditrigonske, ditetragonske i diheksagonske prizme i piramide. Glavne zatvorene forme su dipiramida (forma je unija dviju zrcalnosimetričnih piramida), trapezoedar (formu čine deltoidi), romboedar (formu čini šest sukladnih paralelograma) i skalenoedar (formu čine trokuti kojima su sve tri stranice različite duljine). Plohe svakog kristala mogu se rasporediti u forme tj. pripadni poliedar je presjek jedne ili više formi. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

34 A što su zone? Zone, forme Zona je skup ploha kristala koje su paralelne istom smjeru pravaca; svaki pravac tog smjera zove se os zone. Očigledno svake dvije neparalelne plohe odreduju jednu zonu. Ravnine ploha iste zone sijeku se u paralelnim pravcima (ti svi pravci naravno imaju smjer osi zone). Zonska ravnina je bilo koja ravnina koja je okomita na os zone; normale na plohe zone su paralelne zonskoj ravnini. Treći kristalografski zakon glasi: Svaka ploha kristala pripada bar dvjema zonama. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

35 Zone, forme Prvi kristalografski zakon Prvi kristalografski zakon poznat je i kao zakon o stalnosti kuteva. Izrekao ga je Niels Stensen (Nicolaus Steno). Zakon glasi: Kutevi izmedu odgovarajućih ploha na svim kristalima neke mineralne vrste jednaki su, bez obzira nalazište kristala, uz uvjet da se mjere uz isti tlak i temperaturu. Dakle, svaka mineralna vrsta ima odredene tipične kuteve koji se mogu pojaviti medu plohama kristala te vrste te se temeljem uočenih kuteva 2 može utvrditi može li dani uzorak kristala pripadati nekoj mineralnoj vrsti ili ne. 2 Naprave za mjerenje kuteva medu plohama kristalâ zovu se goniometri. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

36 Zone, forme Vježbe Na modelima naći i po mogućnosti imenovati: Elemente simetrije (C, m, 2, 3, 4, 6, 4); Forme (obavezno razlikovati otvorene i zatvorene!); Zone Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad / 16

Kristalografske točkine grupe

Kristalografske točkine grupe Kristalografske točkine grupe Franka Miriam Brückler PMF-MO, Zagreb Travanj 2017. Franka Miriam Brückler (PMF-MO, Zagreb) Kristalografske točkine grupe Travanj 2017. 1 / 29 Elementi simetrije Elementi

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Analitička geometrija prostora

Analitička geometrija prostora Analitička geometrija prostora Franka Miriam Brückler U analitičkog geometriji u ravnini se pomoću koordinata (uredenih parova realnih brojeva) proučavaju točke ravnine i njihovi jednodimenzionalni skupovi:

Διαβάστε περισσότερα

Franka Miriam Brückler. Listopad 2008.

Franka Miriam Brückler. Listopad 2008. Rešetke Franka Miriam Brückler PMF-MO, Zagreb Listopad 2008. Franka Miriam Brückler (PMF-MO, Zagreb) Rešetke Listopad 2008. 1 / 22 Vanjska simetrija kristâla navela je ljude na zaključak da joj je uzrok

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

7.1 Međusobni položaji točaka, pravaca i ravnina

7.1 Međusobni položaji točaka, pravaca i ravnina Poglavlje 7 Stereometrija Stereometrijom nazovamo geometriju (trodimenzionalnog euklidskog) prostora. Osnovni elementi prostora su točke, pravci i ravnine. Aksiome geometrije prostora nećemo navoditi.

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

4. MONGEOVO PROJICIRANJE

4. MONGEOVO PROJICIRANJE 4. MONGEOVO PROJICIRANJE 4.1. Projiciranje točke Niti centralno ni paralelno projiciranje točaka prostora na ravninu nije bijekcija. Stoga se pri takvim preslikavanjima suočavamo s problemom nejednoznačnog

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Analitička geometrija afinog prostora

Analitička geometrija afinog prostora Analitička geometrija afinog prostora Linearno zavisan i linearno nezavisan skup točaka U realnom afinom prostoru A n dane točke A i (r i ), i =,,, k, k +, k + pripadaju istoj s ravnini π s, s k, ako i

Διαβάστε περισσότερα

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela.

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela. S. Varošanec, Nacrtna geometrija, 4. Mongeovo projiciranje 90 Primjer 4.56. Osnovka ABCD uspravne četverostrane prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O

je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O Zoran Topić, Imotski Menelajev teorem i neke primjene U ovom članku ćemo dokazati Menelajev 1 teorem i pokazati neke primjene tog teorema. Menelajevo najvažnije djelo je Sphaerica u kojem dokazuje i Menelajev

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Analitička geometrija u ravnini

Analitička geometrija u ravnini Analitička geometrija u ravnini September 5, 2008 1 Vektori u koordinatnom sustavu 1.1 Udaljenost točaka u koordinatnom sustavu pravokutni koordinatni sustav potpuno je odred en ishodištem jediničnim vektorima

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Predavanja iz Elementarne geometrije

Predavanja iz Elementarne geometrije Predavanja iz Elementarne geometrije Jurica Perić 2017./2018. Sadržaj Povijesni pregled ii 1. Planimetrija - geometrija ravnine 1 1.1. Aksiomi euklidske geometrije ravnine.................. 1 1.1.1. Aksiomi

Διαβάστε περισσότερα

Vektori. 28. studenoga 2017.

Vektori. 28. studenoga 2017. Vektori 28. studenoga 2017. 1 / 42 Skalarna veličina: veličina odredena samo jednim (realnim) brojem ili skalarom npr. skalarne veličine su udaljenost, masa, površina, volumen,... Vektorska veličina: veličina

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα