On optimal FEM and impedance conditions for thin electromagnetic shielding sheets

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On optimal FEM and impedance conditions for thin electromagnetic shielding sheets"

Transcript

1 On optimal FEM and impedance conditions for thin electromagnetic shielding sheets Kersten Schmidt Research Center Matheon, Berlin, Germany, Institut für Mathematik, Technische Universität Berlin, Germany Institut für Mathematik, BTU Cottbus-Senftenberg, Germany Research Center MATHEON Mathematics for key technologies RICAM SpecSem Workshop on Analysis and Numerics of Acoustic and Electromagnetic Problems 2016, Linz, Oct 18th 2016

2 Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E +iµσω E = iωµ 0 J Thin conducting sheets shields electric and magnetic fields Challenges: high gradients in thickness directions high aspect ratio of the sheets K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

3 Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E +iµσω E = iωµ 0 J Remedies thin sheet basis approximate transmission conditions boundary integral formulation K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

4 Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E = J [E n] Γ = 0 [curl E n] Γ = Z(ω, σ, d) E T Remedies thin sheet basis approximate transmission conditions boundary integral formulation K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

5 Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E = J [E n] Γ = 0 [curl E n] Γ = Z(ω, σ, d) E T Remedies thin sheet basis approximate transmission conditions boundary integral formulation K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

6 Thin conducting shielding sheets Eddy current model curl curl E +iµσω E = iωµ 0 J ε b a f = iωµ0j0 Ω ε int Ω ε ext K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 3 / 29

7 Thin conducting shielding sheets Eddy current model ε curl curl E +iµσω E = iωµ 0 J b a Two important effects of the thin sheet (of thickness ε) Shielding effect in conductors induced currents diminish electromagnetic fields (behind the conductor) Skin effect major current flow in a boundary layer (skins of the conductor) Skin depth in solid body δ = 2 µ 0 σω Copper at 50 Hz δ 8mm f = iωµ0j0 Ω ε int Ω ε ext K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 3 / 29

8 Thin conducting shielding sheets Eddy current model curl curl E +iµσω E = iωµ 0 J Two important effects of the thin sheet (of thickness ε) Shielding effect in conductors induced currents diminish electromagnetic fields (behind the conductor) Skin effect major current flow in a boundary layer (skins of the conductor) Skin depth in solid body δ = 2 µ 0 σω Copper at 50 Hz δ 8mm ε δ ε δ ε δ K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 3 / 29

9 Outline 1 Optimal basis inside the sheet 2 Impedance transmission conditions (ITCs) 3 Boundary integral equations for impedance transmission conditions K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 4 / 29

10 Optimal basis inside the sheet Eddy current model in 2D (TM polarisation) u ε (x) + iωµ 0σ(x) u ε (x) = iωµ 0j 0(x) Approximation of higher order without reduction to an interface Ansatz for the solution inside the sheet uint(t, ε s) uint,n(t, ε s) = N 1 i=0 φε i (s, t) uint,i(t). ε inspired by: Vogelius, M. and Babuška, I., Math. Comp. 37, with N 2 linear independent basis functions φ ε i spanning V ε N, and u ε int,i H 1 ( Γ). ε ext ε int n ε ext ε s t 0 Basis functions φ ε 0, φ ε 1 in the kernel of 2 s κ 1+sκ s + iωµ 0σ + κ2 4(1+sκ) 2, φ ε 0(s, κ) = φ ε 1(s, κ) = 1 cosh( iωµ 0σs) 1 + sκ cosh( iωµ 0σ ε ), {φε,0} κ = 1, [φ ε,0] κ = 0, 2 1 sinh( iωµ 0σs) 1 + sκ 2 sinh( iωµ 0σ ε ), {φε,1} κ = 0, [φ ε,1] κ = 1, 2 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 5 / 29

11 Optimal basis inside the sheet Eddy current model in 2D (TM polarisation) u ε (x) + iωµ 0σ(x) u ε (x) = iωµ 0j 0(x) Approximation of higher order without reduction to an interface Ansatz for the solution inside the sheet uint(t, ε s) uint,n(t, ε s) = N 1 i=0 φε i (s, t) uint,i(t). ε inspired by: Vogelius, M. and Babuška, I., Math. Comp. 37, with N 2 linear independent basis functions φ ε i spanning V ε N, and u ε int,i H 1 ( Γ). ε ext ε int n ε ext ε s t 0 Basis functions φ ε 2j, φ ε 2j+1,j N 0 in the kernel of ( s 2 κ 1+sκ s + iωµ 0σ + κ2 4(1+sκ) 2 ) j+1, φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j,0 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 5 / 29

12 Optimal basis inside the sheet Basis functions φ ε i, i N 0 such that ( 2 s φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = κ s + iωµ0σ + κ2 1+sκ 4(1+sκ) 2 )φ ε i = ε 2 φ ε i 2 P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j, φ ε int,0 κ = +8 κ = 8 φ ε int, ε 0 ε 2 s φ ε int,2 φ ε int, ε 0 ε 2 s 2 iωµ 0σ = 1000, ε = φ ε int,4 φ ε int, ε 0 ε 2 s 2 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 6 / 29

13 Optimal basis inside the sheet Basis functions φ ε i, i N 0 such that ( 2 s φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = κ s + iωµ0σ + κ2 1+sκ 4(1+sκ) 2 )φ ε i = ε 2 φ ε i 2 P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j,0 ( Decomposition + iωµ 0σ = s 2 κ 1 + sκ s + iωµ0σ + κ 2 ) + A(s, κ) 4(1 + sκ) }{{ 2 } scales with ε, depends on σ with regular pertubation, independent of σ A(s, κ) = 1 ( ) 1 κ sκ t 1 + sκ t 4(1 + sκ) 2 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 6 / 29

14 Optimal basis inside the sheet Basis functions φ ε i, i N 0 such that ( 2 s φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = κ s + iωµ0σ + κ2 1+sκ 4(1+sκ) 2 )φ ε i = ε 2 φ ε i 2 P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j,0 ( Decomposition + iωµ 0σ = s 2 κ 1 + sκ s + iωµ0σ + κ 2 ) + A(s, κ) 4(1 + sκ) }{{ 2 } scales with ε, depends on σ with regular pertubation, independent of σ A(s, κ) = 1 ( ) 1 κ sκ t 1 + sκ t 4(1 + sκ) 2 Interpolation I ε Nu ε for u ε smooth enough N 2 j=0 N 1 2 INu ε ε (s, t) = ε 2j φ ε 2j(s, κ)a N,j (s, κ){u ε } κ + ε 2j φ ε 2j+1(s, κ)a N,j (s, κ)[u ε ] κ j=0 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 6 / 29

15 Lemma (Best-approximation error) Optimal basis inside the sheet For any even N (curved sheet) any N (straight sheet or curved sheet N 4) and u ε smooth enough there exists a constant C independent of σ such that inf w w N ε V N ε N ε u ε H 1 (Ω ε H1 int ( Γ) ) Cε N 2 1, inf w w N ε V N ε N ε u ε L 2 (Ω ε H1 int ( Γ) ) Cε N Interpolation I ε Nu ε for u ε smooth enough I ε Nu ε (s, t) = N 2 j=0 ε2j φ ε 2j(s)A N,j (s, κ){u ε } κ + N 1 2 j=0 ε 2j φ ε 2j+1(s)A N,j (s, κ)[u ε ] κ K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 7 / 29

16 Optimal basis inside the sheet Eddy current model in 2D (TM polarisation) u ε (x) + iωµ 0σ(x) u ε (x) = iωµ 0j 0(x) } Semi-discretization WN {u ε := H 1 (Ω) : u Ω ε ext H 1 (Ω ε ext ), u Ω ε V ε int N H1 ( Γ) Seek un ε WN ε such that un ε v N dx + Ω Ω ε int iωµ 0σuNv ε N dx = iωµ 0j 0v N dx Ω v N W ε N Lemma (Semi-discretization error) For any even N (curved sheet) any N (straight sheet or curved sheet N 4) and u ε smooth enough it holds for u ε N W ε N u ε N u ε H 1 (Ω ε int ) Cε N 1 2, u ε N u ε L 2 (Ω ε int ) Cε N+ 1 2, u ε N u ε H 1 (Ω ε ext ) Cε 2N 1. K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 8 / 29

17 Semianalytical study for circular arc with κ = 1 2, iωµ0σ = 1 ε. Optimal basis inside the sheet Error in the H 1 -seminorm inside the sheet. u ε N u ε H 1 (Ω ε int ) Cε N 1 2, Error in H 1 -seminorm outside the sheet. u ε N u ε H 1 (Ω ε ext ) Cε 2N 1. e.g., four functions sixth-order scheme O(ε 7 ) (outside the sheet) easily increasing order by enrichment with higher optimal basis functions pre-computation of integrals in s surface variables K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 9 / 29

18 Content 1 Optimal basis inside the sheet 2 Impedance transmission conditions (ITCs) 3 Boundary integral equations for impedance transmission conditions K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 10 / 29

19 y Original problem Impedance transmission conditions (ITCs) Ω ε ext ε 2 0 ε 2 Ω ε int Γ curl curl E = iωµ 0 J in Ω ε ext curl curl E +iωµ 0σ E = 0 in Ω ε int (1) Ω ε ext x Reduced problem with ITC-1-0 (Levi-Civita 1902) y ε 2 0 Ω 0 ext Γ curl curl E 0 = iωµ 0 J [curl E 0 n] iωµ 0σε{E 0,T } = 0 in Ω 0 ext [E 0 n] = 0 on Γ on Γ (2) ε 2 Ω 0 ext E 0 defined Ω 0 ext approximates E in Ω ε ext layer correction inside Ω ε int can be computed a-posteriori x limit for ε 0 for σ = σ(ε) ε 1 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 11 / 29

20 y Impedance transmission conditions (ITCs) Original problem (TM mode) Ω ε ext ε 2 0 ε 2 Ω ε int Γ u = f in Ω ε ext u + α δ 2 u = 0 in Ωε int (1) Ω ε ext Skin depth δ serves as a parameter x Reduced problem with ITC-1-0 (Levi-Civita 1902) y ε 2 0 ε 2 Ω 0 ext Γ u 0 = f in Ω 0 ext [u 0] = 0 on Γ [ nu 0] αε {u0} δ2 = 0 on Γ (2) Ω 0 ext x u 0 defined in Ω 0 ext approximates u in Ω ε ext layer correction inside Ω ε int can be computed a-posteriori limit for ε 0 for δ(ε) ε K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 11 / 29

21 y Impedance transmission conditions (ITCs) Asymptotic problem (TM mode) Ω ε ext ε 2 0 ε 2 Ω ε int Ω ε ext Γ x u ε = f in Ω ε ext u ε + α δ 2 (ε) uε = 0 in Ω ε int Skin depth δ serves as a parameter Reduced problem with ITC-1-0 (Levi-Civita 1902) (1) y ε 2 0 ε 2 Ω 0 ext Γ u 0 = f in Ω 0 ext [u 0] = 0 on Γ [ nu 0] αε {u0} δ2 = 0 on Γ (2) Ω 0 ext x u 0 defined in Ω 0 ext approximates u in Ω ε ext layer correction inside Ω ε int can be computed a-posteriori family ITC-1-N of transmission conditions derived by asymptotic expansion with δ δ(ε) ε, and K.S. and S. Tordeux, ESAIM: M2AN, 45(6): , K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 11 / 29

22 Impedance transmission conditions (ITCs) Reduced problem with transmission conditions ITC-1-0 (Levi-Cevita 1902) u 0 = f in Ω 0 ext [u 0] = 0 on Γ [ nu 0] αε {u0} δ2 = 0 on Γ O(ε) : error in exterior decreases linearly with ε along δ(ε) ε (proven) surprise : even if ε δ 0 extra accuracy for ε δ 10 mm u u 0 H 1 (Ω ε ext ) Skin depth δ 1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 12 / 29

23 Reduced problem with transmission conditions ITC-1-1 Impedance transmission conditions (ITCs) u ε,1 = f in Ω 0 ext [u ε,1 ] = 0 on Γ [ nu ε,1 ] αε ( 2 ) 1 αε δ 2 6δ {u ε,1 } 2 = 0 on Γ O(ε 2 ) : error in exterior decreases like ε 2 along δ(ε) ε (proven) but only O(ε) in case of ε δ 0, no improvement when increasing order N from 0 to 1 10 mm ITC mm ITC-1-1 Skin depth δ 1 mm Skin depth δ 1 mm 0.1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 13 / 29

24 Reduced problem with transmission conditions ITC-1-2 Impedance transmission conditions (ITCs) [ nu ε,2 ] αε ( 2 1 αε δ 2 6δ 2 + ε2 12 u ε,2 = f in Ω 0 ext [u ε,2 ] + αε3 { 12δ nu ε,2 } = 0 on Γ ( 2 7α 2 ε δ Γ)) 2 {u ε,2 } = 0 on Γ 4 O(ε 3 ) : error in exterior decreases like ε 3 along δ(ε) ε (proven) but convergence to wrong solution in case of ε δ 0, not robust in δ anymore, worse than for low orders N = 0, 1 ITC-1-0 ITC-1-1 ITC-1-2 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 14 / 29

25 Reduced problem with transmission conditions ITC-1-2 Impedance transmission conditions (ITCs) [ nu ε,2 ] αε ( 2 1 αε δ 2 6δ 2 + ε2 12 u ε,2 = f in Ω 0 ext [u ε,2 ] + αε3 { 12δ nu ε,2 } = 0 on Γ ( 2 7α 2 ε δ Γ)) 2 {u ε,2 } = 0 on Γ 4 O(ε 3 ) : error in exterior decreases like ε 3 along δ(ε) ε (proven) but convergence to wrong solution in case of ε δ 0, not robust in δ anymore, worse than for low orders N = 0, 1 10 mm Let ε fixed and δ : [u ε,2 ] 0, [ nu ε,2 ] 0 on Γ no shielding δ 0 : { nu ε,2 } 0, {u ε,2 } 0 on Γ perfect electric b.c. (PEC) only valid results for large enough skin depth δ Skin depth δ 1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 14 / 29

26 Impedance transmission conditions (ITCs) Reduced problem with transmission conditions ITC-2-1 (derived for δ(ε) ε) K.S. and A. Chernov, SIAM J. Appl. Math., 73(6): , [u ε,1 ] + ε ( 1 2δ u ε,1 = f in Ω 0 ext αε tanh( αε 2δ ) { nu ε,1 } = 0 on Γ [ nu ε,1 ] 2 α tanh( αε ) 2δ δ 1 2 αε tanh( αε ) {uε,1 } = 0 on Γ 2δ O(ε 2 ) : error in exterior decreases like ε 2 along δ(ε) ε (proven) we observe (numerically) O(ε 2 ) independent of δ(ε) Let ε fixed and δ : [u ε,1 ] 0, [ nu ε,1 ] 0 on Γ no shielding δ 0 : [u ε,1 ] + ε{ nu ε,1 } 0 {u ε,1 } + ε 4 [ nuε,1 ] 0 on Γ perfect electric b.c. (PEC) at Γ ε robust results w.r.t. skin depth δ / conductivity σ 10 mm 1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 15 / 29 Skin depth δ

27 Electromagnetic scattering by thin shielding sheet of thickness ε Impedance transmission conditions (ITCs) curl curl E ε (k ε ) 2 E ε = 0 + Silver-Müller b.c. ( ) k ext = ω 2 µ ext ɛ ext + i σ ext(ε), in Ω ε with complex wave-number k ε ω ext, = ( ) kint ε = ω 2 µ int ɛ int + i σ int(ε), in Ω ε int. Reduced problem with transmission conditions ITC-2-1 (derived for σ int(ε) ε 2 ) V. Péron, K.S. and M. Durufle, SIAM J. Appl. Math., 76(3): , ω curl curl E ε,1 kext 2 E ε,1 = 0 in Ω 0 ext ( [ E ε,1 n ] ) ( ) Γ { E ε,1 n } L1 L 3 = ε L 3 L 2 Γ + Silver-Müller b.c. { 1 [ µ ext (curl E ε,1 ) T }Γ ( 1 µ ext curl E ε,1 ) T ]Γ with the operators L i = A i curl Γ curl Γ B i Id and constants A i, B i decoupling of ITCs if material parameters are the same on both sides of Γ L 3 = 0 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 16 / 29

28 Electromagnetic scattering by thin shielding sheet of thickness ε Impedance transmission conditions (ITCs) Variational formulation for reduced problem with transmission conditions ITC-2-1 where { } V = v H(curl, Ω 0 ext), v n L 2 t ( Ω), W = {v L 2 t (Γ), curl Γ v L 2 (Γ)}. Find (E ε,1, λ ε, µ ε ) V W W such that for all (E, λ, µ ) V W W Γ 1 curl E ε,1 curl E κ2 ext E ε,1 E iκ ext dx E ε,1 n E n ds Ω + Ω µ ext µ ext Ω µ ext ( ) ( ) n λ ε [E n µ ε T ] {E ds = r.h.s., T } ( ) ( [n E ε,1 ] {n E ε,1 } λ µ ( ) ( ) A1 A 3 B1 B 3 with A =, B = A 3 A 2 B 3 B 2 Γ ) ( ) ( ) ( ) ( curlγ λ ε curl Γ λ λ ε + ε A curl Γ µ ε ε B curl Γ µ µ ε λ µ ) ds = 0. K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 17 / 29

29 Electromagnetic scattering by thin shielding sheet of thickness ε Impedance transmission conditions ITC-2-1 for spherical sheet Impedance transmission conditions (ITCs) Discretization with Nédélec s elements of the first kind on hexahedral curved elements and its tangential traces x3 = 0 x2 = 0 x1 = 0 Relative L 2 error PEC, ε = 0.02 PEC, ε = ITC-2-1, ε = 0.02 ITC-2-1, ε = σε 2 Impedance transmission conditions are robust w.r.t. skin depth δ / conductivity σ K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 18 / 29

30 Content 1 Optimal basis inside the sheet 2 Impedance transmission conditions (ITCs) 3 Boundary integral equations for impedance transmission conditions K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 19 / 29

31 Boundary integral equations for impedance transmission conditions Reduced problem with transmission conditions on a closed Lipschitz curve/surface Γ U = F in R d \Γ [γ 1U] β {γ 0U} = 0 on Γ [γ 0U] = 0 on Γ (3) γ 0, γ 1... Dirichlet, Neumann traces on Γ, β... impedance parameter BVP is singularly perturbed for large β (homogeneous Dirichlet b.c. in the limit β ) Γ supp(f ) Mathematical model for thin conducting sheets in electromagnetics (d = 2) K.S. and S. Tordeux, ESAIM: M2AN, 2011 K.S. and A. Chernov, SIAM J. Appl. Math., 2013 and references therein. K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 20 / 29

32 Boundary integral equations for impedance transmission conditions Reduced problem with transmission conditions on a closed Lipschitz curve/surface Γ U = F in R d \Γ [γ 1U] β {γ 0U} = 0 on Γ [γ 0U] = 0 on Γ (3) γ 0, γ 1... Dirichlet, Neumann traces on Γ, β... impedance parameter BVP is singularly perturbed for large β (homogeneous Dirichlet b.c. in the limit β ) Mathematical model for thin conducting sheets in electromagnetics (d = 2) K.S. and S. Tordeux, ESAIM: M2AN, 2011 K.S. and A. Chernov, SIAM J. Appl. Math., 2013 and references therein. Boundary integral equations and BEM for impedance boundary conditions A. Bendali and L. Vernhet, CRAS, 1995, L. Vernhet, M2AS, 1999, A. Bendali, Boundary integral equations and BEM for several kind of transmission conditions K.S. and R. Hiptmair, Discrete Contin. Dyn. Syst. Ser. S, 2015 and references therein. Aim: Numerical analysis of BEM on uniform meshes in dependence of large parameter β, or small parameter ε := β 1, and the smoothness of Γ When is BEM on uniform meshes ε-robust? K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 20 / 29

33 Boundary integral equations for impedance transmission conditions 2nd order elliptic BVP with transmission conditions on a closed Lipschitz curve/surface Γ Representation formula U = F in R d \Γ (3a) [γ 0U] = 0 on Γ (3c) U = S [γ 1U] + D [γ 0U] +N F }{{} =0 with single layer potential S and Newton potential NF (S φ)(x) := G(x y)φ(y)dy (N F )(x) := G(x y)f (y)dy Γ R { 2 1 log( x y ), d = 2, 2π G(x y) = 1, d = 3. 4π x y Mean of Dirichlet traces gives the single layer operator Taking mean traces on Γ V := {γ 0S } : H 1/2+s (Γ) H 1/2+s (Γ), {γ 0U} = V [γ 1U] + γ 0NF (5) K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 21 / 29

34 Boundary integral equations for impedance transmission conditions 2nd order elliptic BVP with transmission conditions on a closed Lipschitz curve/surface Γ Representation formula U = F in R d \Γ (3a) [γ 0U] = 0 on Γ (3c) U = S [γ 1U] + D [γ 0U] +N F }{{} =0 with single layer potential S and Newton potential NF (S φ)(x) := G(x y)φ(y)dy (N F )(x) := G(x y)f (y)dy Γ R { 2 1 log( x y ), d = 2, 2π G(x y) = 1, d = 3. 4π x y Mean of Dirichlet traces gives the single layer operator Taking mean traces on Γ V := {γ 0S } : H 1/2+s (Γ) H 1/2+s (Γ), {γ 0U} = V [γ 1U] + γ 0NF (5) First transmission condition {γ 0U} = ε [γ 1U] (3b) K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 21 / 29

35 Boundary integral equations for impedance transmission conditions 2nd order elliptic BVP with transmission conditions on a closed Lipschitz curve/surface Γ U = F in R d \Γ (3a) ε [γ 1U] {γ 0U} = 0 on Γ (3b) [γ 0U] = 0 on Γ (3c) Single layer operator V := {γ 0S } : H 1/2+s (Γ) H 1/2+s (Γ). Mean Dirichlet trace of representation formulation {γ 0U} = V [γ 1U] + γ 0NF (5) Boundary integral equations for φ = [γ 1U] (insert (3b) in (5)) (εid + V )φ = γ 0NF Singularly perturbed for ε 0 ( β ) expect internal layers at corners of Γ (or points of lower smoothness) K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 22 / 29

36 Boundary integral equations for impedance transmission conditions Singularly perturbed boundary integral equations for φ = [γ 1U] (ε Id + V )φ = γ 0NF Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ Bilinear form b ε is L 2 (Γ)-elliptic b ε(φ, φ) ε φ 2 L 2 (Γ) and H 1/2 (Γ)-elliptic since φ L 2 (Γ) ε 1 γ 0NF L 2 (Γ) V φ, φ φ 2 H 1/2 (Γ) (with a constant indep. of ε) φ 2 H 1/2 (Γ) bε(φ, φ) = γ0nf, φ γ0nf H 1/2 (Γ) φ H 1/2 (Γ) φ H 1/2 (Γ) γ0nf H 1/2 (Γ). K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 23 / 29

37 Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h (7) where V h is defined on mesh T h of (curved) panels K as S 1 0 (Γ h ) := S 0 1 (Γ h) := {v h L 2 (Γ) : v h P 0 (K) K T h }, l = 0 {v h L 2 (Γ) C(Γ) : v h P 1 (K) K T h }, l = 1 Γ h n K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 24 / 29

38 Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h where V h is defined on mesh T h of (curved) panels K as S 1 0 (Γ h ) := S 0 1 (Γ h) := {v h L 2 (Γ) : v h P 0 (K) K T h }, l = 0 {v h L 2 (Γ) C(Γ) : v h P 1 (K) K T h }, l = 1 (7) Theorem (Stability and a-priori error estimates) Let T h be a mesh of Γ with mesh width h. Then, φ h V h L 2 (Γ) solution of (7) satisfies φ h L 2 (Γ) ε 1 γ 0NF L 2 (Γ) φ h H 1/2 (Γ) γ0nf H 1/2 (Γ). For V h = S 1 0 (Γ h ) (l = 0) or V h = S 0 1 (Γ h ) (l = 1) and Γ C l+1,1 it holds φ φ h L 2 (Γ) ε l 5/2 h l+1 γ 0NF H l+1/2 (Γ). K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 24 / 29

39 Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h (7) Theorem (Stability and a-priori error estimates) [...] For V h = S 1 0 (Γ h ) (l = 0) or V h = S 0 1 (Γ h ) (l = 1) and Γ C l+1,1 it holds φ φ h L 2 (Γ) ε l 5/2 h l+1 γ 0NF H l+1 (Γ). Theorem (Higher order regularity estimates) For Γ C s+j+1,1 with 0 j s it holds φ H s+1/2 (Γ) εj s γ 0NF H s+j+3/2 (Γ). K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 25 / 29

40 Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h (7) Theorem (Higher order regularity estimates) For Γ C s+j+1,1 with 0 j s it holds φ H s+1/2 (Γ) εj s γ 0NF H s+j+3/2 (Γ). Theorem (Improved a-priori error estimates) For V h = S 1 0 (Γ h ) (l = 0) or V h = S 0 1 (Γ h ) (l = 1) and Γ C 2l+3,1 it holds φ φ h L 2 (Γ) h l+1 γ 0NF H 2l+7/2 (Γ). Proof: Asymptotic expansion of BEM solution φ h = φ 0,h + δφ 0,h. Theorem (ε-robust stability estimates) For Γ C 2,1 it holds φ h L 2 (Γ) γ 0NF H 5/2 (Γ). K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 25 / 29

41 Boundary integral equations for impedance transmission conditions Stadium interface Γ C 1,1 R R Γ h 10 1 l = l = φh φ L 2 (Γ) φh φ L 2 (Γ) mesh-width h β = 70i β = 5600i β = i mesh-width h β = 70i β = 5600i β = i Solution φ computed w. hp-adaptive FEM using the C++ library Concepts ( K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 26 / 29

42 Boundary integral equations for impedance transmission conditions b R m Rectangular interface Γ C 0,1 m a Γ h 10 1 l = l = φh φ L 2 (Γ) φh φ L 2 (Γ) β = 70i β = 70i 10 6 β = 5600i β = i 10 6 β = 5600i β = i mesh-width h mesh-width h Solution φ computed w. hp-adaptive FEM using the C++ library Concepts ( K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 27 / 29

43 Boundary integral equations for impedance transmission conditions Transmission conditions of Type II have form (e. g., shielding element by Nakata et.al.) [γ 1U] (β 1 β 2 2 Γ) {γ 0U} = 0 on Γ, [γ 0U] = 0 on Γ Boundary integral equation as mixed formulation (1st kind) for φ := [γ 1U] H 1/2 (Γ), u := {γ 0U} H 1 (Γ) Variational formulation ( V Id Id β 1Id β 2 2 Γ ) ( ) φ = u ( ) γ0n f 0 V φ, φ + u, φ = γ Γ Γ 0N f, φ Γ φ, u + Γ β1 u, u + Γ β2 Γ u, Γ u = 0 Γ singularly pertubed BIE for β 1 1 (high frequency) or β 2 1 (always) K.S. and R. Hiptmair, Discrete Contin. Dyn. Syst. Ser. S, 2015 K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 28 / 29

44 Summary Impedance conditions for thin electromagnetic shielding sheets FEM with optimal basis inside the sheet σ-robust convergence of high order in thickness ε Impedance transmission conditions families ITC-1-N and ITC-2-N of transmission conditions derived by asymptotic expansion with δ(ε) ε or δ(ε) ε σ-robust convergence for ITC-1-0 (Levi-Civita), ITC-1-1, ITC-2-1 (also in 3D for Maxwell scattering, NtD operators mixed formulation) Singularly perturbed boundary integral equation (second kind) (β 1 Id + V )U = γ 0NF β-robust stability and a-priori error estimates for Γ smooth enough Outlook convolution quadrature for impedance transmission conditions in time-domain Impedance transmission conditions for eddy current model in 3D thin electromagnetic sheets with corners (boundary layer + singularities) K.Schmidt RICAM SpecSem W1, FEM + impedance conditions for thin electromagnetic shielding sheets 29 / 29

High order transmission conditions for conductive thin sheets Asymptotic Expansions versus Thin Sheet Bases

High order transmission conditions for conductive thin sheets Asymptotic Expansions versus Thin Sheet Bases High order transmission conditions for conductive thin sheets Asymptotic Expansions versus Thin Sheet Bases Kersten Schmidt, Sébastien Tordeux 2 Project POEMS, INRIA Paris-Rocquencourt, 2 Toulouse Mathematics

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Discretization of Generalized Convection-Diffusion

Discretization of Generalized Convection-Diffusion Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes Oberwolfach meeting on Computational Electromagnetism Feb 22 - Feb 28 Singularities of electromagnetic fields in the Maxwell and eddy current formulations Martin COSTABEL, Monique DAUGE, Serge NICAISE

Διαβάστε περισσότερα

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography Nonlinear Fourier transform for the conductivity equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki CoE in Analysis and Dynamics Research What is the non linear

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation Hui Cao joint work with Michael Klibanov and Sergei Pereverzev

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography Nonlinear Fourier transform and the Beltrami equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki Beltrami equation: z f(z) = µ(z) z f(z) non linear Fourier transform

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

A generalized Holland model for wave diffraction by thin wires

A generalized Holland model for wave diffraction by thin wires A generalized Holland model for wave diffraction by thin wires Xavier Claeys Joint work with Francis Collino Marc Duruflé POEMS, Inria Rocquencourt, France Generalized Holland model p.1/26 Motivation Incident

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα