ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ"

Transcript

1 ΑΣΚΗΣΗ 1 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι διάρκειές τους και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον πίνακα που ακολουθεί: ΑΜΕΣΩΣ ΠΡΟΗΓΟΥΜΕΝΗ ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 Ζητούνται: (α) Να διαμορφωθεί το δίκτυο του έργου. (β) Να βρεθούν οι νωρίτεροι και βραδύτεροι χρόνοι των δραστηριοτήτων, τα αντίστοιχα χρονικά τους περιθώρια, ο χρόνος ολοκλήρωσής του έργου και η κρίσιμη διαδρομή. ΑΣΚΗΣΗ 2 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι εκτιμήσεις της αισιόδοξης, πιθανότερης και απαισιόδοξης διάρκειάς τους (σε μήνες), καθώς επίσης και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον πίνακα που ακολουθεί: ΑΜΕΣΩΣ ΠΡΟΗΓ. ΑΙΣΙΟΔΟΞΟΣ ΠΙΘΑΝΟΤΕΡΟΣ ΑΠΑΙΣΙΟΔΟΞΟΣ A B C D A E B F C G C H D, E, F Ζητούνται: (α) Να διαμορφωθεί το δίκτυο του έργου. (β) Να βρεθούν οι νωρίτεροι και βραδύτεροι χρόνοι των δραστηριοτήτων, τα αντίστοιχα χρονικά τους περιθώρια, ο αναμενόμενος χρόνος ολοκλήρωσής του έργου και η κρίσιμη διαδρομή. (γ) Ποια είναι η κατανομή του 1

2 χρόνου ολοκλήρωσης του έργου; (δ) Ποια είναι η πιθανότητα το έργο αυτό να ολοκληρωθεί σε 35 ή 27 μήνες; (ε) Ποια είναι η αναμενόμενη διάρκεια του έργου με πιθανότητα 80%, 95% και 99%; ΑΣΚΗΣΗ 3 Δίνεται το ακόλουθο δίκτυο αναπαράστασης ενός έργου: A 5 G 3 Start B 4 D 4 F 10 I 5 Finish C 8 E 12 H 0 (α) Παραθέστε πίνακα του οποίου γραμμές θα είναι οι εννέα (9) δραστηριότητες του έργου και στήλες ο ενωρίτερος χρόνος έναρξης, ο ενωρίτερος χρόνος λήξης, ο βραδύτερος χρόνος έναρξης και ο βραδύτερος χρόνος λήξης εκάστης εξ αυτών. Υποδείξτε την κρίσιμη διαδρομή και υπολογίστε τον (ελάχιστο) χρόνο ολοκλήρωσης του έργου. (β) Στη συνέχεια υποθέστε ότι ο χρόνος που υπολογίσατε προηγουμένως είναι ο αναμενόμενος χρόνος ολοκλήρωσης του έργου. Σε μια τέτοια περίπτωση, η πιθανότητα να τελειώσει το έργο σε λιγότερο από 25 εβδομάδες είναι μεγαλύτερη ή μικρότερη του 0.5; ΑΣΚΗΣΗ 4 Το ταξιδιωτικό πρακτορείο Universal Travel προσπαθεί να σχεδιάσει τη μετακόμιση των κεντρικών του γραφείων από την Αθήνα στην Κέρκυρα. Ο πίνακας που ακολουθεί περιέχει τις λεπτομέρειες των βημάτων που πρέπει να γίνουν (ο χρόνος είναι σε εβδομάδες). ΑΜΕΣΩΣ ΠΡΟΗΓ. ΔΙΑΡΚΕΙΑ A. Εύρεση χώρου νέων γραφείων B. Ανακαίνιση νέων γραφείων A 10 C. Απόφαση για τα μέλη του προσωπικού που θα μετακινηθούν D. Πρόσληψη νέου προσωπικού C 6 E. Πακετάρισμα στην Αθήνα A, C 2 F. Μεταφορά μηχανημάτων B 3 G. Μεταφορά αρχειακού υλικού B, E 2 H. Εγκατάσταση μηχανημάτων και αρχειακού υλικού στην Κέρκυρα F, G 4 I. Εγκαίνια νέων γραφείων στην Κέρκυρα D, H 6 2

3 1. Διαμορφώστε το δίκτυο αναπαράστασης του έργου. 2. Παραθέστε πίνακα του οποίου γραμμές θα είναι οι εννέα (9) δραστηριότητες του έργου και στήλες ο ενωρίτερος χρόνος έναρξης, ο ενωρίτερος χρόνος λήξης, ο βραδύτερος χρόνος έναρξης και ο βραδύτερος χρόνος λήξης εκάστης εξ αυτών. Υποδείξτε την κρίσιμη διαδρομή και υπολογίστε τον (ελάχιστο) χρόνο ολοκλήρωσης του έργου. 3. Υποθέστε ότι η Universal Travel θα πρέπει να πληρώσει 5000 για τα γραφεία σε Αθήνα και Κέρκυρα εάν η μετακόμιση δεν ολοκληρωθεί σε χρόνο μικρότερο των 35 εβδομάδων. Το πρακτορείο εξετάζει τις εξής δύο προτάσεις προκειμένου να μην χάσει την προθεσμία: a. Να καταβάλει 1000 προκειμένου να προσλάβει επιπλέον εργατικό δυναμικό που θα ασχοληθεί με τη μεταφορά του αρχειακού υλικού. Κάτι τέτοιο θα μειώσει τον αντίστοιχο χρόνο στο μισό. b. Να καταβάλει 1000 προκειμένου να προσλάβει επιπλέον εργατικό δυναμικό που θα ασχοληθεί με τη μεταφορά των μηχανημάτων. Κάτι τέτοιο θα μειώσει τον αντίστοιχο χρόνο κατά 1 εβδομάδα. Η Universal Travel μπορεί να επιλέξει μία μόνον από τις ανωτέρω προτάσεις ή και τις δύο. Τι θα τη συμβουλεύατε; 3

4 ΑΣΚΗΣΗ 1 A C E I START G H K FINISH B D F J ΕΝΩΡΙΤΕΡΟΣ ΒΡΑΔΥΤΕΡΟΣ ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ ΕΝΑΡΞΗΣ ΛΗΞΗΣ ΕΝΑΡΞΗΣ ΛΗΞΗΣ A B C D E F G H I J K Κρίσιμη διαδρομή: A C E G H I K Χρόνος ολοκλήρωσης του έργου: 24 εβδομάδες 4

5 ΑΣΚΗΣΗ 2 ΑΙΣΙΟΔΟΞΟΣ ΠΙΘΑΝΟΤΕΡΟΣ ΑΠΑΙΣΙΟΔΟΞΟΣ ΑΝΑΜΕΝΟΜΕΝΗ ΔΙΑΡΚΕΙΑ ΔΙΑΚΥΜΑΝΣΗ A B C D E F G H A 0 3 D START B 0 11 E H FINISH C 0 12 F G

6 ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ A 13 B 7 C 0 D 13 E 7 F 0 G 9.5 H 0 Κρίσιμη διαδρομή: C F H Αναμενόμενος χρόνος ολοκλήρωσης του έργου: 30 μήνες Η τ.μ. Χ = Χρόνος Ολοκλήρωσης του Έργου ακολουθεί την κανονική κατανομή με μέση τιμή μ = μ C + μ F + μ H = = 30 και διακύμανση σ 2 = σ 2 C + σ 2 F + σ 2 H = = 5.44 = X Prob( X 35) = Prob = Prob( Z 2.14) = , Prob( X 27) = X-30 a-30 a-30 Prob( X a) = 0.80 Prob = 0.80 = 0.85 a = ( ) Prob X b = 0.95 b = Prob( X c) = 0.99 c =

7 7

8 ΑΣΚΗΣΗ 3 ΑΜΕΣΩΣ ΠΡΟΗΓ. ΕΝΩΡΙΤΕΡΟΣ ΒΡΑΔΥΤΕΡΟΣ ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ ΕΝΑΡΞΗΣ ΛΗΞΗΣ ΕΝΑΡΞΗΣ ΛΗΞΗΣ A B C D Α, Β E Β, C F B, D G A, F H E, F I F, G, H Κρίσιμη διαδρομή: A D F G I, ή A D F I, ή A G I Χρόνος ολοκλήρωσης του έργου: 27 εβδομάδες. Στην περίπτωση που οι χρόνοι υλοποίησης κάθε δραστηριότητας ήταν αναμενόμενοι, η πιθανότητα να τελειώσει το έργο σε λιγότερο από 25 εβδομάδες είναι μικρότερη του 0.5, τιμή στην οποία αντιστοιχεί η μέση τιμή των 27 εβδομάδων. 8

9 ΑΣΚΗΣΗ 4 A B F H START E G I FINISH C D 2 6 ΕΝΩΡΙΤΕΡΟΣ ΒΡΑΔΥΤΕΡΟΣ ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ ΕΝΑΡΞΗΣ ΛΗΞΗΣ ΕΝΑΡΞΗΣ ΛΗΞΗΣ A B C D E F G H I Κρίσιμη διαδρομή: A B F H I Χρόνος ολοκλήρωσης του έργου: 35 εβδομάδες. 9

10 1η επιλογή (με κόστος 1000): ΟΧΙ, η G δεν είναι στο κρίσιμο μονοπάτι 2η επιλογή (με κόστος 1000): συνολική διάρκεια 34 εβδομάδες με κρίσιμη διαδρομή την A B F G H I ΔΙΑΡΚΕΙΑ ΕΝΩΡΙΤΕΡΟΣ ΒΡΑΔΥΤΕΡΟΣ ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ ΕΝΑΡΞΗΣ ΛΗΞΗΣ ΕΝΑΡΞΗΣ ΛΗΞΗΣ A B C D E F G H I Επειδή η G είναι τώρα στο κρίσιμο μονοπάτι, έχει νόημα να διερευνήσουμε την 3η επιλογή (με κόστος 2000, ταυτόχρονα και οι δύο προτάσεις): συνολική διάρκεια 34 εβδομάδες με κρίσιμη διαδρομή την A B F H I ΔΙΑΡΚΕΙΑ ΕΝΩΡΙΤΕΡΟΣ ΒΡΑΔΥΤΕΡΟΣ ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ ΕΝΑΡΞΗΣ ΛΗΞΗΣ ΕΝΑΡΞΗΣ ΛΗΞΗΣ A B C D E F G H I Συνεπώς, πιο συμφέρουσα είναι η 2η επιλογή. Η Universal Travel πρέπει να καταβάλει 1000 προκειμένου να προσλάβει επιπλέον εργατικό δυναμικό που θα ασχοληθεί με τη μεταφορά των μηχανημάτων. Υπάρχει κι άλλο μονοπάτι χωρίς την G, το A B F H I 10

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ

9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ 9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ Στο κεφάλαιο αυτό, αναλύεται πλήρως ένα τεχνικό έργο, συγκεκριµένα αυτό της κατασκευής ενός µικρού αντλιοστασίου. Για την ανάλυση του έργου χρησιµοποιείται το πακέτο λογισµικού

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 25210 60435

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ (Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού

Διαβάστε περισσότερα

Κεφάλαιο 5. Διαχείριση Έργου

Κεφάλαιο 5. Διαχείριση Έργου Κεφάλαιο 5. Διαχείριση Έργου 5.1 Εισαγωγή Στην ενότητα αυτή θα δοθούν αρκετοί βασικοί όροι και έννοιες που θα χρησιμοποιηθούν στο κεφάλαιο αυτό. Οι όροι που παρουσιάζονται για πρώτη φορά δίνονται τόσο

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΟΡΙΣΜΟΣ ΤΟΥ ΕΡΓΟΥ Έργο είναι μια ακολουθία μοναδικών, σύνθετων και αλληλοσυσχετιζόμενων δραστηριοτήτων που αποσκοπούν στην επίτευξη κάποιου συγκεκριμένου

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας Κ1.1: Αναμενόμενες Χρηματικές Αξίες (ΑΧΑ) Οι ΑΧΑ ορίζονται ως η πιθανότητα ενός ενδεχόμενου επί το καθαρό ή μεικτό κέρδος (ή κόστος) του ενδεχόμενου συν η πιθανότητα του άλλου ενδεχόμενου επί το καθαρό

Διαβάστε περισσότερα

Η πολυπλοκότητα και η αβεβαιότητα ως διαστάσεις ενός έργου

Η πολυπλοκότητα και η αβεβαιότητα ως διαστάσεις ενός έργου Διοίκηση Έργων Τι είναι έργο Με τον όρο έργο, εκτός από κάθε μεγάλη και μοναδική τεχνική κατασκευή, εννοούμε προϊόντα συστημάτων παραγωγής, που δεν έχουν όλα αυτά τα βασικά χαρακτηριστικά των τεχνικών

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Αβεβαιότητα (Uncertainty)

Αβεβαιότητα (Uncertainty) Αβεβαιότητα (Uncertainty) Παράδειγμα κατασκευής μοντέλου προβλήματος στο Excel και διαχείρισης της αβεβαιότητας που το ίδιο το πρόβλημα εμπεριέχει. Ανάλυση προβλήματος Βήμα 1: Καθορισμός του προβλήματος

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 15 Σημείωμα του συγγραφέα... 18 Υποστηρικτικό υλικό... 22

Περιεχόμενα. Πρόλογος... 15 Σημείωμα του συγγραφέα... 18 Υποστηρικτικό υλικό... 22 Περιεχόμενα Πρόλογος........................................................ 15 Σημείωμα του συγγραφέα............................................ 18 Υποστηρικτικό υλικό................................................

Διαβάστε περισσότερα

Certified Project Manager (CPM) Εξεταστέα Ύλη (Syllabus) Έκδοση 1.0

Certified Project Manager (CPM) Εξεταστέα Ύλη (Syllabus) Έκδοση 1.0 Certified Project Manager (CPM) Εξεταστέα Ύλη (Syllabus) Πνευµατικά ικαιώµατα Το παρόν είναι πνευµατική ιδιοκτησία της ACTA Α.Ε. και προστατεύεται από την Ελληνική και Ευρωπαϊκή νοµοθεσία που αφορά τα

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

Γκέσος Παύλος. Εργασία και ΟΑΕΔ

Γκέσος Παύλος. Εργασία και ΟΑΕΔ Γκέσος Παύλος Εργασία και ΟΑΕΔ Σκοπός της ενημέρωσης Η παρουσίαση ενός κρατικού μηχανισμού προκειμένου την: Εύρεση εργασίας για εργαζόμενους. Εύρεση υπαλλήλων για εργοδότες. Με την ελάχιστη δυνατή απώλεια

Διαβάστε περισσότερα

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I ΟΔΗΓΙΕΣ Να μην αντιγράψετε τα θέματα στην κόλα σας. Να γράψετε το ονοματεπώνυμό σας και τον αριθμό μητρώου σας (ΑΜ) στα θέματα και σε κάθε κόλα που θα χρησιμοποιήσετε. Τα θέματα

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 11-ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ 3 Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ ΑΜ.

ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 11-ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ 3 Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ ΑΜ. ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 11-ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ 3 Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ ΑΜ. ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή..σελ. 2 Μέτρηση εργασίας σελ. 2 Συστήματα διαχείρισης

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ/ΜΕΣΟΛΟΓΓΙ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-2015 29/12/2014 Παράδοση Εργασίας: 31/01/2015 Γενικά: ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΠΑΡΑΔΟΣΗ

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

2.1. Επαγγελματική Κατάσταση Απασχόληση Πτυχιούχων του Τμήματος Στατιστικής του Ο.Π.Α.

2.1. Επαγγελματική Κατάσταση Απασχόληση Πτυχιούχων του Τμήματος Στατιστικής του Ο.Π.Α. 2. ΑΠΑΣΧΟΛΗΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΤΩΝ ΠΤΥΧΙΟΥΧΩΝ ΤΜΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΟΥ Ο.Π.Α. 2.1. Επαγγελματική Κατάσταση Απασχόληση Πτυχιούχων του Τμήματος Στατιστικής του Ο.Π.Α. Από το σύνολο των πτυχιούχων

Διαβάστε περισσότερα

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000 Θέμα 1 0 Η εταιρία ΑΒΓ σχεδιάζει να επενδύσει σήμερα (στο έτος 0), σε ένα έργο το οποίο θα έχει αρχικό κόστος 00.000, διάρκεια ζωής 5 έτη και αναμένεται να δώσει τις ακόλουθες εισπράξεις: Έτος 1 Έτος 2

Διαβάστε περισσότερα

www.e-garden-shop.gr ΠΡΟΓΡΑΜΜΑΤΙΣΤΗΣ ΑΡΔΕΥΣΗΣ ΓΙΑ ΟΙΚΙΑΚΕΣ & ΕΛΑΦΡΙΕΣ ΔΗΜΟΣΙΕΣ ΕΦΑΡΜΟΓΕΣ ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣΤΑΣΗΣ & ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

www.e-garden-shop.gr ΠΡΟΓΡΑΜΜΑΤΙΣΤΗΣ ΑΡΔΕΥΣΗΣ ΓΙΑ ΟΙΚΙΑΚΕΣ & ΕΛΑΦΡΙΕΣ ΔΗΜΟΣΙΕΣ ΕΦΑΡΜΟΓΕΣ ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣΤΑΣΗΣ & ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ EC ΠΡΟΓΡΑΜΜΑΤΙΣΤΗΣ ΑΡΔΕΥΣΗΣ ΓΙΑ ΟΙΚΙΑΚΕΣ & ΕΛΑΦΡΙΕΣ ΔΗΜΟΣΙΕΣ ΕΦΑΡΜΟΓΕΣ ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣΤΑΣΗΣ & ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Μοντέλα 2,4,6 στάσεων INDOOR & OUTDOOR ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Όταν ο προγραμματιστής είναι σε αυτόματη

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής ΕΚΤΙΜΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ Δ.Ε. της παραμέτρου θ: ˆ θ cv σ < θ < ˆ θ + cv σ ˆ θ ˆ θ θ = η παράμετρος που θέλουμε να εκτιμήσουμε, ˆ θ = η εκτίμηση της θ που προκύπτει από το τ.δ. cv = κατάλληλη κριτική (κρίσιμη)

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βασικές Αρχές και Κατηγοριοποιήσεις Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός αποθεμάτων Κατηγορίες αποθεμάτων Λόγοι πίεσης

Διαβάστε περισσότερα

Startups & Media. Achilles Hekimoglou @hekimoglou

Startups & Media. Achilles Hekimoglou @hekimoglou Startups & Media Achilles Hekimoglou @hekimoglou Rule #1 Rule #1 Δεν επιδιώκουμε δημοσιότητα, εάν δεν είμαστε έτοιμοι να παράσχουμε προϊόντα και υπηρεσίες, διότι υπάρχει η πιθανότητα να εκτεθούμε και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Μάθημα: Πληροφορική Ι (εργαστήριο)

ΑΣΚΗΣΕΙΣ. Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Μάθημα: Πληροφορική Ι (εργαστήριο) 1.0 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α ΑΣΚΗΣΕΙΣ Άσκηση 1 Κατασκευάστε ένα λογιστικό φύλλο

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΣ61 (2014 15) 1 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΣ61 (2014 15) 1 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Θ.Ε. ΠΛΣ61 (2014 15) 1 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Ημερομηνία Παράδοσης Οδηγίες Ημερομηνία Παράδοσης:...31/10/2014 Τελική Ημερομηνία Παράδοσης * :...05/11/2014 Ημερομηνία Ανάρτησης Ενδεικτικών Λύσεων:... 24/11/2014

Διαβάστε περισσότερα

Παγκόσμια Έρευνα Κινδύνου Αποτελεσματικής Διαχείρισης Ταλέντων Γενικά Στοιχεία. Τα 5 Cs: Οι 5 κατηγορίες κινδύνου αποτελεσματικής διαχείρισης ταλέντων

Παγκόσμια Έρευνα Κινδύνου Αποτελεσματικής Διαχείρισης Ταλέντων Γενικά Στοιχεία. Τα 5 Cs: Οι 5 κατηγορίες κινδύνου αποτελεσματικής διαχείρισης ταλέντων Παγκόσμια Έρευνα Κινδύνου Αποτελεσματικής Διαχείρισης Ταλέντων Γενικά Στοιχεία Από το Μάιο έως τον Αύγουστο του 2013, η KPMG International σε συνεργασία με την διεθνώς αναγνωρισμένη εταιρεία ερευνών Brandon

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα .. ΕΝΟΤΗΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΜΑΘΗΜΑΤΟΣ 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα 9 3 1 7 5 3 6 5 7 5 7 3 6 1 5 1 3 5 α. Ποια είναι η

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15 ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15 I. ΟΙ ΠΑΓΙΔΕΣ ΠΟΥ ΠΡΕΠΕΙ ΝΑ ΑΠΟΦΕΥΓΟΥΝ ΟΙ PROJECT MANAGER... 17 Συχνά προβλήματα των project... 17 Παγίδες στα project... 18 Οι συνέπειες της κακής διοίκησης

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΓΓΡΑΦΗ ΙΔΙΩΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΟΔΟΤΩΝ ΙΔΙΩΤΙΚΟΥ ΤΟΜΕΑ ΣΤΙΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΤΟΥ ΟΑΕΔ.

ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΓΓΡΑΦΗ ΙΔΙΩΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΟΔΟΤΩΝ ΙΔΙΩΤΙΚΟΥ ΤΟΜΕΑ ΣΤΙΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΤΟΥ ΟΑΕΔ. ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΓΓΡΑΦΗ ΙΔΙΩΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΟΔΟΤΩΝ ΙΔΙΩΤΙΚΟΥ ΤΟΜΕΑ ΣΤΙΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΤΟΥ ΟΑΕΔ. http://eservices.oaed.gr:7777/pls/apex/f?p=110 [1] Την πρώτη φορά που θα επιχειρήσετε να χρησιμοποιήσετε

Διαβάστε περισσότερα

Σύγχρονες Μορφές Χρηματοδότησης

Σύγχρονες Μορφές Χρηματοδότησης Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ

ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ Τάφροι Οχετοί Δίκτυα ομβρίων Στραγγιστικά δίκτυα Ρείθρα Διευθετήσεις ποταμών και χειμάρρων ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ :ΟΧΕΤΟΙ ΥΔΡΑΥΛΙΚΑ

Διαβάστε περισσότερα

«Ποιότητα και Κερδοφορία των Ξενοδοχειακών Επιχειρήσεων στην Ελλάδα»

«Ποιότητα και Κερδοφορία των Ξενοδοχειακών Επιχειρήσεων στην Ελλάδα» «Ποιότητα και Κερδοφορία των Ξενοδοχειακών Επιχειρήσεων στην Ελλάδα» Γκίκας Α. Χαρδούβελης Καθηγητής, Τμήμα Χρηματοοικονομικής και Τραπεζικής Διοικητικής Παν. Πειραιώς Οικονομικός Σύμβουλος Ομίλου Eurobank

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ Ανάλυση - Προσομοίωση ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ 1 Προσομοίωση Η προσομοίωση είναι μέθοδος μελέτης ενός συστήματος και εξοικείωσης με τα χαρακτηριστικά του με

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

Μελέτη απορρόφησης αποφοίτων του Α.Π.Θ. στην αγορά εργασίας

Μελέτη απορρόφησης αποφοίτων του Α.Π.Θ. στην αγορά εργασίας Μελέτη απορρόφησης του ΑΠΘ στην αγορά εργασίας των ετών 2005 & 2006 Μελέτη απορρόφησης του Α.Π.Θ. στην αγορά εργασίας Επιστημονικός Κλάδος: Πολιτική Επιστήμη 1 Μελέτη απορρόφησης του ΑΠΘ στην αγορά εργασίας

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΗΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ:

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ Μέτρα διασποράς - Συντελεστής μεταβολής ΤΑΥΤΟΤΗΤΑ ΣΕΝΑΡΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Καραγιάννης Βασίλης ΑΜ: 201118 Οικονόμου Κυριάκος AM: 201102 ΓΝΩΣΤΙΚΗ ΠΕΡΙΟΧΗ: Στατιστική Γ Λυκείου

Διαβάστε περισσότερα

Προς: 1) Όλα τα Υπουργεία Πληροφορίες: Δ. Πολυκράτης. ΘΕΜΑ: Οδηγίες για την πρώτη εφαρμογή του έργου «Σχεδιασμός Περιγραμμάτων Θέσεων Εργασίας»

Προς: 1) Όλα τα Υπουργεία Πληροφορίες: Δ. Πολυκράτης. ΘΕΜΑ: Οδηγίες για την πρώτη εφαρμογή του έργου «Σχεδιασμός Περιγραμμάτων Θέσεων Εργασίας» ΑΔΑ: ΒΕ56Χ-ΠΥΘ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΔΙΟΙΚΗΤΙΚΗΣ ΜΕΤΑΡΡΥΘΜΙΣΗΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΑΚΥΒΕΡΝΗΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΔΙΟΙΚΗΤΙΚΗΣ ΟΡΓΑΝΩΣΗΣ & ΔΙΑΔΙΚΑΣΙΩΝ Δ/ΝΣΗ ΟΡΓΑΝΩΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΝΘΡΩΠΙΝΟΥ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 TEXNOΛOΓIA (I) ΘΕΩΡΗΤΙΚΗΣ KATEYΘYNΣHΣ MAΘHMA : ΓΡΑΦΙΚΕΣ ΤΕΧΝΕΣ ΗΜΕΡΟΜΗΝΙΑ : ΣΑΒΒΑΤΟ,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Άσκηση 1 η 1 η Εργασία ΔΙΠ50 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού Πρόγραμμα Γενικό γραμμικό πρόβλημα με πολύγωνη περιοχή εφικτών λύσεων Να λυθεί το παρακάτω γραμμικό πρόγραμμα: ma z μ. π. 4

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

ΕΠΙΜΕΛΗΤΗΡΙΟ ΗΡΑΚΛΕΙΟΥ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΣΥΓΚΥΡΙΑ ΚΑΙ ΤΙΣ ΕΠΙΠΤΩΣΕΙΣ ΤΩΝ CAPITAL CONTROLS ΣΤΙΣ ΜΜΕ

ΕΠΙΜΕΛΗΤΗΡΙΟ ΗΡΑΚΛΕΙΟΥ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΣΥΓΚΥΡΙΑ ΚΑΙ ΤΙΣ ΕΠΙΠΤΩΣΕΙΣ ΤΩΝ CAPITAL CONTROLS ΣΤΙΣ ΜΜΕ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΣΥΓΚΥΡΙΑ ΚΑΙ ΤΙΣ ΕΠΙΠΤΩΣΕΙΣ ΤΩΝ CAPITAL CONTROLS ΣΤΙΣ ΜΜΕ ΗΡΑΚΛΕΙΟ ΑΥΓΟΥΣΤΟΣ 2015 ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΣΥΓΚΥΡΙΑ ΚΑΙ ΤΙΣ ΕΠΙΠΤΩΣΕΙΣ ΤΩΝ CAPITAL CONTROLS ΣΤΙΣ ΜΜΕ Περιεχόμενα

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Μοντέλα. Μαθηματικά. Άγγελος Μάρκος. Λέκτορας ΠΤΔΕ

Μοντέλα. Μαθηματικά. Άγγελος Μάρκος. Λέκτορας ΠΤΔΕ Μαθηματικά Μοντέλα Άγγελος Μάρκος Λέκτορας ΠΤΔΕ Ορισμός Μαθηματικό μοντέλο είναι η μαθηματική περιγραφή ενός φαινομένου. Τα ονομαζόμενα εφαρμοσμένα μαθηματικά έχουν ως άμεσο στόχο την αναζήτηση μαθηματικών

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Ανασκόπηση Παρουσίασης (1 η Μέρα) Διεύθυνση Έργων για Μηχανικούς Construction Management

Ανασκόπηση Παρουσίασης (1 η Μέρα) Διεύθυνση Έργων για Μηχανικούς Construction Management Διεύθυνση Έργων για Μηχανικούς Construction Management Σίμος Χριστοδούλου, Ph.D. Επίκουρος Καθηγητής Πανεπιστήμιο Κύπρου schristo@ucy.ac.cy Κέντρο Εκπαίδευσης ΕΤΕΚ Ανασκόπηση Παρουσίασης ( η Μέρα) Σχεδιασμός

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ

ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΠΕΛΩΝΗ ΑΘΑΝΑΣΙΑ Α.Μ. 4000 ΙΑΝΟΥΑΡΙΟΣ 2014 Μέθοδοι Διοίκησης Έργων Σελίδα 1 Copyright Aθανασία Καπελώνη, 2013 Με επιφύλαξη

Διαβάστε περισσότερα

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις 1. Μια διακριτή τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας 0 1 2 3 4 f () 1/16 4/16 6/16 c 1/16 Να βρεθούν α) η τιμή της σταθεράς c β) η πιθανότητα

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ FTP ΣΥΝΔΕΣΗΣ

ΟΔΗΓΙΕΣ FTP ΣΥΝΔΕΣΗΣ ΟΔΗΓΙΕΣ FTP ΣΥΝΔΕΣΗΣ ΟΔΗΓΙΕΣ ΣΥΝΔΕΣΗΣ FTP...3 ΒΗΜΑ 1 Ο ΕΠΙΛΟΓΗ FTP CLIENT...3 ΒΗΜΑ 2 ο ΕΓΚΑΤΑΣΤΑΣΗ FTP CLIENT...3 ΒΗΜΑ 3 ο ΡΥΘΜΙΣΕΙΣ ΣΥΝΔΕΣΗΣ...8 ΑΠΟΡΙΕΣ ΒΟΗΘΕΙΑ...10 2 / 10 ΟΔΗΓΙΕΣ ΣΥΝΔΕΣΗΣ FTP Για να

Διαβάστε περισσότερα

«Μελέτη Οικονομικών και Κοινωνικών επιπτώσεων του έργου Αγωγός Μπουργκάς - Αλεξανδρούπολη στο Νομό Έβρου»

«Μελέτη Οικονομικών και Κοινωνικών επιπτώσεων του έργου Αγωγός Μπουργκάς - Αλεξανδρούπολη στο Νομό Έβρου» «Μελέτη Οικονομικών και Κοινωνικών επιπτώσεων του έργου Αγωγός Μπουργκάς - Αλεξανδρούπολη στο Νομό Έβρου» Επιστημονικά Υπεύθυνος: Ι. Κ. Μουρμούρης Καθηγητής Ερευνητική ομάδα μελέτης: Ιούνιος 2011 Κ. Αξαρλόγλου

Διαβάστε περισσότερα

ΒΑΘΜΟΛΟΓΙ ΥΠΟΓΡΑΦ Η ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ Η εταιρεία Fruitsweets παρέχει στους υπαλλήλους ένα συνταξιοδοτικό πλάνο το οποίο περιλαµβάνει τρία χαρτοφυλάκια. Οι υπάλληλοι αποφασίζουν να κατανείµουν τις κρατήσεις

Διαβάστε περισσότερα

Διασύνδεση 2013: Από τις σπουδές στο Επάγγελμα. Συμβουλές για μια επιτυχημένη συνέντευξη 27/05/2013. Κωνσταντίνα Καλοδούκα. Recruitment Consultant

Διασύνδεση 2013: Από τις σπουδές στο Επάγγελμα. Συμβουλές για μια επιτυχημένη συνέντευξη 27/05/2013. Κωνσταντίνα Καλοδούκα. Recruitment Consultant Διασύνδεση 2013: Από τις σπουδές στο Επάγγελμα. Συμβουλές για μια επιτυχημένη συνέντευξη 27/05/2013 Κωνσταντίνα Καλοδούκα Recruitment Consultant 1 ICAP GROUP H ICAP Group παρέχει υπηρεσίες που συμβάλλουν

Διαβάστε περισσότερα

Σενάριο 16: Ο κόσμος του Robby

Σενάριο 16: Ο κόσμος του Robby Σενάριο 16: Ο κόσμος του Robby Φύλλο Εργασίας Τίτλος: Ο κόσμος του Robby Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω, Συνθετικές εργασίες.

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΓΓΡΑΦΗ ΣΤΙΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΤΟΥ ΟΑΕΔ & ΧΡΗΣΗ ΑΥΤΩΝ ΑΠΟ ΦΥΣΙΚΑ ΠΡΟΣΩΠΑ.

ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΓΓΡΑΦΗ ΣΤΙΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΤΟΥ ΟΑΕΔ & ΧΡΗΣΗ ΑΥΤΩΝ ΑΠΟ ΦΥΣΙΚΑ ΠΡΟΣΩΠΑ. ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΓΓΡΑΦΗ ΣΤΙΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΤΟΥ ΟΑΕΔ & ΧΡΗΣΗ ΑΥΤΩΝ ΑΠΟ ΦΥΣΙΚΑ ΠΡΟΣΩΠΑ. http://eservices.oaed.gr:7777/pls/apex/f?p=110 [1] Την πρώτη φορά που θα επιχειρήσετε να χρησιμοποιήσετε τις

Διαβάστε περισσότερα

Α Οδηγίες: {ΑΜ} = Αριθμός Μητρώου σας, Πλήρη βαθμολογία απονέμεται μόνο σε αιτιολογημένες και σαφείς απαντήσεις με ευανάγνωστα γράμματα:

Α Οδηγίες: {ΑΜ} = Αριθμός Μητρώου σας, Πλήρη βαθμολογία απονέμεται μόνο σε αιτιολογημένες και σαφείς απαντήσεις με ευανάγνωστα γράμματα: ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Τ.Ε.Ι. ΑΘΗΝΑΣ Μάθημα: ΚΕΡΑΙΕΣ ΚΑΙ ΑΣΥΡΜΑΤΕΣ ΖΕΥΞΕΙΣ Εισηγητής: Δρ. Κ. ΒΟΥΔΟΥΡΗΣ Α Οδηγίες: {ΑΜ} = Αριθμός Μητρώου σας, Πλήρη βαθμολογία απονέμεται μόνο σε αιτιολογημένες

Διαβάστε περισσότερα

Γράφημα 1: Ανεργία (στοιχεία εποχικά προσαρμοσμένο), 1990-2015

Γράφημα 1: Ανεργία (στοιχεία εποχικά προσαρμοσμένο), 1990-2015 Απασχόληση Ο ιδιωτικός τομέας των ΗΠΑ προσέθεσε 252.000 νέες θέσεις εργασίας τον Δεκέμβριο, βάσει στοιχείων του Υπουργείου Εργασίας των ΗΠΑ. Η αύξηση των θέσεων εργασίας και των μισθών αντανακλά την ενίσχυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 14 ΜΕΤΡΗΣΗ ΠΙΣΤΩΤΙΚΟΥ ΚΙΝΔΥΝΟΥ. Υποδείγματα Κινδύνου Πτώχευσης (Default Risk Models)

ΚΕΦΑΛΑΙΟ 14 ΜΕΤΡΗΣΗ ΠΙΣΤΩΤΙΚΟΥ ΚΙΝΔΥΝΟΥ. Υποδείγματα Κινδύνου Πτώχευσης (Default Risk Models) ΚΕΦΑΛΑΙΟ 14 ΜΕΤΡΗΣΗ ΠΙΣΤΩΤΙΚΟΥ ΚΙΝΔΥΝΟΥ Υποδείγματα Κινδύνου Πτώχευσης (Default Risk Models) Ποιοτικά υποδείγματα (Qualitative Models) ή expert systems Υποδείγματα μέτρησης πιστοληπτικής ικανότητας (Credit

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

Χειρίστρια: Θεοδώρα Ρούμπου Ειδική Επιστήμονας Αθήνα, 15 Ιουλίου 2009 Αριθ. Πρωτ.: 2632. ΑΝΑΚΟΙΝΩΣΗ ΑΞΙΟΠΟΙΝΗΣ ΠΡΑΞΗΣ (κατ ά. 37, παρ. 2 και 3 Κ.Π.Δ.

Χειρίστρια: Θεοδώρα Ρούμπου Ειδική Επιστήμονας Αθήνα, 15 Ιουλίου 2009 Αριθ. Πρωτ.: 2632. ΑΝΑΚΟΙΝΩΣΗ ΑΞΙΟΠΟΙΝΗΣ ΠΡΑΞΗΣ (κατ ά. 37, παρ. 2 και 3 Κ.Π.Δ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Πληροφορίες: Δρ. Βασιλική Μπώλου Βοηθός Συνήγορος του Καταναλωτή Χειρίστρια: Θεοδώρα Ρούμπου Ειδική Επιστήμονας Αθήνα, 15 Ιουλίου 2009 Αριθ. Πρωτ.: 2632 ΑΝΑΚΟΙΝΩΣΗ ΑΞΙΟΠΟΙΝΗΣ ΠΡΑΞΗΣ

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

ΕΡΩΤΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΦΡΟΥΡΕΣ ΠΡΟΤΙΜΗΣΕΩΣ ΕΤΟΥΣ 2016

ΕΡΩΤΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΦΡΟΥΡΕΣ ΠΡΟΤΙΜΗΣΕΩΣ ΕΤΟΥΣ 2016 ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΣΤΡΑΤΟΥ ΔΙΕΥΘΥΝΣΗ Β ΚΛΑΔΟΥ ΓΡΑΜΜΑΤΕΙΑ ΣΥΜΒΟΥΛΙΩΝ ΜΕΤΑΘΕΣΕΩΝ Τηλέφ. (Εσωτ.): 3884 ΕΡΩΤΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΦΡΟΥΡΕΣ ΠΡΟΤΙΜΗΣΕΩΣ ΕΤΟΥΣ 2016 ΓΕΝΙΚΑ 1. E: Είναι υποχρεωτικό να μπω στο army.gr για

Διαβάστε περισσότερα

Να σταλεί και με FAX. Πρόσληψη εκτάκτου προσωπικού για την εκτέλεση έργων με αυτεπιστασία

Να σταλεί και με FAX. Πρόσληψη εκτάκτου προσωπικού για την εκτέλεση έργων με αυτεπιστασία Ελληνική Να σταλεί και με FAX ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα, 29 Φεβρουαρίου 2012 ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ Αριθ. Πρωτ.: οικ.7587 ΓΕΝ. Δ/ΝΣΗ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ Δ/ΝΣΗ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑΣ ΟΤΑ ΠΡΟΣ: Αποκεντρωμένες

Διαβάστε περισσότερα

Φροντιστήριο 3. Ημερομηνία: Παρασκευή 10/11/2006 Θεματική Ενότητα: Activity Diagrams

Φροντιστήριο 3. <logo image> Ημερομηνία: Παρασκευή 10/11/2006 Θεματική Ενότητα: Activity Diagrams Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Φθινόπωρο 2006 HΥ351 Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων Information Systems Analysis and Design Φροντιστήριο 3 Ημερομηνία: Παρασκευή

Διαβάστε περισσότερα

Eurochambers Economic Survey 2011. Οκτώβριος 2010. TNS ICAP 154A, Sevastoupoleos St., Athens 11526 T: (+30)210 7260600 E: tnsicap@tnsicap.

Eurochambers Economic Survey 2011. Οκτώβριος 2010. TNS ICAP 154A, Sevastoupoleos St., Athens 11526 T: (+30)210 7260600 E: tnsicap@tnsicap. 1 Eurochambers Economic Survey 2011 Οκτώβριος 2010 TNS ICAP 154A, Sevastoupoleos St., Athens 11526 T: (+30)210 7260600 E: tnsicap@tnsicap.gr GALLUP INTERNATIONAL ASSOCIATION 2 ΠΙΚΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Η

Διαβάστε περισσότερα

Εισαγωγή στο Libre Office Παρουσιάσεις με το Impress. Bάιος Κολοφωτιάς Επιστημονικός Συνεργάτης Sweng Lab A.Π.Θ

Εισαγωγή στο Libre Office Παρουσιάσεις με το Impress. Bάιος Κολοφωτιάς Επιστημονικός Συνεργάτης Sweng Lab A.Π.Θ Εισαγωγή στο Libre Office Παρουσιάσεις με το Impress Bάιος Κολοφωτιάς Επιστημονικός Συνεργάτης Sweng Lab A.Π.Θ Εισαγωγικά Οι παρουσιάσεις είναι μια εφαρμογή που χρησιμεύει στην παρουσίαση των εργασιών

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα