2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ"

Transcript

1 Διαχείριση Τεχνικών Έργων 2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

2 Ορισμοί Κόστος κατασκευής: το σύνολο των δαπανών που απαιτούνται για την υλοποίηση της κατασκευής. Άμεσο κόστος κατασκευής: το άθροισμα του άμεσου κόστους των δραστηριοτήτων της κατασκευής. Άμεσο κόστος δραστηριότητας: προκύπτει από: Έξοδα προσωπικού Δαπάνες υπεργολαβιών Κόστη υλικών Κόστος χρήσης μηχανικού εξοπλισμού Έμμεσο κόστος κατασκευής: δεν αφορά στις δραστηριότητες της κατασκευής, αλλά γενικά στο έργο και συγκεκριμένα: Έμμεσο κόστος εργοταξίου Έμμεσο κόστος εργολαβικής επιχείρησης

3 Σχέση άμεσου κόστους-χρόνου κατασκευής Καθώς το κόστος της κατασκευής προκύπτει από τα κόστη των δραστηριοτήτων: Υπολογίζουμε τη σχέση κόστους-χρόνου κάθε δραστηριότητας Το μικρότερο κόστος Κ 0 για μια δραστηριότητα προκύπτει: Όταν ολοκληρωθεί η δραστηριότητα σε χρόνο Τ 0 στον οποίο έχουμε πλήρη εκμετάλλευση των διαθέσιμων πόρων (ανθρώπινου δυναμικού, εξοπλισμού και υλικών). Επιτάχυνση της κατασκευής: Υλοποίηση μιας δραστηριότητας στον ελάχιστο από τεχνική άποψη χρόνο Τ α Στην περίπτωση αυτή (ελάχιστος χρόνος) απαιτείται κόστος Κ α (Κ α > Κ 0 ) (για καλύτερα συνεργεία, υπερωρίες, σύγχρονο εξοπλισμό κλπ.) Αν αυξήσουμε περαιτέρω το κόστος Κ α δεν θα μειωθεί ο ελάχιστος χρόνος Τ α. Συνεπώς το άμεσο κόστος μιας δραστηριότητας: K 0 και K α Κ 0 αντιστοιχεί στον κανονικό χρόνο T 0 Κ α αντιστοιχεί στον ελάχιστο χρόνο Τ α

4 Διάγραμμα σχέσης κόστους-χρόνου δραστηριότητας Κ α Άμεσο κόστος δραστηριότητας Κ 0 Παρατηρούμε ότι: Τ α Απαιτούμενος χρόνος Τ 0 εκτέλεσης Πέραν του κόστους Κ α δεν μειώνεται ο χρόνος εκτέλεσης δραστηριότητας Αν αυξηθεί ο χρόνος της δραστηριότητας πέραν του Τ 0 το κόστος θα συνεχίζει να αυξάνεται καθώς δεν θα έχουμε την καλύτερη εκμετάλλευση των πόρων Για κάθε δραστηριότητα: Μπορούμε να υπολογίσουμε τις τιμές Τ 0, Τ α, Κ 0 και Κ α Μπορούμε να υπολογίσουμε τις διαφορές: Τ 0 - Τ α και Κ α Κ α Ειδικό κόστος δραστηριότητας = ( Κ α Κ α ) / ( Τ 0 - Τ α ) Το Ελάχιστο Άμεσο Κόστος της κατασκευής = άθροισμα(κ 0i ) όπου Κ οi είναι τα ελάχιστα άμεσα κόστη των επιμέρους δραστηριοτήτων και επιτυγχάνεται σε μέγιστο χρόνο T max Ισχύει και το αντίστροφο δηλαδή, τον ελάχιστο χρόνο κατασκευής τον επιτυγχάνουμε με το μέγιστο χρόνο. Το διάγραμμα χρόνου άμεσου κόστους κατασκευής είναι επίσης παραβολή

5 Διάγραμμα σχέσης κόστους-χρόνου κατασκευής Κ α max Άμεσο κόστος κατασκευής Κ min Τ min Τ max Απαιτούμενος χρόνος εκτέλεσης κατασκευής Το διάγραμμα χρόνου άμεσου κόστους κατασκευής είναι επίσης παραβολή και μάλιστα τεθλασμένη

6 Σχέση έμμεσου κόστους-χρόνου κατασκευής Όσο μεγαλώνει η διάρκεια της κατασκευής, μεγαλώνει και το έμμεσο κόστος Το διάγραμμα της σχέσης είναι παραβολή Στην πράξη υπολογίζουμε γζ το διάγραμμα ως ευθεία Έμμεσο κόστος κατασκευής Απαιτούμενος χρόνος εκτέλεσης κατασκευής

7 Σχέση συνολικού κόστους-χρόνου κατασκευής Συνολικό κόστος = άμεσο κόστος + έμμεσο κόστος Συνολικό κόστος κατασκευής Κ 0max Καμπύλη συνολικού κόστους Κ min Καμπύλη άμεσου κόστους Κ α min Καμπύλη έμμεσου κόστους Κ ε max Κ ε min Τ min Τ Τ max χρόνος εκτέλεσης κατασκευής Παρατηρούμε ότι: Για τον ελάχιστο χρόνο εκτέλεσης της κατασκευής T min έχουμε το ελάχιστο έμμεσο K ε min, αλλά το μέγιστο άμεσο κόστος Κ 0 max. Για το μέγιστο χρόνο εκτέλεσης της κατασκευής T max έχουμε το μέγιστο έμμεσο K ε max, αλλά το ελάχιστο άμεσο κόστος Κ α min. Συνεπώς το ελάχιστο συνολικό κόστος K min το έχουμε σε λενα χρόνο Τ της κατασκευής, που βρίσκεται μεταξύ T min και T max,

8 Διαδικασία υπολογισμού: Για κάθε δραστηριότητα υπολογίζουμε: Τον ελάχιστο χρόνο εκτέλεσης Το μέγιστο κόστος της (που αντιστοιχεί στο χρόνο αυτό) Τον κανονικό χρόνο εκτέλεσης Το ελάχιστο κόστος της (που αντιστοιχεί στο χρόνο αυτό) Καταρτίζουμε τον πίνακα χρόνου κόστους των δραστηριοτήτων που περιλαμβάνει: Τα παραπάνω στοιχεία Το ειδικό κόστος κάθε δραστηριότητας (κόστος επιτάχυνσης) (= Διαφορά κόστους / Διαφορά χρόνου) Επιλύουμε το δίκτυο και υπολογίζουμε: Τους συνολικούς χρόνους των δραστηριοτήτων Τις κρίσιμες διαδρομές για: Δίκτυο με κανονικούς χρόνους δραστηριοτήτων (συνολικός χρόνος = T max ) Δίκτυο με ελάχιστους χρόνους δραστηριοτήτων (συνολικός χρόνος = T min ) Καταρτίζουμε τον πίνακα μεταβολών του συνολικού κόστους για χρόνους μεταξύ T max έως T min Για T max έχουμε το ελάχιστο κόστος κατασκευής Κ α min Τη μείωση του χρόνου κατασκευής την επιτυγχάνουμε μειώνοντας τους χρόνους των κρίσιμων δραστηριοτήτων του δικτύου στους κανονικούς χρόνους αυτών

9 Διαδικασία υπολογισμού: Εστιάζουμε στις κρίσιμες δραστηριότητες με το μικρότερο ειδικό κόστος (ώστε να επηρεαστεί λιγότερο το συνολικό κόστος) Το ειδικό κόστος = διαφορά κόστους / διαφορά χρόνου Προσοχή: η μείωση του χρόνου (από κάποιο σημείο και μετά) μπορεί να οδηγήσει σε τροποποίηση της κρίσιμης διαδρομής. Στην περίπτωση αυτή λαμβάνουμε υπόψη τη νέα κρίσιμη διαδρομή για να μειώσουμε περαιτέρω τη διάρκεια. Υπολογίζουμε γζ την αύξηση η του άμεσου κόστους (για τους χρόνους από T max σε T min) ) Προσθέτουμε την αύξηση του άμεσου κόστους στο K α min. Υπολογίζουμε την αύξηση του έμμεσου κόστους (για τους χρόνους από T max σε T min ) Προσθέτουμε το άμμεσο και το έμμεσο κόστος που υπολογίσαμε (για τους χρόνους από T max σε T min ) Για κάποιον από τους χρόνους αυτούς το συνολικό κόστος είναι ελάχιστο. Σημασία της μεθόδου: Παρακολουθούμε τον προγραμματισμό των εργασιών από άποψη χρόνου Παρακολουθούμε την επίδραση των επιταχύνσεων και επιβραδύνσεων των κρίσιμων δραστηριοτήτων Πολυπλοκότητα λ της μεθόδου: Μεγάλη, καθώς εκτός της δυσκολίας υπολογισμού του χρόνου, είναι δύσκολος ο ακριβής υπολογισμός του άμεσου και του έμμεσου κόστους των δραστηριοτήτων

10 Παράδειγμα: Δίνεται το παρακάτω δίκτυο, ο πίνακας χρόνου κόστους και το έμμεσο κόστος = χρηματικές μονάδες ανά χρονική μονάδα. Ζητείται το ελάχιστο συνολικό κόστος κατασκευής και ο αντίστοιχος ςχρόνος της. 2 Δραστ. Κανον. Χρόνος Ελάχ. Κόστος Ελάχ. Χρόνος Μέγιστο Κόστος Διαφ. Κόστους Διαφ. Χρόνου Ειδ. Κόστος

11 Λύση: Επιλύουμε το δίκτυο για τους κανονικούς χρόνους δραστηριοτήτων Δραστ Διάρκ. Νωρίτεροι χρόνοι Βραδύτεροι χρόνοι Αρχής Τέλους Αρχής Τέλους Συνολ. Χρον. Ελεύθ. Χρον. Περιθ. Περιθ Κρίσιμη ραστηρ * *

12 Παράδειγμα: Επιλύουμε το δίκτυο για τους ελάχιστους χρόνους δραστηριοτήτων Δραστ Νωρίτεροι χρόνοι Βραδύτεροι χρόνοι Διάρκ. Συνολ. Χρον. Ελεύθ. Χρον. Κρίσιμη Αρχής Τέλους Αρχής Τέλους Περιθ. Περιθ. ραστηρ * *

13 Παράδειγμα: Επομένως, σύμφωνα με τα προηγούμενα: Έχουμε ελάχιστο άμεσο κόστος K α min = για το μέγιστο χρόνο T max = 13 Υπολογίζουμε τη μεταβολή του άμεσου, του έμμεσου και του συνολικού κόστους από τον ελάχιστο χρόνο T min = 9 έως το μέγιστο χρόνο T max = 13: Διαμορφώνουμε πίνακα μεταβολής του συνολικού κόστους Χρόνος Κανον. Ελάχ. Ελάχ. Μέγιστο Διαφ. Διαφ. Ειδ. Συν. Χρόνος Κόστος Χρόνος Κόστος Κόστους Χρόνου Κόστος Χρον. Δραστ Περιθ. Δικτύου καν. Χρόν Αύξ. Άμεσου κόστους Άμεσο κόστος Έμμεσο κόστος Συνολικ ό κόστος

14 Λύση (συνέχεια): Από τα δεδομένα και από τα στοιχεία που προέκυψαν κατά την επίλυση διαπιστώνουμε ότι: Οι κρίσιμες δραστηριότητες 1-3 και 3-4 έχουν το ελάχιστο ειδικό κόστος (δεδομένα) Η διάρκεια της 1-3 μπορεί να μειωθεί κατά 3 χρονικές μονάδες (δεδομένα) άρα και η κατάσκευή από τη μονάδα 13 έως την 10 Όταν η 1-3 μειωθεί από 8 χρονικές μονάδες διάρκεια σε 5 μονάδες τότε (επίλυση δικτύου με ελάχιστους χρόνους) κρίσιμες διαδικασίες είναι οι 1-2 και 2-5, που στο προηγούμενο δίκτυο έχουν διάρκεια (7+3=)10 χρόνικές μονάδες και επομένως οποιαδήποτε περαιτέρω μεταβολή της 1-3 δεν τις επηρεάζει. Άρα, για να μειώσουμε περαιτέρω τη διάρκεια της κατασκευής (από τις 10 στις 9 χρονικές μονάδες) πρέπει να εργαστούμε στις διαδικασίες 1-2 ή 2-5 (στο προηγούμενο δίκτυο). Μειώνουμε τη διαδικασία 2-5 (που έχει περιθώριο 1 χρον. μονάδα σύμφωνα με τα δεδομένα) κατά 1 μονάδα, καθώς η 2-5 (σύμφωνα με τα δεδομένα του προβλήματος) δεν μπορεί να μειωθεί. Οι αντίστοιχες αυξήσεις του άμεσου κόστους παρουσιάστηκαν στον προηγούμενο πίνακα. Οι υπολογισμοί του συνολικού κόστους παρουσιάστηκαν στον προηγούμενο πίνακα. Οι μεταβολές των άμεσου, έμμεσου και συνολικού κόστους παρουσιάστηκαν στον προηγούμενο πίνακα. Το ελάχιστο συνολικό κόστος K min = χρημ. μονάδες και επιτυγχάνεται στις 10 χρον. μονάδες.

15 Κομβικά δίκτυα Μέθοδος MPM (Metra Potential Method) Διαμόρφωση κομβικού δικτύου Οι κόμβοι εκφράζουν τις δραστηριότητες Τα βέλη οδηγούν από κόμβο σε κόμβο εκφράζοντας τις εξαρτήσεις των δραστηριοτήτων Τα κομβικά δίκτυα εμπεριέχουν σχέσεις αλληλουχίας σχετικά με την έναρξη και το τέλος των δραστηριοτήτων: Αλληλουχία Τέλους - Αρχής: FS ij, i FS ij j Η επόμενη δραστηριότητα δεν μπορεί να ξεκινήσει αν δεν παρέλθει χρόνος FS ij από το τέλος της προηγούμενης. Όταν FS ij = 0 έχουμε κανονική αλληλουχία SS ij, Αλληλουχία Αρχής - Αρχής: i SS jj Η επόμενη δραστηριότητα δεν μπορεί να ξεκινήσει αν j δεν παρέλθει χρόνος SS ij από την αρχή της προηγούμενης. Αλληλουχία Τέλους Τέλους: FF ij, i FF jj j Η επόμενη δραστηριότητα δεν μπορεί να τελειώσει αν δεν παρέλθει χρόνος FF ij από το τέλος της προηγούμενης. Αλληλουχία Αρχής Τέλους: SF ij, i SF ij j Η επόμενη δραστηριότητα δεν μπορεί να ολοκληρωθεί αν δεν παρέλθει χρόνος SF ij από την αρχή της προηγούμενης.

16 Κομβικά δίκτυα Μέθοδος MPM (Metra Potential Method) Απεικόνιση κόμβου: Περιγραφή δραστηριότητας (όνομα) ιάρκεια Νωρίτερος χρόνος Αρχής Νωρίτερος χρόνος τέλους Συνολικό χρονικό περιθώριο Βραδύτερος χρόνος Αρχής Βραδύτερος χρόνος τέλους Ελεύθερο χρονικό περιθώριο Παρατηρήσεις: Είναι δυνατή η ύπαρξη περισσότερων ρ από μιας σχέσεων αλληλουχίας ςμεταξύ δύο ή περισσότερων ρ δραστηριοτήτων. Κατά την κατάρτιση ενός κομβικού δικτύου προσπαθούμε ώστε να μην διασταυρώνονται οι γραμμές που απεικονίζουν τις εξαρτήσεις μεταξύ των δραστηριοτήτων. Πάνω στις γραμμές των εξαρτήσεων σημειώνουμε μ τις σχέσεις αλληλουχίας ς( (π.χ. χ FS=0, SS=3 κλπ.) ) Στα κομβικά δίκτυα είναι δυνατό να υπάρχουν κρίσιμες δραστηριότητες χωρίς να υπάρχει κρίσιμη διαδρομή Καθώς είναι δυνατό να υπάρχουν αρκετές δραστηριότητες αρχής και αρκετές τέλους, μπορούμε να ορίσουμε μια δραστηριότητα που ονομάζουμε Αρχή (με διάρκεια 0 και με σχέση αλληλουχίας με τις άλλες αρχής SS=0), καθώς και μια δραστηριότητα Τέλος (με διάρκεια 0 και με σχέση αλληλουχίας από όλες τις άλλες τέλους FF=0).

17 Κομβικά δίκτυα Μέθοδος MPM (Metra Potential Method) Επίλυση κομβικού δικτύου: Πρέπει να γνωρίζουμε τις σχέσεις αλληλουχίας μεταξύ των δραστηριοτήτων (FS, SS, SF, FF) με τις τιμές τους, καθώς και τις διάρκειές τους (Δ i για την i και Δ j για την επόμενη της j). Νωρίτερος χρόνος αρχής ΝΧΑ j = max NXA i +SS ij NXT i + FS ij NXA i + SF ij j ΝΧΤ i + FF ij - j Νωρίτερος χρόνος τέλους ΝΧT j = NXA j + Δ j BXA j -FS ij Βραδύτερος χρόνος τέλους ΒΧΤ ι = min BXT j - FF ij BXA j -SS ij + i BΧΤ j -SF ij + i Βραδύτερος χρόνος αρχής ΒΧΑ i = BXT i Δ i Συνολικό χρονικό περιθώριο ΣΧΠ i = BXT i -NXT i Ελεύθερο χρονικό περιθώριο ΕΧΠ i = min NXA j -NXT i -FS ij NXA j -NXA i -SS ij NXT j -NXT i -FF ij NΧΤ j -NXA i -SF ij

18 Κομβικά δίκτυα Μέθοδος MPM (Metra Potential Method) Μετατροπή κομβικού δικτύου σε διάγραμμα GANTT: Με ανάλογο τρόπο με αυτό της μετατροπής των δικτύων με βέλη. Απαιτείται η ορθή απεικόνιση της αλληλουχίας μεταξύ δραστηριοτήτων: Μια FS ij αλληλουχία θα ξεκινά από το τέλος της i και θα οδηγεί στην αρχή της j. Μια SS ij αλληλουχία θα ξεκινά από την αρχή της i και θα οδηγεί στην αρχή της j. Πλεονεκτήματα των κομβικών δικτύων: Είναι εμφανής η επικάλυψη δραστηριοτήτων, χωρίς επιπλέον αναλύσεις Δεν διαθέτουν πλασματικές δραστηριότητες. Μειονεκτήματα των κομβικών δικτύων: Απαιτούν μεγαλύτεη εμπειρία για την ορθή κατάρτιση και επίλυση. Παρέχουν μικρότερη εποπτεία στο χρήστη.

19 Κομβικά δίκτυα Μέθοδος MPM (Metra Potential Method) Παράδειγμα: Δίνεται δίκτυο με τις παρακάτω αλληλεξαρτήσεις και διάρκειες: 1. Οι α=4, β=3 αρχίζουν με την έναρξη της κατασκευής 2. Οι γ=1, δ=3 ακολουθούν την α 3. Οι γ=1, ε=2 ακολουθούν τη β 4. Η στ=2 ακολουθεί τις γ, ε 5. Για να τελειώσει η κατασκευή πρέπει να ολοκληρωθούν οι δ και στ. 6. Δίνονται οι ακόλουθες σχέσεις αλληλουχίας μεταξύ των δραστηριοτήτων: FS α,δ = 3, SS α,γ = 4, FF β,γ = 3, SF β,ε = 12, SS γ,στ = 11, FF ε,στ = 8 Ζητούνται: α) να καταρτιστεί το κομβικό δίκτυο, β) να επιλυθεί, γ) να μετατραπεί στο αντίστοιχο GANTT.

20 Κομβικά δίκτυα Μέθοδος MPM (Metra Potential Method) δ 3 FS= α FF=0 SS= Αρχή SS=4 γ 1 τέλος SS= FF= στ β SS= ε FF= SF= FF=8

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Βασικές αρχές τεχνικού έργου Σειρά

Διαβάστε περισσότερα

3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Μέθοδοι κατανομής πόρων Ορισμοί-Παραδοχές: Πόροι: προσωπικό,

Διαβάστε περισσότερα

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Κομβικά Δίκτυα Δρ. Βασίλης Π. Αγγελίδης Διαφάνεια 2 Εισαγωγή Στα κομβικά δίκτυα οι κόμβοι

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ. Δραστηριότητα Αμέσως προηγούμενη Διάρκεια (ημέρες) A - 3 B A 6 Γ A 4 Δ Β, Γ 2 Ε Β 5 Ζ Γ 7 Η Δ, Ε 2

ΠΑΡΑΔΕΙΓΜΑΤΑ. Δραστηριότητα Αμέσως προηγούμενη Διάρκεια (ημέρες) A - 3 B A 6 Γ A 4 Δ Β, Γ 2 Ε Β 5 Ζ Γ 7 Η Δ, Ε 2 ΠΑΡΑΔΕΙΓΜΑΤΑ 1. Εξετάζεται η κατασκευή μιας τυπικής κατοικίας. Δημιουργήστε το διάγραμμα δομής έργου (Work Breakdown Structure WBS). Συμπληρώστε τους περιορισμούς διαδοχής των εργασιών. Σχεδιάστε το δικτυωτό

Διαβάστε περισσότερα

(Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο τρόπο δεν θα μετρήσουν βαθμολογικά) Εκσκαφή.

(Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο τρόπο δεν θα μετρήσουν βαθμολογικά) Εκσκαφή. 7 o ΕΞΑΜΗΝΟ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΑΣΚΗΣEIΣ ΓΙΑ ΣΠΙΤΙ (ΘΕΜΑ ΕΞΑΜΗΝΟΥ) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ 19- εκ- 2008 (με προφορική εξέταση) (Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 25210 60435

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Διοίκηση και Προγραμματισμός Έργων ΠΕΡΙΕΧΟΜΕΝΑ 1. Βασικές έννοιες 2. Ανάλυση του έργου και διαμόρφωση του δικτύου 3. Επίλυση δικτύου 1 1. Βασικές έννοιες Με τον όρο έργο, εκτός από

Διαβάστε περισσότερα

ΠΜΣ "Παραγωγή και ιαχείριση Ενέργειας" ιαχείριση Ενέργειας και ιοίκηση Έργων

ΠΜΣ Παραγωγή και ιαχείριση Ενέργειας ιαχείριση Ενέργειας και ιοίκηση Έργων ιαχείριση Ενέργειας και ιοίκηση Έργων 18. Σχεδιασμός Έργων - Χρονική Ανάλυση ση ικτύων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΟΡΙΣΜΟΣ ΤΟΥ ΕΡΓΟΥ Έργο είναι μια ακολουθία μοναδικών, σύνθετων και αλληλοσυσχετιζόμενων δραστηριοτήτων που αποσκοπούν στην επίτευξη κάποιου συγκεκριμένου

Διαβάστε περισσότερα

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων

Διαβάστε περισσότερα

Διοίκηση Εργοταξίου. Διδάσκων: Γιάννης Χουλιάρας ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Διοίκηση Εργοταξίου. Διδάσκων: Γιάννης Χουλιάρας ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Κόστος της κατασκευής. Επιτάχυνση κατασκευής του έργου. Βελτιστοποίηση του κόστους. Επίλυση προβλημάτων κόστους

Διαβάστε περισσότερα

Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών

Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών ΔΗΜΗΤΡΑ ΤΖΙΓΚΟΥ Λ Ε Υ Κ Α Δ Α 2 0 1 2 (1/2) Ένα έργο (project) Πληροφορικής είναι ένα σύνολο από δραστηριότητες, δηλαδή εργασίες που η υλοποίηση τους απαιτεί

Διαβάστε περισσότερα

«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ «Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

Διαβάστε περισσότερα

Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου

Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονικός Προγραμματισμός Έργων Project Scheduling Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονοδιαγράμματα Έργων Διαδικασία Κτίζοντας το Πρόγραμμα Έργου 1. Κατανόηση έργου/προδιαγραφών

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ - ΠΡΟΒΛΗΜΑΤΑ

ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ - ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ 1 ΠΡΟΒΛΗΜΑ 1 Οι δραστηριότητες Χ και Ψ ενός σύνθετου έργου μηχανοργάνωσης (βλ. επόμενη σελίδα) παριστάνουν τις δύο κύριες εργασίες εγκατάστασης ενός μεγάλου

Διαβάστε περισσότερα

9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ

9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ 9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ Στο κεφάλαιο αυτό, αναλύεται πλήρως ένα τεχνικό έργο, συγκεκριµένα αυτό της κατασκευής ενός µικρού αντλιοστασίου. Για την ανάλυση του έργου χρησιµοποιείται το πακέτο λογισµικού

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια

ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΟΥ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ CPM Κατανόηση Διαδικασίας με τη Χρήση Παραδείγματος

ΜΕΘΟΔΟΣ CPM Κατανόηση Διαδικασίας με τη Χρήση Παραδείγματος ΜΕΘΟΔΟΣ CPM Κατανόηση Διαδικασίας με τη Χρήση Παραδείγματος Το παράδειγμα στο οποίο θα βασιστούμε είναι το εξής: Στον παρακάτω πίνακα δίνονται οι δραστηριότητες ενός έργου, η διάρκεια τους καθώς και οι

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα. Προγραμματισμός έργων Η μέθοδος CPM

Πληροφοριακά Συστήματα. Προγραμματισμός έργων Η μέθοδος CPM Πληροφοριακά Συστήματα Διοίκησης Προγραμματισμός έργων Η μέθοδος CPM Προγραμματισμός έργων Ασχολείται με τον βέλτιστο προγραμματισμό περίπλοκων έργων, ώστε να επιτευχθούν στόχοι σε σχέση με: τον χρόνο

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

ιαχείριση Τεχνικών Έργων

ιαχείριση Τεχνικών Έργων ιαχείριση Τεχνικών Έργων 5 Ο Μ Α Θ Η Μ Α Κ Α Θ Ο Ρ Ι Σ Μ Ο Σ Α Ν Α Γ Κ Ω Ν Κ Α Ι Ο Ρ Γ Α Ν Ω Σ Η Ε Ρ Γ Α Σ Ι Α Σ Κ Α Τ Α Σ Κ Ε Υ Η Σ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Κ Ο Υ Ρ Ο Σ Κ Α Θ Η Γ Η Τ

Διαβάστε περισσότερα

«Διαχείριση χρόνου-δίκτυα» στη Διοίκηση Έργων

«Διαχείριση χρόνου-δίκτυα» στη Διοίκηση Έργων «Διαχείριση χρόνου-δίκτυα» στη Διοίκηση Έργων Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP Η αναφορά σε αυτές τις διαφάνειες είναι: Κηρυττόπουλος, Κ. 2013, Διαχείριση χρόνου:, Σχολή Μηχανολόγων Μηχανικών,

Διαβάστε περισσότερα

Γενικά οι ερωτήσεις θα είναι ασκησο-θεωρίες ή τύπου σωστού λάθους όπως παρακάτω: Σημειώστε «Σωστό» ή «Λάθος» στις παρακάτω προτάσεις:

Γενικά οι ερωτήσεις θα είναι ασκησο-θεωρίες ή τύπου σωστού λάθους όπως παρακάτω: Σημειώστε «Σωστό» ή «Λάθος» στις παρακάτω προτάσεις: ΓΕΝΙΚΑ 1. Το διαγώνισμα έχει προγραμματιστεί για την Πέμπτη 9 Φεβρουαρίου στις 12:00 μμ στο κτίριο ΓΚΙΝΗ (Πατησίων). 2. Το διαγώνισμα θα γίνει με κλειστά βιβλία και κάθε είδους σημειώσεις, λυμένες ασκήσεις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ 2015- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Όνομα/Επίθετο: ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Λήψη Διοικητικών Αποφάσεων ΙΙ

Ποσοτικές Μέθοδοι στη Λήψη Διοικητικών Αποφάσεων ΙΙ Ποσοτικές Μέθοδοι στη Λήψη Διοικητικών Αποφάσεων ΙΙ 5 ΑΣΚΗΣΕΙΣ ΜΕ ΠΕΡΙΓΡΑΜΜΑΤΑ ΑΠΑΝΤΗΣΕΩΝ Συντάκτης: Βασίλειος Α. Δημητρίου MSc Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο ΤΕΙ Σερρών, μέτρο 1.2, Κοινωνία της

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D ) 2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε

Διαβάστε περισσότερα

Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ

Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ Πλάνο έργου Εργαλείο ελέγχου για την πορεία του έργου. Περιγραφή έργου Απαιτήσεις Τµηµατοποίηση έργου Χρονο-προγραµµατισµός έργου

Διαβάστε περισσότερα

Διοίκηση Έργου. Ενότητα 4: Μέθοδοι Χρονικού Προγραμματισμού Έργων. Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Διοίκηση Έργου. Ενότητα 4: Μέθοδοι Χρονικού Προγραμματισμού Έργων. Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Διοίκηση Έργου Ενότητα 4: Μέθοδοι Χρονικού Προγραμματισμού Έργων Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ Α1. α. ΣΩΣΤΟ (σελ. 24) β. ΛΑΘΟΣ (σελ. 33) γ. ΣΩΣΤΟ (σελ. 62) δ. ΣΩΣΤΟ (σελ. 57-58) ε. ΛΑΘΟΣ (σελ. 48) Α2. α Α3. γ ΟΜΑΔΑ ΔΕΥΤΕΡΗ Προσδιοριστικοί

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ (Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Από ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Η UCC είναι μια μικρή εταιρεία παραγωγής εντομοκτόνων. Σε

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ. Τ Α Ε Ρ Γ Α Λ Ε Ι Α Τ Η ς Δ Ι Α Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν - WBS. ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD.

ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ. Τ Α Ε Ρ Γ Α Λ Ε Ι Α Τ Η ς Δ Ι Α Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν - WBS. ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD. ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Τ Α Ε Ρ Γ Α Λ Ε Ι Α Τ Η ς Δ Ι Α Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν - WBS ΤΑ ΕΡΓΑΛΕΙΑ ΤΟΥ PROJECT MANAGEMENT Η αποτελεσματική Διαχείριση Έργων υλοποιείται με την βοήθεια μιας σειράς εργαλείων και

Διαβάστε περισσότερα

ΟΜΑΔΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΟΜΑΔΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 12 ΙΟΥΛΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

Μέθοδος CPM. 3. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων.

Μέθοδος CPM. 3. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Μέθοδος CPM 1. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Αμέσως προηγούμενη (σε μήνες) Α - 4,0 Β - 2,0 Γ - 3,0 Δ Α 5,0 Ε Γ 4,5 Ζ Β, Δ 1,5 Η Β, Δ 2,5 Θ Ε, Ζ 4.0 Ι

Διαβάστε περισσότερα

Γενική Επισκόπηση. Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι)

Γενική Επισκόπηση. Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι) Γενική Επισκόπηση Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι) Έργο Ø «Ένα προσωρινό εγχείρημα που στοχεύει στη δημιουργία ενός μοναδικού προϊόντος, υπηρεσίας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Στην αγορά ενός αγαθού συμμετέχουν δύο καταναλωτές, των οποίων οι ατομικές συναρτήσεις

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ

ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΠΕΛΩΝΗ ΑΘΑΝΑΣΙΑ Α.Μ. 4000 ΙΑΝΟΥΑΡΙΟΣ 2014 Μέθοδοι Διοίκησης Έργων Σελίδα 1 Copyright Aθανασία Καπελώνη, 2013 Με επιφύλαξη

Διαβάστε περισσότερα

*** ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ *** 2. Το κόστος ευκαιρίας ενός αγαθού Χ σε όρους (μονάδες) ενός άλλου αγαθού Ψ, είναι

*** ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ *** 2. Το κόστος ευκαιρίας ενός αγαθού Χ σε όρους (μονάδες) ενός άλλου αγαθού Ψ, είναι ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ 1 ου ΚΕΦΑΛΑΙΟ *** ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ *** 1. Το κόστος ευκαιρίας ενός αγαθού Χ σε όρους (μονάδες) ενός άλλου αγαθού Ψ, μας δείχνει ποια ποσότητα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος...13 Πρόλογος του Συγγραφέα...15 Κεφάλαιο 1: Βασικές Έννοιες της Διοίκησης - Διαχείρισης Έργου...19 1.1 Λειτουργία, Έργο, Πρόγραμμα...19 1.2 Οι Εμπλεκόμενοι στο Έργο...21

Διαβάστε περισσότερα

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΚΗΣΗ 1 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι διάρκειές τους και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ (Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού

Διαβάστε περισσότερα

Η πολυπλοκότητα και η αβεβαιότητα ως διαστάσεις ενός έργου

Η πολυπλοκότητα και η αβεβαιότητα ως διαστάσεις ενός έργου Διοίκηση Έργων Τι είναι έργο Με τον όρο έργο, εκτός από κάθε μεγάλη και μοναδική τεχνική κατασκευή, εννοούμε προϊόντα συστημάτων παραγωγής, που δεν έχουν όλα αυτά τα βασικά χαρακτηριστικά των τεχνικών

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α)

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

3 ΕΚΤΙΜΗΣΗ ΙΑΡΚΕΙΑΣ ΚΑΙ ΚΟΣΤΟΥΣ ΡΑΣΤΗΡΙΟΤΗΤΑΣ

3 ΕΚΤΙΜΗΣΗ ΙΑΡΚΕΙΑΣ ΚΑΙ ΚΟΣΤΟΥΣ ΡΑΣΤΗΡΙΟΤΗΤΑΣ 3 ΕΚΤΙΜΗΣΗ ΙΑΡΚΕΙΑΣ ΚΑΙ ΚΟΣΤΟΥΣ ΡΑΣΤΗΡΙΟΤΗΤΑΣ Προκειµένου να γίνει σωστά ο χρονικός και οικονοµικός προγραµµατισµός ενός έργου, θα πρέπει απαραίτητα να χωριστεί το έργο σε δραστηριότητες, και για κάθε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Μονάδες ΟΜΑ Α Α Στις προτάσεις από Α µέχρι και Α, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και

Διαβάστε περισσότερα

Για τις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και, δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και, δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΠΙΛΟΓΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: Οικονοµικές, Εµπορικές και Παραγωγικές Λειτουργίες

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης

Διαβάστε περισσότερα

ΖΗΤΗΣΗ ΧΡΗΜΑΤΟΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΖΗΤΗΣΗ ΧΡΗΜΑΤΟΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΖΗΤΗΣΗ ΧΡΗΜΑΤΟΣ Δρ. Β.ΜΠΑΜΠΑΛΟΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ Κλασικοί οικονομολόγοι έναντι του Keynes Σύμφωνα με τους κλασικούς η διεκπεραίωση συναλλαγών αποτελεί το βασικό κίνητρο

Διαβάστε περισσότερα

Διαχείριση έργων. Βασικές αρχές Τεχνολογίας Λογισμικού, 8η αγγ. έκδοση

Διαχείριση έργων. Βασικές αρχές Τεχνολογίας Λογισμικού, 8η αγγ. έκδοση Διαχείριση έργων Στόχοι Ερμηνεία των κύριων εργασιών ενός διευθυντή έργου λογισμικού Παρουσίαση της διαχείρισης έργων λογισμικού και περιγραφή των χαρακτηριστικών που τη διακρίνουν Εξέταση του σχεδιασμού

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΤΕΥΧΟΣ VΙ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ, ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗ

ΤΕΥΧΟΣ VΙ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ, ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗ ΜΕΤΟΧΙΚΟ ΤΑΜΕΙΟ ΠΟΛΙΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ «ΣΥΜΒΑΣΗ ΠΑΡΑΧΩΡΗΣΗΣ ΔΙΑΧΕΙΡΙΣΗΣ (MANAGEMENT) ΓΙΑ ΟΡΙΣΜΕΝΟ ΧΡΟΝΟ ΤΟΥ ΔΙΑΤΗΡΗΤΕΟΥ ΚΤΙΡΙΟΥ ΙΔΙΟΚΤΗΣΙΑΣ Μ.Τ.Π.Υ. ΣΤΟΝ ΔΗΜΟ ΑΘΗΝΑΙΩΝ ΕΠΙ ΤΗΣ ΟΔΟΥ ΛΥΚΟΥΡΓΟΥ 10» ΤΕΥΧΟΣ VΙ:

Διαβάστε περισσότερα

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Ανασκόπηση Παρουσίασης (1 η Μέρα) Διεύθυνση Έργων για Μηχανικούς Construction Management

Ανασκόπηση Παρουσίασης (1 η Μέρα) Διεύθυνση Έργων για Μηχανικούς Construction Management Διεύθυνση Έργων για Μηχανικούς Construction Management Σίμος Χριστοδούλου, Ph.D. Επίκουρος Καθηγητής Πανεπιστήμιο Κύπρου schristo@ucy.ac.cy Κέντρο Εκπαίδευσης ΕΤΕΚ Ανασκόπηση Παρουσίασης ( η Μέρα) Σχεδιασμός

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 Ε_3.Αλ3Ε(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Κυριακή 4 Μαΐου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης)

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 1. Χρησιμοποιώντας τα στοιχεία του παρακάτω πίνακα που δείχνουν τις ζητούμενες ποσότητες του αγαθού Χ από τρεις διαφορετικούς καταναλωτές, οι οποίες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε

Διαβάστε περισσότερα

Α3. Η βελτίωση της τεχνολογίας παραγωγής ενός αγαθού μετατοπίζει

Α3. Η βελτίωση της τεχνολογίας παραγωγής ενός αγαθού μετατοπίζει ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 12 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ Ασκήσεις Αθήνα, Ιανουάριος 2010 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

Άσκηση. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το σύνολο τιμών της. (β) Να βρεθεί ο πραγματικός αριθμός a, τέτοιος ώστε να ισχύει

Άσκηση. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το σύνολο τιμών της. (β) Να βρεθεί ο πραγματικός αριθμός a, τέτοιος ώστε να ισχύει Πειραματικό λύκειο Αναβρύτων Δρεκόλιας Δημήτρης Γ Λυκείου 2//2 Άσκηση Έστω η συνάρτηση f(x) = 2e x x 2 + με πεδίο ορισμού το σύνολο D f = R. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β Ακαδημαϊκό έτος 4-5 ΘΕΜΑ Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = [] α [B] β Χρησιμοποιώντας τη μέθοδο των αρχικών ταχυτήτων βρήκαμε ότι η αντίδραση είναι δεύτερης τάξης ως προς Α και πρώτης

Διαβάστε περισσότερα

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 Να λυθούν οι παρακάτω ασκήσεις: 1. Αν η τιµή των Ιταλικών επίπλων µειωθεί τι θα συµβεί στη ζήτηση α) των Ιταλικών επίπλων και β) των Ελληνικών επίπλων. 2. Αν η τιµή του υγραερίου

Διαβάστε περισσότερα

ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α) Σωστό β) Λάθος γ) Σωστό δ)λάθος ε) Σωστό

ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α) Σωστό β) Λάθος γ) Σωστό δ)λάθος ε) Σωστό ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α) Σωστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ - 1 ο ΔΙΑΓΩΝΙΣΜΑ Βάλτε σε κύκλο το σωστό γράμμα: Α. 1. Ταυτόχρονη αύξηση της ζήτησης και της προσφοράς μπορεί να μη μεταβάλλει την ποσότητα ισορροπίας. Α. 2. Έστω

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Στις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα του, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα του, το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 2 ΜΑΪΟΥ 206 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - ΕΠΙΛΟΓΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΟΜΑΔΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ

ΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH AAΣΚΕΥΗ Η αρθρωτή κατασκευή του σχήματος έπρεπε να απαρτίζεται από τρείς όμοιες μεταλλικές ράβδους, μήκους η κάθε μία με ΕΑ σταθ. και θεωρούμενες ως αβαρείς, οι οποίες να συναντώνται

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 7: Ανάλυση Κόστους - Ποσότητας - Κέρδους Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα Ολική συνάρτηση µεταφοράς ιάγραµµα ροής Τύπος του Maso Καλλιγερόπουλος ιάγραµµα ροής Σύνθετα διαγράµµατα βαθµίδων πολλαπλών συστηµάτων οδήγησαν στην ανάγκη να βρεθεί

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 4 ο : Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( µε τις λύσεις ) Όταν µας δίνονται σε έναν πίνακα στοιχεία του κόστους π.χ. το Q και το

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

1. Ποιους μαθησιακούς στόχους θα προσδιορίζατε στα πλαίσια της διδακτικής δραστηριότητας;

1. Ποιους μαθησιακούς στόχους θα προσδιορίζατε στα πλαίσια της διδακτικής δραστηριότητας; Σας έχει ανατεθεί η διδασκαλία της μετα-ελεγχόμενης επανάληψης (εντολή «όσο») στα πλαίσια μιας διδακτικής ώρας της Γ λυκείου. Οι μαθητές έχουν πραγματοποιήσει ένα εισαγωγικό μάθημα για τους προκαθορισμένους

Διαβάστε περισσότερα

800 m. 800 m. 800 m. Περιοχή A

800 m. 800 m. 800 m. Περιοχή A Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E5: Τροφοδοσία µονάδας επεξεργασίας αγροτικών προϊόντων (Εξέταση

Διαβάστε περισσότερα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 211 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Προγραμματισμός Ροής Εργασιών Εισαγωγικά

Προγραμματισμός Ροής Εργασιών Εισαγωγικά Προγραμματισμός Ροής Εργασιών Εισαγωγικά «Έργο είναι μία μοναδική δέσμη συντονισμένων δραστηριοτήτων με σαφές σημείο έναρξης και λήξης, οι οποίες αναλαμβάνονται από ένα άτομο ή οργανισμό προκειμένου να

Διαβάστε περισσότερα