Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ"

Transcript

1 ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize z = 10x x + 0x 3 κάτω από τους περιορισμούς x 1 + 3x + 4x (περιορισμός Α) 4x 1 + x 3 50 (περιορισμός B) -5x + 5x 3 0 (περιορισμός C) x 1 + x + x 3 = 0 (περιορισμός D) x 1, x, x 3 0 ο αλγόριθμος Simplex χρησιμοποιήθηκε για την επίλυσή του κι ύστερα από 4 επαναλήψεις τερμάτισε στο ακόλουθο tableau (x 4, x 5, x 6 περιθώριες και x 7, x 8, x 9 τεχνητές μεταβλητές): Μ -Μ -Μ B c B β P 1 P P 3 P 4 P 5 P 6 P 7 P 8 P 9 P P P P z Ποια είναι η βέλτιστη λύση και ποια η βέλτιστη τιμή του προβλήματος;. Ποια θα ήταν η βέλτιστη λύση εάν το δεξιό μέλος του περιορισμού A αυξανόταν κι έφτανε τις 00 μονάδες; 3. Ποια θα ήταν η βέλτιστη τιμή εάν το δεξιό μέλος του περιορισμού B αυξανόταν κι έφτανε τις 60 μονάδες; 4. Υποθέστε ότι η τιμή του αντικειμενικού συντελεστή c 1 = 10 είναι λανθασμένη και σωστή είναι κάποια ĉ. 1 Υποδείξτε ένα διάστημα τιμών για την τιμή του ĉ 1 σε τρόπο ώστε η λύση του ανωτέρω tableau να εξακολουθεί να είναι η βέλτιστη. 5. Ποια θα ήταν η βέλτιστη λύση του μοντέλου και ποια η βέλτιστη τιμή αν ήταν c 1 = 1; Προσοχή: οι απαντήσεις σας να είναι αιτιολογημένες και να συνδέονται απαραιτήτως με στοιχεία από το βέλτιστο tableau. ΘΕΜΑ ο : Το Delicious, ένα μικρό ζαχαροπλαστείο, χρησιμοποιεί αποκλειστικά οικολογικές πρώτες ύλες για την παραγωγή δύο διαφορετικών ειδών κέικ. Το γεγονός αυτό, σε συνδυασμό με τη λογική τιμή διάθεσής τους, έχει εξασφαλίσει στο Delicious φήμη και απρόσκοπτες πωλήσεις. Ο πίνακας που ακολουθεί, καταγράφει τις ανάγκες του κάθε είδους κέικ (σε ποσότητες των δώδεκα) από τις απαιτούμενες πρώτες ύλες, καθώς επίσης και τη διαθεσιμότητα αυτών των υλών μια συγκεκριμένη ημέρα. Αλεύρι (κιλά/δωδεκάδα) Αυγά (αριθμός/δωδεκάδα) Ζάχαρη (κιλά/δωδεκάδα) Μίγμα Φρούτων (κιλά/δωδεκάδα) Απλό κέικ Κέικ φρούτου ΔΙΑΘΕΣΙΜΕΣ ΠΟΣΟΤΗΤΕΣ Λαμβάνοντας υπόψη ότι, το καθαρό κέρδος από τα δώδεκα τεμάχια ανέρχεται σε 15 προκειμένου για τα απλά κέικ και σε 5 προκειμένου για τα κέικ φρούτου 1. Διαμορφώστε ένα μοντέλο γραμμικού προγραμματισμού το οποίο να οδηγεί στην εύρεση της βέλτιστης παραγωγής τη συζητούμενη ημέρα. Εξηγήστε με σαφήνεια τα στοιχεία του.. Χρησιμοποιήστε τη γραφική μέθοδο επίλυσης π.γ.π. για να βρείτε την άριστη λύση και την άριστη τιμή του. Διατυπώστε τα αποτελέσματα με όρους της εκφώνησης του προβλήματος. 3. Εάν ο ιδιοκτήτης του Delicious αποφάσιζε να διπλασιάσει το κέρδος (από τη δωδεκάδα) των απλών κέικ, πόσα περισσότερα θα πουλούσε και γιατί; (Εξηγήστε με σαφήνεια, χωρίς να λύσετε εκ νέου το πρόβλημα). 4. Υποθέστε ότι το 10% της διαθέσιμης ποσότητας του μίγματος φρούτων δεν αποθηκεύτηκε σωστά με αποτέλεσμα να καταστραφεί. Το γεγονός αυτό πως επηρεάζει τη βέλτιστη λύση του προβλήματος; (Εξηγήστε με σαφήνεια, χωρίς να λύσετε εκ νέου το πρόβλημα). 0 30

2 ΘΕΜΑ 3 ο : Η εταιρεία WH αγοράζει πορτοκάλια από καλλιεργητές προκειμένου να παράγει ανάμικτο και φρέσκο χυμό. Το κόστος παραγωγής 1 μπουκαλιού ανάμικτου χυμού εκτιμάται σε 0.60, ενώ το κόστος παραγωγής 1 μπουκαλιού φρέσκου χυμού σε Η εταιρεία έχει ως πολιτική, τουλάχιστον 30% αλλά όχι περισσότερο από 60% της παραγωγής της να είναι ανάμικτος χυμός. Επιπλέον, η WH επιθυμεί να ικανοποιήσει, αλλά όχι και να υπερβεί τη ζήτηση. Εκτιμάται ότι η ζήτηση για ανάμικτο χυμό θα είναι το πολύ 5000 μπουκάλια και επιπλέον 3 μπουκάλια για κάθε 1 που θα δαπανά για διαφήμιση του ανάμικτου χυμού. Αντίστοιχα, η ζήτηση για τον φρέσκο χυμό θα είναι το πολύ 4000 μπουκάλια και επιπλέον 5 μπουκάλια για κάθε 1 που θα δαπανά σε διαφήμιση του φρέσκου χυμού. Η εταιρεία προτίθεται να δαπανήσει για την παραγωγή και τη διαφήμιση των δύο χυμών. Η τιμή πώλησης του ανάμικτου χυμού ανέρχεται σε 1.45 το μπουκάλι και του φρέσκου χυμού σε 1.75 το μπουκάλι. Υποδείξτε ένα π.γ.π. για την εύρεση του πλήθους των μπουκαλιών ανάμικτου και φρέσκου χυμού που πρέπει να παραχθούν, καθώς επίσης και του ποσού των χρημάτων που πρέπει να δαπανηθεί στη διαφήμιση του καθενός προϊόντος προκειμένου η WH να μεγιστοποιήσει τα κέρδη της. ΘΕΜΑ 4 ο : H Wivco παράγει δύο προϊόντα, έστω Α και Β. Ένα τεμάχιο προϊόντος Α πωλείται προς 15 και χρειάζεται για την κατασκευή του εργασία 0.75 ωρών, επεξεργασία σε μια μηχανή 1.5 ώρας και πρώτη ύλη μονάδων. Ανάλογα, ένα τεμάχιο προϊόντος Β πωλείται προς 8 και χρειάζεται για την κατασκευή του εργασία 0.50 ωρών, επεξεργασία σε μια μηχανή για 0.85 ώρες και πρώτη ύλη 1 μονάδας. Κάθε εβδομάδα, η Wivco μπορεί να προμηθευτεί μέχρι 400 μονάδες πρώτης ύλης πληρώνοντας 1.50 τη μονάδα, ενώ ο εβδομαδιαίος διαθέσιμος χρόνος στη μηχανή είναι 30 ώρες. Η Wivco απασχολεί 4 εργάτες οι οποίοι εργάζονται 40 ώρες την εβδομάδα και πληρώνονται 6 για κάθε ώρα υπερωρίας που προσφέρουν. Χωρίς διαφημιστική καμπάνια, η εβδομαδιαία ζήτηση των δύο προϊόντων, περιορίζεται στα 50 τεμάχια για το Α και στα 60 για το Β. Όμως, σύμφωνα με μια μελέτη, κάθε ευρώ που θα δαπανάται για τη διαφήμιση του προϊόντος Α, θα αυξάνει τη ζήτησή του κατά 10 μονάδες, ενώ κάθε ευρώ που θα δαπανάται για τη διαφήμιση του προϊόντος Β, θα αυξάνει τη ζήτησή του κατά 15 μονάδες. Η Wivco μπορεί να δαπανήσει το πολύ 100 για μια διαφημιστική καμπάνια των δύο προϊόντων της. Ας είναι P1, P το πλήθος των προϊόντων Α και Β που θα κατασκευαστούν αντίστοιχα, ΟΤ οι εβδομαδιαίες ώρες υπερωρίας που θα απαιτηθούν, RM οι μονάδες πρώτης ύλης που πρέπει να αγοράζονται εβδομαδιαία και Α1, Α τα χρήματα που θα δαπανηθούν για τη διαφήμιση των προϊόντων Α και Β αντίστοιχα. Τότε η Wivco μπορεί να εντοπίσει τη βέλτιστη παραγωγική διαδικασία, επιλύοντας το πρόβλημα γ.π. που δίνεται στη συνέχεια από το LINDO. Χρησιμοποιήστε τις πληροφορίες που περιέχονται στο αρχείο εξόδου προκειμένου να απαντήσετε στα ερωτήματα που ακολουθούν. 1. Εάν η υπερωρία κόστιζε μόνον 4 την ώρα, θα συνέφερε την Wivco να τη χρησιμοποιήσει;. Εάν κάθε τεμάχιο προϊόντος Α πωλείτο προς 15.50, ποια θα ήταν η νέα βέλτιστη λύση του μοντέλου; 3. Μέχρι ποιου ποσού θα ήταν διατεθειμένη να πληρώσει η Wivco προκειμένου να εξασφαλίσει 10 επιπλέον ώρες στη μηχανή; 4. Εάν ο κανονικός χρόνος εργασίας κάθε εργάτη ήταν 45 ώρες την εβδομάδα, σε τι ποσό θα ανέρχονταν τα κέρδη της Wivco;

3 ΘΕΜΑ 1 ο : 1. Λόγω της μορφής του δοθέντος προβλήματος, προκειμένου να έρθει στην τυπική μορφή για να επιλυθεί με τη μέθοδο Simplex, αρχικά προστέθηκαν οι περιθώριες μεταβλητές x 4, x 5, x 6 (στον 1ο, ο και 3ο περιορισμό αντιστοίχως) και στη συνέχεια οι τεχνητές x 7, x 8, x 9 (στον ο, 3ο και 4ο περιορισμό αντιστοίχως). Βέλτιστη λύση είναι η x 1 = 5, x = 0, x 3 = 15, x 4 = 30, x 5 = 0, x 6 = 55 και βέλτιστη τιμή η z = Ο 1ος περιορισμός είναι χαλαρός (με περιθώρια τιμή x 4 = 30) και συνεπώς το b 1 μπορεί να αυξηθεί απεριόριστα χωρίς να μεταβληθεί η βέλτιστη λύση. 3. Για να απαντήσουμε στο ερώτημα χρειαζόμαστε τη δυϊκή τιμή που αντιστοιχεί στον ο περιορισμό καθώς επίσης και το εύρος εφικτότητας του b. Από το τελικό Simplex tableau διαπιστώνουμε ότι η δυϊκή τιμή που αναζητούμε ισούται με (-5)+(-Μ) = -5, ενώ, προκειμένου να εξασφαλιστεί η εφικτότητα λόγω της μεταβολής του b σε ˆb b πρέπει max, min, Ισοδύναμα -10 Δ, κι άρα το ζητούμενο εύρος εφικτότητας είναι το [40, 7]. Επομένως, για b = 60 η τιμή της αντικειμενικής συνάρτησης θα είναι μικρότερη της τρέχουσας κατά 5(60-50) = 50 μονάδες, ίση με = Αναζητάμε το εύρος αριστότητας του αντικειμενικού συντελεστή c 1. Έστω ĉ1 c 1. Τότε η γραμμή των z j c j στο βέλτιστο tableau γίνεται 10+Δ Μ -Μ -Μ B c B β P 1 P P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 10+Δ z Δ Δ Δ Δ 0 30-Δ και κατά συνέπεια, η βέλτιστη λύση παραμένει ως έχει αν-ν: Δ 10 Συνεπώς, για τιμές του c 1 στο διάστημα,0, η λύση x = (5, 0, 15, 30, 0, 55) που υπάρχει στο δοθέν tableau εξακολουθεί να είναι η βέλτιστη (εύρος αριστότητας του αντικειμενικού συντελεστή c 1 ). 5. Επειδή η τιμή c 1 = 1 ανήκει στο εύρος αριστότητας του αντικειμενικού συντελεστή c 1 η βέλτιστη λύση του μοντέλου δεν θα μεταβληθεί. Η τιμή της αντικειμενικής συνάρτησης όμως θα γίνει ίση με (1-10) = 360.

4 ΘΕΜΑ ο : 1. Σύμφωνα με την περιγραφή του προβλήματος, ζητούμενο είναι η εύρεση των δωδεκάδων απλών κέικ και κέικ φρούτων που πρέπει να παράγει ημερησίως το Delicious (μεταβλητές απόφασης), προκειμένου να μεγιστοποιηθούν τα κέρδη του (στόχος), λαμβάνοντας υπ όψιν τους περιορισμούς διαθεσιμότητας των πρώτων υλών. Ως εκ τούτου, μεταβλητές απόφασης του προβλήματος είναι οι παραγόμενες δωδεκάδες x 1 των απλών κέικ και οι παραγόμενες δωδεκάδες x των κέικ φρούτων. Τότε, συνολικό ημερήσιο κέρδος του Delicious του οποίου επιζητείται η μεγιστοποίηση θα ανέρχεται στα 15x 1 + 5x ευρώ. Οι περιορισμοί του προβλήματος προκύπτουν από i) τη διαθεσιμότητα και κατανάλωση των πρώτων υλών: ii) 1x x x x 500 (διαθεσιμότητα σε αλεύρι) (διαθεσιμότητα σε αυγά) 5x x 90 (διαθεσιμότητα σε ζάχαρη) 15x 10 (διαθεσιμότητα στο μίγμα φρούτων) τη μη-αρνητικότητα των μεταβλητών απόφασης: x 1, x 0.. Εφικτή περιοχή του προβλήματος είναι το πολύγωνο ΑΒΓΔΕ του οποίου οι κορυφές έχουν συντεταγμένες Α(0, 0), Β(10, 0), 4,6, Δ(, 8) και Ε(0, 8). Άριστη λύση είναι το σημείο Γ που αντιστοιχεί σε τιμή 3 3 της αντικειμενικής συνάρτησης z = 36. Το βέλτιστο ημερήσιο πλάνο παραγωγής που ορίζεται από την 3 παραγωγή 4 3 δωδεκάδων απλών κέικ (56 τεμαχίων) και 6 3 δωδεκάδων κέικ φρούτων (80 τεμαχίων) οδηγεί σε κέρδη Ε Δ Γ Α Β 3. Πρέπει να προχωρήσουμε σε ανάλυση ευαισθησίας του αντικειμενικού συντελεστή c 1. Η κορυφή Γ θα είναι η βέλτιστη λύση του προβλήματος όσο ισχύει κλίση της ευθείας κλίση της ευθείας Ζ κλίση της ευθείας

5 Η ανωτέρω σχέση δίνει 50 c 5 40 c 10 1 και για c = 5 οδηγεί στο εύρος αριστότητας [1.5, 31.5] του αντικειμενικού συντελεστή c 1. Επομένως για c 1 = 30 το σημείο Γ εξακολουθεί να είναι η βέλτιστη λύση του προβλήματος. Συνεπώς, ο διπλασιασμός του κέρδους από τη δωδεκάδα των απλών κέικ, δεν επιφέρει περισσότερες ή λιγότερες πωλήσεις κέικ. 4. Αυτό σημαίνει ότι = 1 κιλά του μίγματος φρούτων δεν είναι διαθέσιμα. Όμως, η βέλτιστη λύση του προβλήματος καθιστά χαλαρό τον 4ο περιορισμό με περιθώρια τιμή 0. Επομένως, το γεγονός ότι το 10% της διαθέσιμης ποσότητας του μίγματος φρούτων δεν είναι διαθέσιμο, δεν μεταβάλει την υποδειχθείσα ανωτέρω βέλτιστη λύση του προβλήματος.

6 ΘΕΜΑ 3 ο : Ας είναι x 1 x y 1 y το πλήθος των μπουκαλιών ανάμικτου χυμού που πρέπει να παραχθούν το πλήθος των μπουκαλιών φρέσκου χυμού που πρέπει να παραχθούν το ποσό των χρημάτων που πρέπει να δαπανηθούν στη διαφήμιση του ανάμικτου χυμού το ποσό των χρημάτων που πρέπει να δαπανηθούν στη διαφήμιση του φρέσκου χυμού Τότε το συνολικό κέρδος της WH που επιθυμούμε να μεγιστοποιήσουμε ανέρχεται σε ( )x 1 + ( )x - y 1 - y Οι περιορισμοί του προβλήματος προέρχονται από τη ζήτηση για τον ανάμικτο χυμό: x y 1 τη ζήτηση για το φρέσκο χυμό: x y το συνολικό προϋπολογισμό: 0.60x x + y 1 + y 16,000 την απαίτηση τουλάχιστο 30% της παραγωγής να είναι ανάμικτος χυμός: x (x 1 + x ) την απαίτηση το πολύ 60% της παραγωγής να είναι ανάμικτος χυμός: x (x 1 + x ) τη μη αρνητικότητα όλων των μεταβλητών: x 1, x, y 1, y 0

7 ΘΕΜΑ 4 ο : 1. Το εύρος αριστότητας του c 3 είναι το [6-.133, ). Η τιμή c 3 = 4 που διερευνάται, βρίσκεται στο συγκεκριμένο διάστημα τιμών, κι άρα δεν θα μεταβάλλει τη βέλτιστη λύση του μοντέλου που κατασκευάστηκε για το δοθέν πρόβλημα (στην οποία ΟΤ = 0). Συνεπώς, το κόστος των υπερωριών πρέπει να ελαττωθεί κι άλλο πριν γίνει συμφέρουσα για τη Wivco η επιλογή τους. (Επειδή το κόστος ευκαιρίας για τη μεταβλητή ΟΤ είναι.133, ο αντικειμενικός συντελεστής c 3 πρέπει να βελτιωθεί τουλάχιστον κατά.133 και να γίνει μικρότερος από = προκειμένου η μεταβλητή ΟΤ να γίνει βασική).. Το εύρος αριστότητας του c 1 είναι το [ , ). Η τιμή c 1 = που διερευνάται, βρίσκεται στο συγκεκριμένο διάστημα τιμών, κι άρα η βέλτιστη λύση του μοντέλου που βρέθηκε, δεν θα αλλάξει. 3. Ο 7ος περιορισμός είναι χαλαρός με περιθώρια τιμή 1. Δηλαδή υπάρχουν ακόμη 1 ώρες μηχανής τις οποίες η Wivco δεν χρησιμοποιεί στην παραγωγική διαδικασία. Κατά συνέπεια δεν έχει νόημα να πληρώσει κάποιο ποσό για την απόκτηση και επιπλέον ωρών. 4. Η δυϊκή τιμή του 3ου περιορισμού είναι με εύρος εφικτότητας [157.50, 175]. Όμως, οι 45 ώρες εργασίας την εβδομάδα για τον κάθε εργάτη εξασφαλίζει στη Wivco συνολικό χρόνο 45 4 = 180, τιμή που είναι εκτός του ευρεθέντος εύρους. Κατά συνέπεια δεν μπορούμε να απαντήσουμε στο τεθέν ερώτημα με τα δοθέντα στοιχεία, απαιτείται παραμετρική ανάλυση για τον 3ο περιορισμό.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize z = x

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ΠΡΩΤΟ: Θεωρήστε το π.γ.π.: maximize z(θ) = (10 4θ)x 1 +

Διαβάστε περισσότερα

RIGHTHAND SIDE RANGES

RIGHTHAND SIDE RANGES Μια εταιρεία εξόρυξης μεταλλευμάτων, έλαβε μια παραγγελία για 100 τόνους σιδηρομεταλλεύματος. Η παραγγελία πρέπει να περιλαμβάνει τουλάχιστον.5 τόνους νικέλιο, το πολύ τόνους άνθρακα κι ακριβώς 4 τόνους

Διαβάστε περισσότερα

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες) Ένας κοσμηματοπώλης, κατασκευάζει μπρασελέ και κολιέ αναμειγνύοντας ασήμι με κάποιο άλλο μέταλλο. Το μοντέλο π.γ.π. που ανέπτυξε για την εύρεση της εβδομαδιαίας παραγωγής (x 1 μπρασελέ και x 2 κολιέ) η

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η Ανάλυση Ευαισθησίας αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η μεταβολή των αντικειμενικών συντελεστών c μεταβολή των όρων b i στο δεξιό μέλος του συστήματ των περιορισμ μεταβολή των συντελεστών

Διαβάστε περισσότερα

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.)

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.) Μια εταιρεία χημικών προϊόντων παρασκευάζει μεταξύ των άλλων και δύο διαλύματα, ΔΛ, ΔΛ2. Η γραμμή παραγωγής διαχωρίζεται χοντρικά σε δύο στάδια, αυτό της μίξης κι εκείνο του καθαρισμού. Μια σχετική μελέτη

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα

Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα Case 15: Προστασία του Περιβάλλοντος ΣΕΝΑΡΙΟ Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα 1 Σενάριο και υπόλοιπα δεδοµένα Συγκροτήθηκε οµάδα εργασίας για την επεξεργασία

Διαβάστε περισσότερα

υϊκή Θεωρία, Ανάλυση Ευαισθησίας

υϊκή Θεωρία, Ανάλυση Ευαισθησίας υϊκή Θεωρία, Ανάλυση Ευαισθησίας Το δυϊκό πρόβληµα Χρησιµότητα, εφαρµογές Ανάλυση ευαισθησίας Παραδείγµατα 1 Το δυϊκό πρόβληµα Σε κάθε πρόβληµα γραµµικού προγραµµατισµού πρωτεύον, primal - αντιστοιχεί

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) 1

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex )  1 Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) http://users.uom.gr/~acg 1 Η μέθοδος SIMPLEX Χρησιμοποιείται ο λεγόμενος πίνακας simplex (simplex table, simplex

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix)

Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix) Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix) Εισάγει στην αγορά για την επόµενη χειµερινή περίοδο έξι νέα είδη γυναικείων ενδυµάτων µε µεγάλες προοπτικές πωλήσεων Η ζήτηση για τα

Διαβάστε περισσότερα

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Αθήνα, Ιανουάριος 2015 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΘΕΜΑ 1 ( Μονάδες 2) Μια επιχείρηση κατασκευής tablet έχει εργοστάσια σε τρεις διαφορετικές χώρες Α,Β,Γ που παράγουν αντίστοιχα 200, 260 και

Διαβάστε περισσότερα

The Product Mix Problem

The Product Mix Problem Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ Ασκήσεις Αθήνα, Ιανουάριος 2010 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Homework 1. 2. Πρόκειται για ατομικές ασκήσεις οι οποίες συνεισφέρουν το 25% του τελικού σας βαθμού.

Homework 1. 2. Πρόκειται για ατομικές ασκήσεις οι οποίες συνεισφέρουν το 25% του τελικού σας βαθμού. ΠΜΣ: Μαθηματικά των Υπολογιστών και των Αποφάσεων. Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος: 2012-13 Διδάσκων: Ν. Τσάντας Homework 1 1. Ασκήσεις: δείτε τις σελίδες 2-6 του παρόντος. 2. Πρόκειται για

Διαβάστε περισσότερα

(sensitivity analysis, postoptimality analysis).

(sensitivity analysis, postoptimality analysis). Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 7 Ανάλυση ευαισθησίας Παραμετρική ανάλυση Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 11 Φεβρουαρίου 2016 Α.

Διαβάστε περισσότερα

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Προγραµµατισµός τεσσάρων διαφορετικών προϊόντων Σιτάρι, σόγια, βρώµη καικαλαµπόκι Μέγιστη συνολική έκταση 1.500 στρέµµατα Ακριβώς 100 στρέµµατα

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ 2015- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Όνομα/Επίθετο: ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιτρέπεται µια σελίδα Α4 σηµειώσεων. Γράψτε ΜΟΝΟ τέσσερα θέµατα (αν υπάρχει 5 ο ΕΝ λαµβάνεται υπόψη) άριστα 3,5 θέµατα. Κάθε θέµα έχει ίδια αξία,

Διαβάστε περισσότερα

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Η κ. Δημητρίου είναι γενική διευθύντρια σε μία επιχείρηση με κύρια δραστηριότητα την παραγωγή μαγνητικών μέσων και αναλώσιμων ειδών περιφερειακών συσκευών

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά Οικονοµία Βασικές έννοιες και ορισµοί Οικονοµική Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά των ανθρώπινων όντων αναφορικά µε την παραγωγή, κατανοµή και κατανάλωση υλικών αγαθών και υπηρεσιών σε έναν

Διαβάστε περισσότερα

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ v.1.0 Τα βασικότερα εργαλεία της Οικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό

Διαβάστε περισσότερα

ΑΣΚΗΣΗ (γραμμικός προγραμματισμός) Μια εταιρεία χρησιμοποιεί δύο διαφορετικούς τύπους ζωοτροφών (τον τύπο Ι και τον τύπο ΙΙ), ως πρώτες ύλες, τις οποίες αναμιγνύει για την εκτροφή γαλοπούλων ώστε να πετύχει

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ 1 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α Α.1. ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2014-2015 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2014 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2005-6 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

ιαµόρφωση Προβλήµατος

ιαµόρφωση Προβλήµατος Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Για τις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και, δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και, δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΠΙΛΟΓΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β )

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΘΕΜΑ Α ΕΥΤΕΡΑ 31 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Τετάρτη 8 Μαΐου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

Ανάλυση Ευαισθησίας µε τη χρήση του Solver

Ανάλυση Ευαισθησίας µε τη χρήση του Solver Ανάλυση Ευαισθησίας µε τη χρήση του Solver Πρόβληµα 1 Μια εταιρία κατασκευής τηλεοράσεων κατασκευάζει τέσσερα µοντέλα τηλεοράσεων Μ1, Μ2, Μ3 και Μ4. Κάθε µοντέλο για να παραχθεί απαιτεί χρόνο συναρµολόγησης

Διαβάστε περισσότερα

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή,

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo)

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) Μπουντούρης Ηρακλήs Επιβλέπουσα

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε πίνακες οι οποίοι δεν θα είναι γραμμικές εξισώσεις. Θα πρέπει λοιπόν να δούμε την γεωμετρική ερμηνεία των ανισώσεων. Μια ανίσωση διαιρεί τον n-διάστατο χώρο σε δύο

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της καθεμίας και δίπλα του τη λέξη «Σωστό», αν η πρόταση

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D ) 2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 009 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α.1 µέχρι και Α.5, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ TETAΡΤΗ 13 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:ΕΠΤΑ(7) ΟΜΑΔΑ Α

ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ TETAΡΤΗ 13 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:ΕΠΤΑ(7) ΟΜΑΔΑ Α ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ TETAΡΤΗ 13 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:ΕΠΤΑ(7) ΟΜΑΔΑ Α Στις παρακάτω προτάσεις από Α.1.1., μέχρι και Α.1.6., να γράψετε

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Επιλογή επιπέδου ανταγωνιζομένων δραστηριοτήτων

Επιλογή επιπέδου ανταγωνιζομένων δραστηριοτήτων http://users.uom.gr/~acg 1 Εισαγωγή στον Γραμμικό Προγραμματισμό (LP) Εντοπισμός της βέλτιστης κατανομής περιορισμένων πόρων μεταξύ ανταγωνιζομένων δραστηριοτήτων (resource allocation problems) Συντελεστές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα