Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α"

Transcript

1 ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την επέκταση του ιδιόκτητου δικτύου της, αναμένοντας να αποκτήσει σημαντικό πλεονέκτημα έναντι των ανταγωνιστών της. Ειδικότερα, στόχος της εταιρίας είναι η επέκταση του ιδιόκτητου δικτύου της οπτικών ινών, προκειμένου να συνδέσει το τηλεπικοινωνιακό κέντρο της πόλης 1 με εκείνο της πόλης 10. Στο παρακάτω σχήμα, απεικονίζεται το υπό ανάπτυξη δίκτυο οπτικών ινών της εταιρείας οι κόμβοι αποτελούν τα τηλεπικοινωνιακά κέντρα των πόλεων 1 έως 10 και οι ακμές παριστάνουν τις πιθανές διαδρομές οπτικών ινών που μπορούν να συνδέουν τα κέντρα μεταξύ τους. Οι αριθμοί σε κάθε ακμή εκφράζουν το σε χιλιόμετρα της οπτικής ίνας που συνδέει τα αντίστοιχα κέντρα. Το κόστος εγκατάστασης ανέρχεται σε ευρώ ανά χιλιόμετρο. Στόχος της εταιρίας είναι να πραγματοποιήσει την επέκταση από την πόλη 1 προς την πόλη 10 (μέσω των κατάλληλων ενδιάμεσων κέντρων) με τη μικρότερη δυνατή συνολική οικονομική επιβάρυνση Χρησιμοποιήστε την κατάλληλη τεχνική της δικτυωτής ανάλυσης για να βοηθήσετε τη διοίκηση της εταιρείας να πραγματοποιήσει την επέκταση του δικτύου της από την πόλη 1 προς την πόλη 10 με το μικρότερο δυνατό κόστος. Να δώσετε την κατηγορία προβλημάτων στην οποία ανήκει το προς επίλυση πρόβλημα, καθώς και τον αλγόριθμο (όνομα) με τον οποίο επιτυγχάνεται η λύση. Η επίλυση που θα παρουσιάσετε να είναι σαφής και να δείχνει ότι εφαρμόζετε με ακρίβεια το σχετικό αλγόριθμο. ΘΕΜΑ 2 ο Δύο μεγάλες εταιρείες εμφιάλωσης Α και Β, εμπορεύονται δύο αναψυκτικά τύπου cola, τα οποία καλύπτουν το σύνολο της αγοράς των αναψυκτικών αυτού του τύπου. Για να αυξήσουν το μερίδιο αγοράς τους, οι δύο εταιρείες πρόκειται να κάνουν συγκεκριμένες προωθητικές ενέργειες σε έναν μεγάλο Δήμο της χώρας, στον οποίο η συνολική αξία των εβδομαδιαίων πωλήσεων των αναψυκτικών τύπου cola ανέρχεται σε χιλιάδες ευρώ. Οι προωθητικές αυτές ενέργειες περιλαμβάνουν διαγωνισμούς και προσφορές σε τρία συγκεκριμένα κατάλληλα σημεία πωλήσεων, Σ1, Σ2 και Σ3 που έχουν εντοπίσει τα τμήματα Μάρκετινγκ των δύο εταιρειών. Λόγω περιορισμένου προϋπολογισμού, κάθε εταιρεία μπορεί να επιλέξει ένα σημείο για τις προωθητικές της ενέργειες, χωρίς να γνωρίζει ποιο σημείο θα επιλέξει η ανταγωνίστριά της. Η αποτελεσματικότητα των προωθητικών ενεργειών κάθε εταιρείας εξαρτάται από το σημείο πώλησης που θα επιλέξει τόσο η ίδια όσο και η ανταγωνίστριά της. Η εκτιμώμενη αξία (σε χιλιάδες ευρώ) των εβδομαδιαίων πωλήσεων της εταιρείας Α, για κάθε συνδυασμό σημείων πωλήσεων που επιλέγουν οι δύο εταιρείες, δίνεται στον παρακάτω πίνακα: Εταιρεία Β Εταιρεία Α Β-Σ1 Β-Σ2 Β-Σ3 Α-Σ Α-Σ Α-Σ Χωρίς να διαγράψετε τις υποδεέστερες στρατηγικές, εφαρμόστε το κριτήριο minimax στον πίνακα πληρωμών, για να διαπιστώσετε την ύπαρξη ή όχι σημείου ισορροπίας. 2. Να εφαρμόσετε την κατάλληλη μεθοδολογία προκειμένου να προσδιορίσετε την άριστη στρατηγική για κάθε επιχείρηση καθώς και την αναμενόμενη αξία πωλήσεων της εταιρείας Α. Να διατυπώσετε τα αποτελέσματά σας με σαφήνεια, αποδίδοντας και το κατάλληλο φυσικό νόημα. Ποια εταιρεία φαίνεται να είναι μακροπρόθεσμα πιο ωφελημένη;

2 ΘΕΜΑ 3 ο Δίνεται το ακόλουθο δίκτυο αναπαράστασης ενός έργου: A G 3 Start B D F 10 I Finish C 8 E 12 H 0 1. Παραθέστε πίνακα του οποίου γραμμές θα είναι οι εννέα (9) δραστηριότητες του έργου και στήλες ο ενωρίτερος χρόνος έναρξης, ο ενωρίτερος χρόνος λήξης, ο βραδύτερος χρόνος έναρξης και ο βραδύτερος χρόνος λήξης εκάστης εξ αυτών. Υποδείξτε την/τις κρίσιμη/μες διαδρομή/μές και υπολογίστε τον (ελάχιστο) χρόνο ολοκλήρωσης του έργου. 2. Στη συνέχεια υποθέστε ότι ο χρόνος που υπολογίσατε στο ερώτημα (1) είναι ο αναμενόμενος χρόνος ολοκλήρωσης του έργου. Σε μια τέτοια περίπτωση, η πιθανότητα να τελειώσει το έργο σε χρόνο περισσότερο από 29 εβδομάδες είναι μεγαλύτερη ή μικρότερη του 0.; ΘΕΜΑ ο Η George Rent-A-Car είναι μια εταιρεία ενοικιάσεως αυτοκινήτων με στόλο αυτοκινήτων ίδιου κυβισμού και παρουσία σε επτά διαφορετικές πόλεις. Κάθε δύο εβδομάδες, ο Γιώργος αναλύει τη θέση που βρίσκονται τα αυτοκίνητα που είναι ανοίκιαστα με απώτερο σκοπό να διατηρεί τουλάχιστον 12 εξ αυτών σε κάθε πόλη. Δηλαδή, αυτοκίνητα που βρίσκονται σε πόλεις με περισσότερα από 12 αυτοκίνητα μετακινούνται στις πόλεις που έχουν λιγότερα από 12. Ο χρόνος μετακίνησης ενός αυτοκινήτου είναι μόλις μια ημέρα και το κόστος (αμοιβή οδηγού + βενζίνη + εισιτήρια επιστροφής οδηγού) δίνονται στον πίνακα που ακολουθεί. Σημειώστε ότι, λόγω απόστασης, μετακινήσεις μεταξύ πόλεων που βρίσκονται στο βορειότερο μέρος της χώρας προς το νοτιότερο, κι ανάποδα, δεν προγραμματίζονται. ΠΡΟΣ ΑΠΟ Πόλη2 Πόλη3 Πόλη Πόλη Πόλη6 Πόλη7 Πόλη Πόλη Πόλη Πόλη Πόλη Πόλη6 30 Στις 1 Ιουλίου, 160 αυτοκίνητα ήταν νοικιασμένα ενώ, από τα υπόλοιπα 90, 11 βρισκόταν στην Πόλη1, 7 στην Πόλη2, 6 στην Πόλη3, 2 στην Πόλη, 18 στην Πόλη, 7 στην Πόλη6 και 16 στην Πόλη7. Υποδείξτε τη βέλτιστη στρατηγική μετακίνησης που πρέπει να προγραμματιστεί για τις 1 Ιουλίου.

3 ΘΕΜΑ 1 ο Πρόκειται για πρόβλημα εύρεσης της συντομότερης όπου πρέπει να εντοπιστεί η συντομότερη διαδρομή από τον κόμβο 1, που είναι η αφετηρία, προς ένα συγκεκριμένο κόμβο (τον κόμβο 10), οπότε το κριτήριο τερματισμού θα είναι «ο προορισμός να γίνει μόνιμος». Εφαρμόζουμε τον αλγόριθμο της συντομότερης. Πρώτος λυμένος καθίσταται η αφετηρία 1 με απόσταση 0 (από τον εαυτό της). Το αρχικό σύνολο των λυμένων κόμβων είναι το Λ={1}. Πίνακας 1 1 η επανάληψη Συνολικό ελάχιστης Νέο σύνολο μονίμων κόμβων: Λ={1}+{3 1 } Στο σύνολο των μονίμων κόμβων εισέρχεται ο 3 με ελάχιστη απόσταση 80 Km, οπότε το σύνολο των μονίμων κόμβων γίνεται Λ={1, 3 1 } (ο δείκτης 1 στον αριθμό 3, δηλώνει τον κόμβο προέλευσης, δηλ. ο άμεσα προηγούμενος από τον οποίο προσεγγίζεται ο 3 είναι ο 1). Πίνακας 2 2 η επανάληψη Συνολικό ελάχιστης Νέο σύνολο μονίμων κόμβων: Λ={1, 3 1 }+{ 1 } Δηλαδή, στο σύνολο των μονίμων κόμβων εισέρχεται ένας εκ των κόμβων ή 6, δηλαδή ένας από αυτούς τους δύο που έχουν την ίδια μικρότερη προσωρινή απόσταση από την αφετηρία (ίση με 100 Km). Ας επιλέξουμε (αυθαίρετα) τον κόμβο, οπότε το σύνολο των μονίμων κόμβων γίνεται Λ={1, 3 1, 1 }. Εναλλακτικά, αν επιλέγαμε τον κόμβο 6, το σύνολο των μονίμων κόμβων θα γινόταν Λ={1, 3 1, 6 3 } (κάτι, που ούτως ή άλλως θα γίνει στο επόμενο στάδιο). Πίνακας 3 3 η επανάληψη Συνολικό ελάχιστης Νέο σύνολο μονίμων κόμβων: Λ={1, 3 1, 1 } + {6 3 }

4 Οπότε, στο σύνολο των μονίμων κόμβων εισέρχεται ο 6 με απόσταση από την αφετηρία τη μικρότερη μεταξύ αυτών με προσωρινή απόσταση, δηλαδή 100 Km, οπότε το σύνολο των μονίμων κόμβων γίνεται Λ={1, 3 1, 1, 6 3 }. Πίνακας η επανάληψη Συνολικό ελάχιστης Νέο σύνολο μονίμων κόμβων: Λ={1, 3 1, 1, 6 3 } + {2 3 } Άρα, στο σύνολο των μονίμων κόμβων εισέρχεται ο 2 με απόσταση από την αφετηρία τη μικρότερη μεταξύ αυτών με προσωρινή απόσταση, δηλαδή 1 Km, οπότε το σύνολο των μονίμων κόμβων γίνεται Λ={1, 3 1, 1, 6 3, 2 3 }. Πίνακας - η επανάληψη Συνολικό ελάχιστης Νέο σύνολο μονίμων κόμβων: Λ={1, 3 1, 1, 6 3, 2 3 } + {9 6 } Οπότε, στο σύνολο των μονίμων κόμβων εισέρχεται ο 9 με απόσταση από την αφετηρία τη μικρότερη μεταξύ αυτών με προσωρινή απόσταση, δηλαδή 130 Km, οπότε το σύνολο των μονίμων κόμβων γίνεται Λ={1, 3 1, 1, 6 3, 2 3, 9 6 }. Πίνακας 6-6 η επανάληψη Συνολικό ελάχιστης Νέο σύνολο μονίμων κόμβων: Λ={1, 3 1, 1, 6 3, 2 3, 9 6 } + {8 6 } Στο σύνολο των μονίμων κόμβων εισέρχεται ο 8 με απόσταση από την αφετηρία τη μικρότερη μεταξύ αυτών με προσωρινή απόσταση, δηλαδή 10 Km, οπότε το σύνολο των μονίμων κόμβων γίνεται Λ={1, 3 1, 1, 6 3, 2 3, 9 6, 8 6 }.

5 Πίνακας 7-7 η επανάληψη Συνολικό ελάχιστης Νέο σύνολο μονίμων κόμβων: Λ={1, 3 1, 1, 6 3, 2 3, 9 6, 8 6 } + {10 9 } Στο σύνολο των μονίμων κόμβων εισέρχεται ο προορισμός μας, δηλαδή ο 10, με απόσταση από την αφετηρία τη μικρότερη μεταξύ αυτών με προσωρινή απόσταση, δηλαδή 10 Km, οπότε το σύνολο των μονίμων κόμβων γίνεται Λ={1, 3 1, 1, 6 3, 2 3, 9 6, 8 6, 10 9 }. Επειδή έγινε μόνιμος ο προορισμός μας, η διαδικασία ολοκληρώνεται. Σημειώνεται, ότι αν είχαμε επιλέξει τον κόμβο 6 για να γίνει μόνιμος στη 2 η επανάληψη τότε η σειρά θα ήταν η ακόλουθη: Στη 2 η επανάληψη το σύνολο των μονίμων κόμβων γίνεται {1, 3 1, 6 3 }. Στην 3 η επανάληψη το σύνολο των μονίμων κόμβων γίνεται {1, 3 1, 6 3, 1 }. Στην η επανάληψη το σύνολο των μονίμων κόμβων γίνεται {1, 3 1, 6 3, 1, 2 3 }. Στην η επανάληψη το σύνολο των μονίμων κόμβων γίνεται {1, 3 1, 6 3, 1, 2 3, 9 6 }. Στην 6 η επανάληψη το σύνολο των μονίμων κόμβων γίνεται {1, 3 1, 6 3, 1, 2 3, 9 6, 8 6 }. Στην 7 η επανάληψη το σύνολο των μονίμων κόμβων γίνεται {1, 3 1, 6 3, 1, 2 3, 9 6, 8 6, 10 9 }. Και πάλι έγινε μόνιμος ο προορισμός μας οπότε η διαδικασία ολοκληρώνεται. Στο επόμενο σχήμα, δίνουμε τη διαδικασία γραφικά. Το σύνολο Λ γεμίζει εξελικτικά καθώς τρέχει ο αλγόριθμος και οι παρενθέσεις σε κάθε κόμβο υποδηλώνουν προσωρινή απόσταση μετάβασης, ενώ οι αγκύλες ότι βρέθηκε η ελάχιστη απόσταση από την αφετηρία. Οι αριθμοί μέσα στις παρενθέσεις ή στις αγκύλες υποδηλώνουν την ελάχιστη απόσταση από την αφετηρία, τον προηγούμενο κόμβο από τον οποίο γίνεται η μετάβαση και στις αγκύλες τη σειρά εισόδου στο σύνολο των μονίμων. Στους υπολογισμούς, δεν καταγράφονται προσωρινά μήκη διαδρομών που είναι χειρότερα από άλλα που έχουν ήδη βρεθεί. Για παράδειγμα, απόσταση μετάβασης από τον μόνιμο κόμβο 3 προς τον κόμβο ίση με 1 δεν έχει νόημα να καταγραφεί, καθώς η ελάχιστη απόσταση μετάβασης στον από τον 1 ισούται με 100.

6 Τελικό αποτέλεσμα: Για να εντοπίσουμε την άριστη διαδρομή για τον προορισμό (κόμβο 10) εργαζόμαστε οπισθοδρομικά. Δηλαδή, για να βρούμε το βέλτιστο μονοπάτι ελέγχουμε οπισθοδρομικά την επίλυση, ξεκινώντας από τον κόμβο 10 ο οποίος μας παραπέμπει στον κόμβο 9. Από τον κόμβο 9 οδηγούμαστε στον κόμβο 6, στον κόμβο 3, και από εκεί στην αφετηρία 1. Κατά συνέπεια, υπάρχει μία άριστη (συντομότερη) διαδρομή, με 10 Km, και είναι η Συνεπώς, το συνολικό κόστος επέκτασης του δικτύου από την πόλη 1 προς την πόλη 10 ανέρχεται σε 10 Km *2.000 / Km = Στο επόμενο σχήμα παρουσιάζεται το άριστο μονοπάτι μετάβασης από την αφετηρία προς τον κόμβο

7 ΘΕΜΑ 2 ο Ερώτημα 1 Εφόσον η συνολική αξία των πωλήσεων είναι σταθερή, πρόκειται για ένα παίγνιο δύο παικτών σταθερού αθροίσματος. Όπως βλέπουμε στον παρακάτω πίνακα, η maximin τιμή της εταιρείας Α είναι ίση με 230 (τομή των στρατηγικών Σ3 της Α και Σ2 της Β) και η minimax τιμή της Β είναι ίση με 270 (τομή των στρατηγικών Σ1 της Α και Σ2 της Β). Επομένως, η εφαρμογή του κριτηρίου minimax απευθείας στον πίνακα πληρωμών της εταιρείας Α χωρίς διαγραφή των υποδεέστερων στρατηγικών, δεν προσδιορίζει αμιγείς στρατηγικές, γεγονός που σημαίνει ότι δεν υπάρχει σημείο ισορροπίας. Β-Σ1 Β-Σ2 Β-Σ3 Row Min Maximin Α-Σ Α-Σ Α-Σ Col Max Minimax <V<270 Ερώτημα 2 Αφού δεν υπάρχει κοινό σημείο ισορροπίας (δηλαδή δεν υπάρχουν αντίστοιχες αμιγείς στρατηγικές που θα μπορούσαν να ισορροπήσουν οι δύο παίκτες) θα προχωρήσουμε στον εντοπισμό μεικτών στρατηγικών. Αρχικά, παρατηρούμε ότι η στρατηγική Σ3 του παίκτη Β (Β-Σ3) διαγράφεται ως υποδεέστερη της στρατηγικής Β-Σ2, οπότε ο πίνακας πληρωμών μειώνεται στον ακόλουθο πίνακα διάστασης 3 2, όπου δεν υπάρχουν άλλες υποδεέστερες στρατηγικές. Β-Σ1 y Β-Σ2 1-y Α-Σ1 x Α-Σ2 x Α-Σ3 x Στη συνέχεια, εφαρμόζουμε τη γραφική μέθοδο επίλυσης. Έστω y η πιθανότητα η εταιρεία Β να ακολουθήσει τη στρατηγική της Β-Σ1, οπότε (1-y) είναι η πιθανότητα να ακολουθήσει τη Β-Σ2. Για την εταιρεία Α έστω x1 η πιθανότητα να ακολουθήσει τη στρατηγική Α-Σ1, x2 να εφαρμόσει την Α-Σ2 και x3 να εφαρμόσει την Α-Σ3. Προφανώς ισχύει x1+x2+x3 =1. Για την εταιρεία με δύο στρατηγικές (δηλαδή τη Β) έχουμε τις ακόλουθες σχέσεις για τις αναμενόμενες πληρωμές: V(Β, Α-Σ1) = 190y + 270(1-y) = y, V(B, Α-Σ2) = 330y + 0(1-y) = y και V(B, A-Σ3) = 310y + 230(1-y) = y. Σύρουμε δύο κατακόρυφους άξονες με ίδια κλίμακα μέτρησης που απέχουν μεταξύ τους μία μονάδα και οι οποίοι αντιπροσωπεύουν την αξία για την εταιρεία Β (το κόστος για τη Β μια και ο πίνακας αναφέρεται στον παίκτη Α). Ο οριζόντιος άξονας παριστάνει τις τιμές της πιθανότητας y. Μετά φέρουμε τα ευθύγραμμα τμήματα που παριστάνουν τις «πληρωμές» στην εταιρεία Β (δηλαδή τα V(Β, Α-Σi), i=1,2,3)) ανάλογα με τη στρατηγική που εφαρμόζει η Α και την πιθανότητα εφαρμογής από την εταιρεία Β είτε της Β-Σ1 είτε της Β-Σ2. Για να χαράξουμε τα τρία αυτά ευθύγραμμα τμήματα αρκεί να συνδέσουμε τις αντίστοιχες τιμές των δύο αξόνων από τον πίνακα πληρωμών δηλαδή για να χαράξουμε την ευθεία που αντιστοιχεί στο V(Β, Α-Σ1) συνδέουμε το 270 με το 190, για το V(Β, Α-Σ2) συνδέουμε το 0 με το 330 και για την ευθεία V(Β, Α-Σ3) συνδέουμε το 230 με το 310.

8 Η εταιρεία Β επιλέγει minmax στρατηγική, δηλαδή επιλέγει το ελάχιστο από τα μέγιστα (τα χειρότερα για τη Β είναι τα μέγιστα οπότε επιλέγει το καλύτερο από τα χειρότερα). Επομένως, θα ακολουθήσει την τεθλασμένη γραμμή που βρίσκεται στην ανώτερη περιοχή του σχήματος και η οποία παρουσιάζεται με έντονες κόκκινες γραμμές. Επάνω σ αυτήν, θα επιλέξει το χαμηλότερο σημείο Κ. Ως εκ τούτου, η στρατηγική Α-Σ2 από την πλευρά της εταιρείας Α απορρίπτεται αφού δεν συμμετέχει στον καθορισμό του minmax σημείου Κ και το πρόβλημα γίνεται πρόβλημα διάστασης 2 2 με τον ακόλουθο πίνακα πληρωμών, στον οποίο αντικαταστήσαμε τις πιθανότητες x1 και x3 με x και 1-x αντίστοιχα: Β-Σ1 y Β-Σ2 1-y Α-Σ1 x Α-Σ3 1-x Στη συνέχεια επιλύουμε το παίγνιο ως πρόβλημα διάστασης 2 2: Εξισώνουμε τις V(Β, Α-Σ1) και V(Β, Α-Σ3) και έχουμε y = y που δίνει y=1/ και 1-y=3/ Η τιμή του παιγνίου βρίσκεται με αντικατάσταση των πιθανοτήτων σε οποιοδήποτε από τα V(Β, Α-Σ1) ή V(Β, Α-Σ3), δηλαδή είναι V = (1/) = (1/)= (αξία του παιγνίου δηλαδή πληρωμή για τον Α). Για την εταιρεία Α έχουμε ότι V(Α,Β-Σ1) = V(Α,Β-Σ2) δηλαδή 190x + 310(1-x) = 270x +230(1-x) απ όπου προκύπτει ότι x = 1/2 και 1-x = 1/2. Αν αντικαταστήσουμε τις πιθανότητες αυτές είτε στο V(Α,Β-Σ1) είτε στο V(Α,Β-Σ2) προκύπτει ότι V(Α,Β-Σ1) = V(Α,Β-Σ2)=, δηλαδή η αξία του παιγνίου που υπολογίσαμε νωρίτερα. Συνοψίζοντας, το αποτέλεσμα είναι το εξής: Μεικτή στρατηγική για την εταιρεία Α: (1/2, 0, 1/2) Μεικτή στρατηγική για την εταιρεία Β: (1/, 3/, 0) Τιμή του παιγνίου V = Το φυσικό νόημα της τιμής του παιγνίου είναι ότι, εφόσον επαναληφθεί πολλές φορές η διαδικασία με τους ίδιους όρους, η αναμενόμενη αξία των πωλήσεων της εταιρείας Α ανέρχεται σε χιλιάδες ευρώ, ενώ για την εταιρεία Β θα είναι = 270 χιλιάδες ευρώ (αφού είναι παιγνίδι σταθερού αθροίσματος με συνολικό άθροισμα χιλιάδες ευρώ). Επομένως, από την όλη διαδικασία φαίνεται να είναι κερδισμένη η εταιρεία Β.

9 ΘΕΜΑ 3 ο Ερώτημα 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΜΕΣΩΣ ΠΡΟΗΓ. ΕΝΩΡΙΤΕΡΟΣ ΧΡΟΝΟΣ ΒΡΑΔΥΤΕΡΟΣ ΧΡΟΝΟΣ ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΕΝΑΡΞΗΣ ΛΗΞΗΣ ΕΝΑΡΞΗΣ ΛΗΞΗΣ A B C D Α, Β E Β, C F B, D G A, F H E, F I F, G, H Κρίσιμη διαδρομή: A D F G I, ή A D F I, ή A G I Χρόνος ολοκλήρωσης του έργου: 27 εβδομάδες. Ερώτημα 2 Στην περίπτωση που οι χρόνοι υλοποίησης κάθε δραστηριότητας ήταν αναμενόμενοι, η πιθανότητα να τελειώσει το έργο σε περισσότερο από 29 εβδομάδες είναι μεγαλύτερη του 0., τιμή στην οποία αντιστοιχεί η μέση τιμή των 27 εβδομάδων.

10 ΘΕΜΑ 2 ο Στο σχέδιο μεταφοράς που περιγράφεται, σταθμοί προέλευσης είναι οι πόλεις με περισσότερα από 12 αυτοκίνητα και σταθμοί προορισμού οι πόλεις με λιγότερα από 12 αυτοκίνητα: ΠΡΟΣΦΟΡΑ (>12 αυτοκίνητα): Πόλη (13), Πόλη (6) και Πόλη7 () ΖΗΤΗΣΗ (<12 αυτοκίνητα): Πόλη1 (1), Πόλη2 (), Πόλη3 (6) και Πόλη6 () Συνεπώς, η συνολική ζήτηση διαμορφώνεται στα = 17 αυτοκίνητα και είναι μικρότερη της συνολικής προσφοράς των = 23 αυτοκινήτων. Κατόπιν αυτού, εισάγουμε στο σχέδιο μεταφοράς την ΠόληΧ με ζήτηση = 6 αυτοκινήτων και διαμορφώνουμε το ακόλουθο tableau: Πλ Πλ Πλ7 Πλ1 Πλ2 Πλ3 Πλ6 Χ Μ Μ Στη συνέχεια εφαρμόζουμε τη μέθοδο του Vogel προκειμένου να εντοπίσουμε μια αρχική εφικτή λύση του προβλήματός μας: Πλ Πλ Πλ7 Πλ1 Πλ2 Πλ3 Πλ6 Χ Μ Μ Η λύση αυτή έχει 7 θετικές συνιστώσες και συνεπώς είναι μη εκφυλισμένη. Βρίσκοντας τα δυναμικά u i, v j και σχηματίζοντας τις διαφορές δ ij = u i + v j - c ij που αντιστοιχούν στις μη βασικές μεταβλητές διαπιστώνουμε ότι η λύση αυτή είναι η βέλτιστη (δ ij 0 i, j) και συνεπάγεται συνολικό κόστος της τάξης των 80.

11 u v Μ Μ 380-Μ Μ Παρατηρήστε ότι, επειδή δ 2 = 0, το πρόβλημα έχει και εναλλακτική βέλτιστη λύση

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Από ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Η UCC είναι μια μικρή εταιρεία παραγωγής εντομοκτόνων. Σε

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ 2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τα παίγνια αποτελούν τη δεύτερη μορφή επιχειρησιακής έρευνας που θα εξετάζουμε. Πρόκειται για μία μέθοδο ανάλυσης προβλημάτων που έχουν σχέση με τον τρόπο λήψης αποφάσεων σε καταστάσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΚΗΣΗ 1 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι διάρκειές τους και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5 ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΜΕΡΟΣ Α ΥΠΟΧΡΕΩΤΙΚΑ ΘΕΜΑΤΑ (8,33% ΑΝΑ ΘΕΜΑ) ΘΕΜΑ A.1 Αν η συνάρτηση του οριακού κόστους μιας επιχείρησης είναι

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2005-6 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2013-2014 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων Περιεχόμενα (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων 1. Ανάλυση ευαισθησίας Λυμένο παράδειγμα 7 από το βιβλίο, σελ.85, λύση σελ.328

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση:

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Θέμα (.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Να βρεθεί η ποσότητα που ελαχιστοποιεί το κόστος παραγωγής και στη συνέχεια να υπολογιστεί το ελάχιστο κόστος παραγωγής. (0%) Κριτήριο

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-7 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης

Διαβάστε περισσότερα

Διαχείριση Έργων Πληροφορικής

Διαχείριση Έργων Πληροφορικής Διαχείριση Έργων Πληροφορικής Διαχείριση Πόρων Μ. Τσικνάκης Ε. Μανιαδή - Α. Μαριδάκη 1 Διαχείριση Χρήσης Πόρων Απαιτούμενοι πόροι στην ανάπτυξη ενός Πληροφοριακού Συστήματος: Ανθρώπινο δυναμικό (π.χ. αναλυτές,

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος - Δικτυωτή Ανάλυση Δίκτυο είναι ένα διάγραμμα το οποίο το οποίο αναπαριστά τη

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 2011-12 Αντικείμενο της ΘΕΩΡΙΑΣ ΑΠΟΦΑΣΕΩΝ με τη λέξη ΑΠΟΦΑΣΗ εννοούμε

Διαβάστε περισσότερα

Network Analysis, CPM and PERT Assignment 2 - Λύσεις

Network Analysis, CPM and PERT Assignment 2 - Λύσεις Network Analysis, CPM and PERT Assignment 2 - Λύσεις Άσκηση 1 - CPM Μια εταιρία έχει αναλάβει την ανάπτυξη ενός μεγάλου πληροφοριακού συστήματος. Το όλο έργο απαιτεί για την ολοκλήρωσή του την υλοποίηση

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Βασικές αρχές τεχνικού έργου Σειρά

Διαβάστε περισσότερα

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Άσκηση 1 η 4 η Εργασία ΔEO13 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Μια βιομηχανική επιχείρηση χρησιμοποιεί ένα εργοστάσιο (Ε) για την παραγωγή των προϊόντων

Διαβάστε περισσότερα

Ανάλυση Χρόνου, Πόρων & Κόστους

Ανάλυση Χρόνου, Πόρων & Κόστους ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

y x y x+2y=

y x y x+2y= ΜΕΡΟΣ Α 3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ 59 3. 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση α+β=γ Λύση μιας εξίσωσης α + β = γ ονομάζεται κάθε ζεύγος αριθμών (, ) που την επαληθεύει. Για παράδειγμα η

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΗ ΑΠΑΝΤΗΣΗ 3ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 40

ΠΡΟΤΕΙΝΟΜΕΝΗ ΑΠΑΝΤΗΣΗ 3ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 40 ΠΡΟΤΕΙΝΟΜΕΝΗ ΑΠΑΝΤΗΣΗ 3ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 40 1 Περιεχόμενα ΘΕΜΑ 1 ο... 3 Ερώτημα 1.1.... 4 ΕΠΙΛΥΣΗ... 9 Ερώτημα 1.2.... 13 ΘΕΜΑ 2 ο... 14 Ερώτημα 2.2.... 19 ΘΕΜΑ 3 ο... 20 Ερώτημα

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Προβλήματα Ισορροπίας Δυνάμεων. Μεθοδολογία ασκήσεων

Προβλήματα Ισορροπίας Δυνάμεων. Μεθοδολογία ασκήσεων Μεθοδολογία ασκήσεων Όταν έχουμε προβλήματα στο οποία ένα σώμα ισορροπεί, η μεθοδολογία που χρησιμοποιούμε έχει ως εξής: 1. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. Το πλήθος των δυνάμεων που σχεδιάζουμε

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης Θεωρία Αποφάσεων Εισαγωγή στην θεωρία αποφάσεων Στα μέχρι τώρα μοντέλα και τεχνικές υπήρχε η προϋπόθεση της βεβαιότητας. Στην πράξη, τα προβλήματα είναι περισσότερο πολύπλοκα,

Διαβάστε περισσότερα

Άσκηση 2: Λαβύρινθοι και ρομπότ Α. (Σχεδιασμός χώρου καταστάσεων) Ενδεικτική επίλυση

Άσκηση 2: Λαβύρινθοι και ρομπότ Α. (Σχεδιασμός χώρου καταστάσεων) Ενδεικτική επίλυση Άσκηση 2: Λαβύρινθοι και ρομπότ Η εταιρία «Ρομπότ» παρουσιάζει το νέο της μοντέλο, τον πλοηγό πάρκων Ρ-310. Το Ρ-310 είναι δημοφιλές γιατί όπου και αν είσαι μέσα στο πάρκο σου λέει πώς πρέπει να κινηθείς

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου . Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009 ΤΣΑΝΤΑΣ ΝΙΚΟΣ /9/9 Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση. Μέρος ΙI Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Το πρόγραμμα PROMETHEE. Πολυκριτηριακή διαδικασία λήψης αποφάσεων

Το πρόγραμμα PROMETHEE. Πολυκριτηριακή διαδικασία λήψης αποφάσεων Το πρόγραμμα PROMETHEE Πολυκριτηριακή διαδικασία λήψης αποφάσεων Περιεχόμενα ΠΔΛΑ και βελτιστοποίηση Υπεροχή και σύνθεση Πρόβλεψη και περιγραφή Το λογισμικό PROMETHEE Το λογισμικό GAIA Μονοκριτηριακή και

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1 Philip McCann Αστική και περιφερειακή οικονομική 2 η έκδοση Chapter 1 Κεφάλαιο 1 Χωροθέτηση δραστηριοτήτων Περιεχόμενα διάλεξης Υπόδειγμα για τη χωροθέτηση της παραγωγής Weber και Moses Ανάλυση της περιοχής

Διαβάστε περισσότερα

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει

Διαβάστε περισσότερα

Διαχείριση Έργων Πληροφορικής

Διαχείριση Έργων Πληροφορικής Διαχείριση Έργων Πληροφορικής Διάλεξη 8 & 9 η Project Crashing & Διαχείριση Κόστους 1 Υπολογισμός πιθανότητας 2 Τι σημαίνει αυτό? Σημαίνει ότι υπάρχει 0,7157 πιθανότητα ή 71.57% πιθανότητα να ολοκληρωθεί

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα