ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ"

Transcript

1 ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων για τη σύνδεση των πόλεων που βλέπετε στο ακόλουθο δίκτυο (οι αριθμοί στις ακμές είναι αποστάσεις σε μίλια). Υπάρχουν δύο προτάσεις υπό μελέτη οι οποίες στηρίζονται στο σχέδιο του κατωτέρω σχήματος στο οποίο φαίνονται όλες οι δυνατές χαράξεις: a. Να κατασκευαστούν αυτοκινητόδρομοι ταχείας κυκλοφορίας που να διασύνδεουνε με βέλτιστο τρόπο όλες τις πόλεις της περιοχής (κόμβοι 1 10), και b. Να κατασκευαστεί κλειστός αυτοκινητόδρομος υπερταχείας κυκλοφορίας που να συνδέει με βέλτιστο τρόπο την πόλη 1 με την πόλη 10 (χωρίς απαραίτητα να περνάει απ όλες τις άλλες πόλεις). Σημειώστε, ότι κάθε μίλι αυτοκινητόδρομου ταχείας κυκλοφορίας κοστίζει 5 (εκατομμύρια ευρώ), ενώ κάθε μίλι κλειστού αυτοκινητόδρομου υπερταχείας κυκλοφορίας κοστίζει 7 (εκατομμύρια ευρώ). Αν και πρέπει να ληφθούν υπόψη και άλλοι παράγοντες, ας υποθέσουμε ότι το κόστος είναι το σημαντικότερο στοιχείο για τη λήψη της τελικής απόφασης, ποια πρόταση θα υιοθετούσατε από τις δύο προτεινόμενες; ΘΕΜΑ 2 ο Μια βιομηχανία χημικών προϊόντων παράγει, στα δύο εργοστάσιά της, ένα εξειδικευμένο διάλυμα το οποίο χρησιμοποιείται για την εμφάνιση φωτογραφιών. Λόγω όμως εσφαλμένου προγραμματισμού, η επιχείρηση αναμένεται να αντιμετωπίσει ένα αρκετά σοβαρό πρόβλημα έλλειψης προϊόντος κατά το τρέχον τρίμηνο, επειδή έχει ήδη δεχτεί, από τέσσερις βασικούς της πελάτες, παραγγελίες που ξεπερνούν τη συνολική παραγωγική της δυναμικότητα. Έτσι, θέλει κατ' αρχή να αντιμετωπίσει το πρόβλημα «πόση ποσότητα θα αποστείλει σε κάθε πελάτη» και ταυτόχρονα να αποφασίσει «ποιον ή ποιους θα αφήσει ανικανοποίητους και σε πιο βαθμό». Στον πίνακα που ακολουθεί, βλέπετε το μοναδιαίο κόστος παραγωγής-συσκευασίαςμεταφοράς (συνολικά), ανά τόνο προϊόντος που παράγεται κι αποστέλλεται από κάθε εργοστάσιο σε κάθε πελάτη (σε χρηματικές μονάδες). Βλέπετε επίσης τις μέγιστες παραγόμενες ποσότητες που μπορεί να διαθέσει μέσα στο τρίμηνο κάθε εργοστάσιο, καθώς και τις απαιτήσεις των πελατών, σύμφωνα με τις παραγγελίες. Πελάτης 1 Πελάτης 2 Πελάτης 3 Πελάτης 4 Προσφορά Εργοστάσιο Εργοστάσιο Ζήτηση Για κάθε τόνο που δεν αποστέλλεται λόγω αδυναμίας ικανοποίησης της ζήτησης, η επιχείρηση καταβάλλει ένα πρόστιμο σύμφωνα με κάποια ρήτρα που έχει διακανονιστεί με τον πελάτη. Τα πρόστιμα αυτά για κάθε πελάτη (σε χρηματικές μονάδες ανά τόνο ζήτησης που δεν ικανοποιείται) τα βλέπετε στον ακόλουθο πίνακα. Πελάτης 1 Πελάτης 2 Πελάτης 3 Πελάτης 4 Πρόστιμο ανικανοποίητης ζήτησης ανά τόνο

2 1. Να διαμορφωθεί ο κατάλληλος πίνακας μεταφοράς του προβλήματος και να βρεθεί μια αρχική βασική εφικτή λύση. 2. Συνεχίζοντας από το προηγούμενο ερώτημα, βρείτε το άριστο σχέδιο ικανοποίησης των παραγγελιών με τη χρήση της μεθόδου μεταφοράς. Όταν ολοκληρώσετε την επίλυση, να διατυπώσετε με ακρίβεια το τελικό άριστο σχέδιο που βρήκατε καθώς επίσης και το συνολικό του κόστος. 3. Αν υπάρχει εναλλακτική άριστη λύση εντοπίστε την. ΘΕΜΑ 3 ο Πριν την κυκλοφορία ενός νέου προϊόντος στην αγορά, πρέπει να υλοποιηθούν οι δραστηριότητες του κατωτέρω πίνακα (όλοι οι χρόνοι είναι σε εβδομάδες). ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΜΕΣΩΣ ΠΡΟΗΓ. ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΙΣΙΟΔΟΞΟΣ ΧΡΟΝΟΣ ΠΙΘΑΝΟΤΕΡΟΣ ΧΡΟΝΟΣ ΑΠΑΙΣΙΟΔΟΞΟΣ ΧΡΟΝΟΣ ΑΝΑΜΕΝΟΜΕΝΗ ΔΙΑΚΥΜΑΝΣΗ ΔΙΑΡΚΕΙΑ A B C A D C E A, D F B G E H G, F Να διαμορφωθεί το δίκτυο του έργου. 2. Να βρεθούν οι ενωρίτεροι και βραδύτεροι χρόνοι των δραστηριοτήτων και τα αντίστοιχα χρονικά τους περιθώρια. 3. Να υπολογιστεί ο αναμενόμενος χρόνος ολοκλήρωσής του έργου και να καταγραφούν όλες οι κρίσιμες διαδρομές. 4. Υποθέστε ότι βρισκόμαστε 12 εβδομάδες πριν τα Χριστούγεννα. Ποια είναι η πιθανότητα το προϊόν να βρίσκεται στα καταστήματα τα Χριστούγεννα; ΘΕΜΑ 4 ο Δύο επιχειρήσεις A και B που δραστηριοποιούνται στην αγορά της ψηφιακής και καλωδιακής τηλεόρασης μοιράζονται τον τζίρο ο οποίος ανέρχεται σε 440 (εκατομμύρια ευρώ). Οι δύο επιχειρήσεις σχεδιάζουν την στρατηγική τους για την νέα περίοδο προκειμένου να αποσπάσουν μεγαλύτερο μερίδιο της αγοράς. Οι πιθανές στρατηγικές είναι οι ακόλουθες: (1) αύξηση διαφημιστικής δαπάνης σε τηλεοπτικά μέσα, (2) πακέτα προσφορών και μείωση τιμής, (3) ενσωμάτωση της προσφοράς ψηφιακής πλατφόρμας σε πακέτα τηλεφωνίας και Internet και (4) ανάπτυξη εναλλακτικών ηλεκτρονικών καναλιών προώθησης του προϊόντος (η τέταρτη στρατηγική μπορεί να εφαρμοστεί µόνο στην επιχείρηση Β). Ο ετήσιος τζίρος που αναμένεται να προκύψει για την επιχείρηση Α, για κάθε συνδυασμό στρατηγικών, δίνεται στον πίνακα που ακολουθεί. Επιχείρηση Α Επιχείρηση Β Β1 Β2 Β3 Β4 Α Α Α Χωρίς να διαγράψετε τις υποδεέστερες στρατηγικές, εφαρμόστε το κριτήριο minimax στον πίνακα πληρωμών, για να διαπιστώσετε την ύπαρξη ή όχι σημείου ισορροπίας. 2. Να εφαρμόσετε την κατάλληλη μεθοδολογία προκειμένου να προσδιορίσετε την άριστη στρατηγική για κάθε επιχείρηση καθώς και τον ετήσιο τζίρο της επιχείρησης Α. 3. Μακροπρόθεσμα ποια επιχείρηση φαίνεται να ευνοείται από το αποτέλεσμα, αν ο συνολικός ετήσιος τζίρος παραμείνει σταθερός; 2

3 ΘΕΜΑ 1 ο 1 η Πρόταση Πρόκειται για πρόβλημα εύρεσης του ελάχιστου ζευγνύοντος δέντρου. Ξεκινάμε αυθαίρετα από οποιοδήποτε κόμβο, έστω τον κόμβο 1. Συνδέουμε τον πλέον κοντινό του, που είναι ο κόμβος 2, μέσω της ακμής 1-2 με μήκος 8. Οι κόμβοι {1, 2} είναι συνδεδεμένοι. Ο πλησιέστερος μη συνδεδεμένος κόμβος στους {1, 2} είναι ο κόμβος 4 με την ακμή 2-4 μήκους 2. Έτσι, συνδεδεμένοι είναι τώρα οι κόμβοι {1, 2, 4}. Ο επόμενος πλησιέστερος κόμβος είναι ο κόμβος 3 με την ακμή 4-3 μήκους 1, οπότε συνδεδεμένοι είναι τώρα οι κόμβοι {1, 2, 4, 3}. Ο πλησιέστερος στους συνδεδεμένους είναι ο κόμβος 6 με την ακμή 3-6 μήκους 3. Το σύνολο των συνδεδεμένων κόμβων είναι τώρα {1, 2, 4, 3, 6}. Επόμενος συνδέεται ο κόμβος 7 με τον κόμβο 6 μέσω της ακμής 6-7 μήκους 2, οπότε το σύνολο των συνδεδεμένων κόμβων είναι το {1, 2, 4, 3, 6, 7}. Ο επόμενος κόμβος που συνδέεται είναι ο κόμβος 8 με τον κόμβο 7 μέσω της ακμής 7-8 με μήκος 4. Το σύνολο των συνδεδεμένων κόμβων γίνεται {1, 2, 4, 3, 6, 7, 8}. Επόμενος συνδέεται ο κόμβος 5 με τον κόμβο 2 με την ακμή 2-5 μήκους 5, οπότε το σύνολο γίνεται {1, 2, 4, 3, 6, 7, 8, 5}. Ο επόμενος κόμβος που συνδέεται είναι ο κόμβος 9 με τον κόμβο 8 μέσω της ακμής 8-9 με μήκος 6. Το σύνολο των συνδεδεμένων κόμβων γίνεται {1, 2, 4, 3, 6, 7, 8, 5, 9}. Τελευταίος συνδέεται ο κόμβος 10 με την ακμή 9-10 μήκους 9. Το άθροισμα των ακμών που χρησιμοποιήθηκαν είναι 40 και είναι το ελάχιστο συνολικό. 2 η Πρόταση Πρόκειται για πρόβλημα εύρεσης της συντομότερης διαδρομής. Πρώτος λυμένος κόμβος καθίσταται η αφετηρία με απόσταση 0 (από τον εαυτό της). Κόμβοι με προσωρινές διαδρομές: κόμβος 2, με απόσταση 8 μίλια από την αφετηρία και κόμβος 3, με απόσταση 12 μίλια ομοίως. Στο σύνολο των μονίμων κόμβων εισέρχεται ο κόμβος 2 με ελάχιστη απόσταση 8 μονάδες οπότε το σύνολο των μονίμων κόμβων γίνεται {1, 2}. Αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 2 στους μόνιμους. κόμβος 3, με απόσταση 12 μίλια, απευθείας από την αφετηρία κόμβος 4, με απόσταση 10 μίλια, μέσω του 2, 3

4 κόμβος 5, με απόσταση 13 μίλια, μέσω του 2, και κόμβος 7, με απόσταση 17 μίλια, μέσω του 2. Μόνιμος καθίσταται ο κόμβος 4 που έχει προσωρινή απόσταση από την αφετηρία τη μικρότερη μεταξύ αυτών με προσωρινή απόσταση, δηλαδή 10 μίλια μέσω του κόμβου 2, οπότε το σύνολο των μονίμων είναι τώρα το {1, 2, 4}. Αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 4 στο σύνολο των μονίμων. κόμβος 3, με απόσταση 11 μίλια, μέσω του κόμβου 4, κόμβος 5, με απόσταση 13 μίλια, μέσω του 2, κόμβος 6, με απόσταση 15 μίλια, μέσω του 4, και κόμβος 7, με απόσταση 17 μίλια, μέσω του 2 (ή μέσω του κόμβου 4). Από τους κόμβους με προσωρινό μήκος διαδρομής μόνιμος γίνεται ο κόμβος 3 με ελάχιστη απόσταση 11 μίλια μέσω του κόμβου 4, οπότε το σύνολο μονίμων είναι τώρα {1, 2, 4, 3}. Αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 3 στο σύνολο των μονίμων. κόμβος 5, απόσταση 13 μίλια, μέσω του 2, κόμβος 6, με απόσταση 14 μίλια, μέσω του 3, και κόμβος 7, με απόσταση 17 μίλια, μέσω του 2 (ή μέσω του κόμβου 4). Μόνιμος γίνεται ο κόμβος 5 με απόσταση από την αφετηρία 13 μίλια μέσω του κόμβου 2 και το σύνολο μονίμων γίνεται {1, 2, 4, 3, 5}. Αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 5 στο σύνολο των μονίμων. κόμβος 6, με απόσταση 14 μίλια, μέσω του 3, κόμβος 7, με απόσταση 17 μίλια, μέσω του 2 (ή μέσω του κόμβου 4), και κόμβος 8, με απόσταση 13+8 = 21 μίλια, μέσω του κόμβου 5. Μόνιμος γίνεται ο κόμβος 6 με απόσταση από την αφετηρία 14 μίλια μέσω του 3 και το σύνολο μονίμων γίνεται {1, 2, 4, 3, 5, 6}. Αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 6 στο σύνολο των μονίμων. κόμβος 7, με απόσταση 14+2 = 16 μίλια, μέσω του 6, κόμβος 8, με απόσταση 14+5 = 19 μίλια, μέσω του κόμβου 6, και κόμβος 9, με απόσταση 22 μίλια μέσω του 6. Μόνιμος γίνεται ο κόμβος 7 με απόσταση από την αφετηρία 16 μίλια μέσω του 6 και το σύνολο μονίμων γίνεται {1, 2, 4, 3, 5, 6, 7}. Αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 7 στο σύνολο των μονίμων. κόμβος 8, με απόσταση 19 μίλια, μέσω του κόμβου 6, και κόμβος 9, με απόσταση 22 μίλια μέσω του 6. Μόνιμος γίνεται ο κόμβος 8 με απόσταση από την αφετηρία 19 μίλια μέσω του 6 και το σύνολο μονίμων γίνεται {1, 2, 4, 3, 5, 6, 7, 8}. Αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 8 στο σύνολο των μονίμων. κόμβος 9, με απόσταση 22 μίλια μέσω του 6, και κόμβος 10, με απόσταση 30 μίλια μέσω του 8. Μόνιμος γίνεται ο κόμβος 9 με απόσταση από την αφετηρία 22 μίλια μέσω του 6 και το σύνολο μονίμων γίνεται {1, 2, 4, 3, 5, 6, 7, 8, 9}. Τέλος, αναπροσαρμόζουμε τις μεταβάσεις λόγω της εισαγωγής του κόμβου 9 στο σύνολο των μονίμων. Ο κόμβος 10 εισέρχεται στους μονίμους με ελάχιστη απόσταση 30 χιλιόμετρα, μέσω του κόμβου 8. 4

5 Επομένως το ελάχιστο μήκος διαδρομής είναι 30 μίλια. Για να βρούμε το βέλτιστο μονοπάτι ελέγχουμε οπισθοδρομικά την επίλυση, ξεκινώντας από τον κόμβο 10 ο οποίος μας παραπέμπει στον κόμβο 8 και αυτός στη συνέχεια στον κόμβο 6. Στον κόμβο 6 ερχόμαστε μέσω του κόμβου 3, όπου φτάνουμε μέσω του κόμβου 4. Ο κόμβος 4 μας παραπέμπει στον κόμβο 2 και από εκεί στην αφετηρία. Κατά συνέπεια άριστη διαδρομή, με μήκος 30 μίλια, είναι το μονοπάτι Συνοψίζοντας για την πρώτη περίπτωση έχουμε έναν αυτοκινητόδρομο μήκους 40 μιλίων και κόστους 40x5 = 200 εκατομμυρίων ευρώ, ενώ στη δεύτερη έναν αυτοκινητόδρομο μήκους 30 μιλίων και κόστους 30x7 = 210 εκατομμυρίων ευρώ. Συνεπώς, εάν το κόστος είναι το σημαντικότερο στοιχείο για τη λήψη της τελικής απόφασης, πρέπει να υιοθετηθεί η 1η πρόταση. 5

6 ΘΕΜΑ 2 ο Ζήτηση Προσφορά * , Ορίζουμε να είναι x ij, οι τόνοι του διαλύματος που θα αποσταλούν από το i-εργοστάσιο στον j-πελάτη (i = 1, 2 και j = 1, 2, 3, 4). Επιπλέον, επειδή si = 8000 < = d θα πρέπει να προστεθεί ένας j i υποθετικός σταθμός προέλευσης (Εργοστάσιο 3) με προσφορά ίση με 1 8,000 = 4,000 τόνους. Το κόστος μεταφοράς c 3j (j = 1, 2, 3, 4) προσδιορίζεται από τον πίνακα με τα πρόστιμα. Η εφαρμογή της μεθόδου Vogel για τον εντοπισμό μιας αρχικής βασικής εφικτής λύσης του προβλήματος οδηγεί διαδοχικά: στην εκχώρηση μονάδων στο κελί (3, 4) με παράλληλη διαγραφή της 4ης στήλης, στην εκχώρηση μονάδων στο κελί (3, 1) με διαγραφή μόνον της 3ης γραμμής, στην εκχώρηση μονάδων στο κελί (2, 2) με διαγραφή της 2ης γραμμής και τέλος, στη εκχώρηση και μονάδων στα κελιά (1, 2), (1, 3) αντίστοιχα. Το κελί (1, 1) αν και με μηδενική εκχώρηση, θεωρείται ως βασικό κελί. Το κόστος μεταφοράς ανέρχεται στις 26 χρηματικές μονάδες. j 2. Βρίσκοντας τα δυναμικά u i και v j και σχηματίζοντας τις διαφορές δ ij = u i + v j c ij που αντιστοιχούν στις μη βασικές μεταβλητές βλέπουμε ότι υπάρχουν θετικές τιμές μεταξύ τους και συνεπώς η λύση που περιλαμβάνεται στο tableau δεν είναι η βέλτιστη. v u * ,000 6

7 Στη συνέχεια με εισερχόμενο κελί το (3, 2), κατασκευάζουμε το μονοπάτι ανακατανομής των εκχωρήσεων : * ,000 Επειδή υπάρχουν ισοβαθμήσεις στο κριτήριο για την επιλογή του εξερχόμενου κελιού, διαλέγουμε αυθαίρετα το (3, 1). Η νέα λύση, στην οποία το κελί (3, 2) είναι βασικό και το (3, 1) μη βασικό, δίνεται στο tableau που ακολουθεί. Λόγω των ισοβαθμήσεων που παρατηρήθηκαν είναι εκφυλισμένη και για τη συνέχεια της διαδικασίας MODI, το κελί (1, 2) θεωρείται βασικό. Το νέο συνολικό κόστος ανέρχεται σε 260,000 χρηματικές μονάδες. Ο έλεγχος αριστότητας αποδεικνύει ότι αυτή η λύση είναι η ζητούμενη βέλτιστη λύση του προβλήματος: δ ij 0 (i, j). u v * ,000 7

8 3. Επειδή στο βέλτιστο tableau του προβλήματος μεταφοράς είναι δ 23 = 0, το πρόβλημα έχει εναλλακτική βέλτιστη λύση. Για να τον εντοπισμό της αρκεί να γίνει βασικό το κελί (2, 3) * ,000 Το μονοπάτι ανακατανομής των εκχωρήσεων υποδεικνύει ισοβαθμίσεις στο κριτήριο για την επιλογή του εξερχόμενου κελιού. Επιλέγοντας -αυθαίρετα- το (1, 3), καταλήγουμε στην κατωτέρω (εναλλακτική) βέλτιστη λύση : u v * ,000 8

9 ΘΕΜΑ 3 ο A 0 6 C 6 9 D START E G FINISH B 0 5 F 5 9 H ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΧΡΟΝΙΚΟ ΠΕΡΙΘΩΡΙΟ A 0 B 9 C 0 D 0 E 0 F 9 G 0 H 0 Κρίσιμη διαδρομή: A C D E G H και A E G H Αναμενόμενος χρόνος ολοκλήρωσης του έργου: 20 εβδομάδες. Η πρώτη κρίσιμη διαδρομή έχει μέση τιμή μ = 20 και διασπορά σ 2 = (1.822) 2 ενώ η δεύτερη μ = 20 και διασπορά σ 2 = (1.761) 2. Συνεπώς δεν υπάρχει καμία πιθανότητα να είναι έτοιμο το προϊόν πριν τα Χριστούγεννα. 9

10 ΘΕΜΑ 4 ο Ερώτημα 1 Πρόκειται για ένα παίγνιο δύο παικτών σταθερού αθροίσματος (ίσου με 440 εκατομμύρια ευρώ). Η εφαρμογή του κριτηρίου minimax απευθείας στον πίνακα πληρωμών του παίκτη Α χωρίς διαγραφή των υποδεέστερων στρατηγικών, όπως βλέπουμε στoν παρακάτω πίνακα, δεν μπορεί να δώσει αμιγείς στρατηγικές και υποδεικνύει την ανυπαρξία σημείου ισορροπίας. Πράγματι, η Maximin τιμή του παίκτη Α (επιχείρηση Α) είναι ίση με 200 (τομή των στρατηγικών Α1 Β1) και η Minimax τιμή του παίκτη Β (επιχείρηση Β) είναι ίση με 250 (τομή των στρατηγικών Α2 Β1). Β1 Β2 Β3 Β4 Row Min Maximin Α Α Α Col Max Minimax Ερώτημα 2 Επομένως, αφού δεν υπάρχει κοινό σημείο ισορροπίας (δηλαδή δεν υπάρχουν αντίστοιχες αμιγείς στρατηγικές που θα μπορούσαν να ισορροπήσουν οι δύο παίκτες) θα προχωρήσουμε στον εντοπισμό μεικτών στρατηγικών. Συνεχίζουμε με τη διαγραφή των υποδεέστερων στρατηγικών. Δεν υπάρχει υποδεέστερη στρατηγική από την πλευρά του παίκτη Α. Βλέπουμε όμως ότι από την πλευρά του παίκτη Β η στρατηγική Β2 είναι υποδεέστερη της Β1 και η στρατηγική Β3 είναι υποδεέστερη της Β4. Οπότε, ο πίνακας πληρωμών μειώνεται στον ακόλουθο πίνακα διάστασης 3 2, όπου δεν υπάρχουν άλλες υποδεέστερες στρατηγικές. Β1 y 1 Β4 Y 4 Α Α Α Στη συνέχεια εφαρμόζουμε τη γραφική διαδικασία επίλυσης. Ονομάζουμε y 1 την πιθανότητα ο παίκτης Β να ακολουθήσει τη στρατηγική Β1 και y 4 την πιθανότητα να εφαρμόσει τη στρατηγική Β4. Προφανώς y 1 + y 4 = 1. Για τον παίκτη Β με τις δύο στρατηγικές έχουμε τις παρακάτω σχέσεις: V(B, A1) = 200y y 4 V(B, A2) = 250y y 4 V(B, A3) = 225y y 4 Σύρουμε δύο κατακόρυφους (παράλληλους) άξονες με ίδια κλίμακα μέτρησης που απέχουν μεταξύ τους μία μονάδα και οι οποίοι αντιπροσωπεύουν τις δύο στρατηγικές του παίκτη B. Ο οριζόντιος άξονας παριστάνει τις τιμές της πιθανότητας y. Μετά φέρουμε τα ευθύγραμμα τμήματα που παριστάνουν τις πληρωμές στον παίκτη Α (δηλαδή τα V(B, Ai), i=1,2,3)) ανάλογα με τη στρατηγική που εφαρμόζει ο A και την πιθανότητα εφαρμογής από τον παίκτη B είτε της B1 είτε της B4. Για να χαράξουμε τα τρία αυτά ευθύγραμμα τμήματα αρκεί να συνδέσουμε τις αντίστοιχες τιμές των δύο αξόνων από τον πίνακα πληρωμών δηλαδή για να χαράξουμε την ευθεία που αντιστοιχεί στο V(B, A1) συνδέουμε το 200 με το 300, για το V(B, A2) συνδέουμε το 250 με το 100 και για την ευθεία V(B, A3) 10

11 συνδέουμε το 225 με το 150. Δεν έχει σημασία αν χρησιμοποιήσουμε πρώτα τον αριστερό ή το δεξιό κατακόρυφο άξονα για τη διαδικασία της χάραξης. Στο σχήμα μας, οι τιμές της στήλης της Β4 είναι στον αριστερό κατακόρυφο άξονα και της Β1 στον δεξιό αλλά αυτό δεν έχει καμία σημασία, θα μπορούσε να ήταν και αντίστροφα. Απλώς το σχήμα θα έβγαινε συμμετρικό. Επειδή ο παίκτης Β επιλέγει minimax στρατηγική, αυτό σημαίνει ότι επιλέγει το ελάχιστο από τα μέγιστα. Άρα θα ακολουθήσει την τεθλασμένη γραμμή που βρίσκεται στην ανώτερη περιοχή του σχήματος και η οποία παρουσιάζεται με έντονες κόκκινες γραμμές. Επάνω σ αυτήν, θα επιλέξει το χαμηλότερο (minimax) σημείο, δηλαδή όπως σημειώνεται, το σημείο Κ. Συνεπώς, η στρατηγική A3 του παίκτη A απορρίπτεται αφού δεν συμμετέχει στον καθορισμό του minimax σημείου (Κ) και η διάσταση του προβλήματος γίνεται 2x2 με τον ακόλουθο πίνακα πληρωμών: Β1 y 1 Β4 Y 4 Α1 x Α2 x Στο σχήμα, με τα πράσινα βέλη σημειώνεται το σημείο στο οποίο βρίσκεται τόσο η βέλτιστη τιμή της πιθανότητας y 1 (0,8), όσο και η αντίστοιχη τιμή του παιγνίου στον κάθετο άξονα (V=220). Για να εντοπίσουμε όμως με ακρίβεια τις τιμές συνεχίζουμε αλγεβρικά. Επιλύουμε λοιπόν το παίγνιο ως πρόβλημα διάστασης 2 2. Για τον παίκτη B έχουμε ότι V(B, A1)=V(B,A2) από όπου προκύπτει ότι: 200y y 4 = 250y y 4 που δίνει 50y 1 = 200y 4 11

12 Επειδή y 1 + y 4 =1 έχουμε ότι 50y 1 = 200(1-y 1 ), δηλαδή 250y 1 = 200. Άρα y 1 = 4/5 και y 4 = 1/5 (στο σχήμα υποδεικνύεται με βέλος το στο οποίο η πιθανότητα y 1 = 0,8 και η y 4 είναι φυσικά 0,2). Για τον παίκτη Α, ονομάζοντας x 1 την πιθανότητα ο παίκτης Α να ακολουθήσει τη στρατηγική Α1 και x 2 την πιθανότητα να ακολουθήσει την Α2 έχουμε ότι: V(A, B1) = 200x x 2 V(A, B4) = 300x x 2 Θέτοντας V(A, B1) = V(A, B4) έχουμε ότι: 200x x 2 = 300x x 2 που δίνει 100x 1 = 150x 2 Επειδή x 1 + x 2 = 1 έχουμε ότι 100x 1 = 150(1-x 1 ), δηλαδή 250x 1 =150, άρα x 1 = 3/5 και x 2 = 2/5. Η τιμή του παιγνίου βρίσκεται με αντικατάσταση των πιθανοτήτων αυτών σε οποιοδήποτε από τα V(A, B1) ή V(A, B4) δηλαδή είναι V = 200 (3/5) (2/5) = 220 (όπως φαίνεται και στο σχήμα). Συνοψίζοντας, το αποτέλεσμα είναι το εξής : Μεικτή στρατηγική για τον παίκτη Α: (0.6, 0.4, 0) Μεικτή στρατηγική για τον παίκτη Β: (0.8, 0, 0, 0.2) Τιμή του παιγνίου V = 220. Επομένως, ο ετήσιος τζίρος της επιχείρησης Α είναι 220 εκατομμύρια ευρώ. Ερώτημα 3 Το φυσικό νόημα της τιμής του παιγνίου είναι ότι, εφόσον επαναληφθεί πολλές φορές το παίγνιο με τους ίδιους όρους ο αναμενόμενος τζίρος της επιχείρησης Α είναι 220 εκατομμύρια ευρώ και της επιχείρησης Β θα είναι = 220 εκατομμύρια ευρώ επίσης. Πρακτικά αυτό σημαίνει ότι μακροπρόθεσμα το παιγνίδι είναι δίκαιο και καμία επιχείρηση δεν είναι ευνοημένη. Βέβαια, το αποτέλεσμα που δίνει η τιμή του παιγνίου είναι η μέση τιμή. 12

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ 2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τα παίγνια αποτελούν τη δεύτερη μορφή επιχειρησιακής έρευνας που θα εξετάζουμε. Πρόκειται για μία μέθοδο ανάλυσης προβλημάτων που έχουν σχέση με τον τρόπο λήψης αποφάσεων σε καταστάσεις

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Από ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Η UCC είναι μια μικρή εταιρεία παραγωγής εντομοκτόνων. Σε

Διαβάστε περισσότερα

( ) ΘΕΜΑ 1 κανονική κατανομή

( ) ΘΕΜΑ 1 κανονική κατανομή ΘΕΜΑ 1 κανονική κατανομή Υποθέτουμε ότι τα εβδομαδιαία έσοδα μιας επιχείρησης ακολουθούν την κανονική κατανομή με μέση τιμή 1000 και τυπική απόκλιση 15. α. Ποια η πιθανότητα i. η επιχείρηση να έχει έσοδα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 0 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ ο Η METRO WATER DISTRICT είναι μια εταιρεία η οποία λειτουργεί ως διαχειριστής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5 ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΜΕΡΟΣ Α ΥΠΟΧΡΕΩΤΙΚΑ ΘΕΜΑΤΑ (8,33% ΑΝΑ ΘΕΜΑ) ΘΕΜΑ A.1 Αν η συνάρτηση του οριακού κόστους μιας επιχείρησης είναι

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου . Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΚΗΣΗ 1 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι διάρκειές τους και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος - Δικτυωτή Ανάλυση Δίκτυο είναι ένα διάγραμμα το οποίο το οποίο αναπαριστά τη

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B) ΑΣΚΗΣΗ Β Μέγιστο στήλης Ο Π Ε Υ Ελάχιστα γραμμών Ο 60 5 55 65 5*maximin (A) Π 50 75 70 45 45 Ε 56 30 30 50 30 Υ 40 30 35 55 30 *60 75 70 65 minimax (B) Επειδή maximin (A) minimax (B) δεν υπάρχει ισορροπία

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

Η άριστη λύση με τη μέθοδο simplex:

Η άριστη λύση με τη μέθοδο simplex: http://usrs.uo.gr/~acg 1 UΜετάβαση από τον Γραμμικό Προγραμματισμό στη Θεωρία Δικτύων UΤο πρόβλημα Μεταφοράς (Transportation probl) UΗ «Μακεδονική Εταιρεία Αναψυκτικών Α.Ε.» Παράγει ένα αναψυκτικό ευρείας

Διαβάστε περισσότερα

Η άριστη λύση με τη μέθοδο simplex:

Η άριστη λύση με τη μέθοδο simplex: http://usrs.uo.gr/~acg 1 UΜετάβαση από τον ΓΠ στη Θεωρία ικτύων UΤο πρόβλημα Μεταφοράς (Transportation probl) UΗ «Μακεδονική Εταιρεία Αναψυκτικών Α.Ε.» Παράγει ένα αναψυκτικό ευρείας κατανάλωσης Το προϊόν

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Άσκηση 1 η 4 η Εργασία ΔEO13 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Μια βιομηχανική επιχείρηση χρησιμοποιεί ένα εργοστάσιο (Ε) για την παραγωγή των προϊόντων

Διαβάστε περισσότερα

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1)

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Οι στρατηγικές χρηματοοικονομικής δομής αναφέρονται στην επιλογή των μέσων χρηματοδότησης επενδυτικών προγραμμάτων, λειτουργιών της παραγωγής και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-7 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας

Διαβάστε περισσότερα

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Α Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 2011-12 Αντικείμενο της ΘΕΩΡΙΑΣ ΑΠΟΦΑΣΕΩΝ με τη λέξη ΑΠΟΦΑΣΗ εννοούμε

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2005-6 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009 ΤΣΑΝΤΑΣ ΝΙΚΟΣ /9/9 Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση. Μέρος ΙI Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων Περιεχόμενα (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων 1. Ανάλυση ευαισθησίας Λυμένο παράδειγμα 7 από το βιβλίο, σελ.85, λύση σελ.328

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

2.4 Μια Πρώτη Προσέγγιση στην Ανάλυση Ευαισθησίας

2.4 Μια Πρώτη Προσέγγιση στην Ανάλυση Ευαισθησίας 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 69 2.4 Μια Πρώτη Προσέγγιση στην Ανάλυση Ευαισθησίας Ένα μοντέλο γραμμικού προγραμματισμού πρέπει να λαμβάνει υπόψη το δυναμικό περιβάλλον των συνεχών αλλαγών

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΠΑΝΤΑΙΔΑΚΗΣ ΜΙΧΑΗΛ Α.Μ 8342 ΕΞΑΜΗΝΟ :ΠΤΘ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ ΠΤΥΧΙΑΚΗ

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας

Διαβάστε περισσότερα

Β. Βασιλειάδης Αν. Καθηγητής. Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων

Β. Βασιλειάδης Αν. Καθηγητής. Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων Β. Βασιλειάδης Αν. Καθηγητής Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων Περιεχόμενα Θεωρία Αποφάσεων o Αποφάσεις χωρίς πιθανότητα o Αποφάσεις με πιθανότητα Θεωρία Παιγνίων o Παίγνια Μηδενικού

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί

Διαβάστε περισσότερα

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση:

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Θέμα (.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Να βρεθεί η ποσότητα που ελαχιστοποιεί το κόστος παραγωγής και στη συνέχεια να υπολογιστεί το ελάχιστο κόστος παραγωγής. (0%) Κριτήριο

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η

Διαβάστε περισσότερα

RIGHTHAND SIDE RANGES

RIGHTHAND SIDE RANGES Μια εταιρεία εξόρυξης μεταλλευμάτων, έλαβε μια παραγγελία για 100 τόνους σιδηρομεταλλεύματος. Η παραγγελία πρέπει να περιλαμβάνει τουλάχιστον.5 τόνους νικέλιο, το πολύ τόνους άνθρακα κι ακριβώς 4 τόνους

Διαβάστε περισσότερα

Το Υπόδειγμα της Οριακής Τιμολόγησης

Το Υπόδειγμα της Οριακής Τιμολόγησης Το Υπόδειγμα της Οριακής Τιμολόγησης (ilgrom, Paul and John Roberts 98, imit Pricing and Entry under Incomplete Information) - Μια επιχείρηση ακολουθεί πολιτική οριακής τιμολόγησης (limit pricing) όταν

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Στο παρακάτω δικτυωτό να βρεθεί η διαδρομή ελαχίστου κόστους από τον κόμβο Α έως την ευθεία Β. Οι τιμές στους τελικούς κόμβους δηλώνουν κέρδος ενώ σε όλους τους υπόλοιπους

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ Ασκήσεις Αθήνα, Ιανουάριος 2010 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Βασικές αρχές τεχνικού έργου Σειρά

Διαβάστε περισσότερα

Network Analysis, CPM and PERT Assignment 2 - Λύσεις

Network Analysis, CPM and PERT Assignment 2 - Λύσεις Network Analysis, CPM and PERT Assignment 2 - Λύσεις Άσκηση 1 - CPM Μια εταιρία έχει αναλάβει την ανάπτυξη ενός μεγάλου πληροφοριακού συστήματος. Το όλο έργο απαιτεί για την ολοκλήρωσή του την υλοποίηση

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια; HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14

Διαβάστε περισσότερα

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,

Διαβάστε περισσότερα

Ανάλυση Χρόνου, Πόρων & Κόστους

Ανάλυση Χρόνου, Πόρων & Κόστους ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης Θεωρία Αποφάσεων Εισαγωγή στην θεωρία αποφάσεων Στα μέχρι τώρα μοντέλα και τεχνικές υπήρχε η προϋπόθεση της βεβαιότητας. Στην πράξη, τα προβλήματα είναι περισσότερο πολύπλοκα,

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ΠΡΩΤΟ: Θεωρήστε το π.γ.π.: maximize z(θ) = (10 4θ)x 1 +

Διαβάστε περισσότερα