ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΠΕΡΙΛΗΨΗ ΣΥΜΒΟΛΙΣΜΩΝ NOTATION ΓΙΑ ΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΑΝΥΣΤΕΣ -Bd, Steat and Lghtfoot "Tanpot Phenomena" -Bd, Amtong and Haage "Dynamc of Polymec Lqd" Οι υσικές ποσόηες σην εωρία ων αινοµένων µααοράς µπορούν να αξινοµηούν σε - Αριµηικά µονόµερα ή βαµωά µεγέη Scala, όπως ερµοκρασία, ενέργεια, όγκος - ιανυσµαικά µεγέη Vecto, όπως αχύηα, ορµή, ύναµη - Τανυσές ή ανυσικά µεγέη Second-ode teno, όπως ιαµηική άση, ρυµός ροής ορµής Με α αριµηικά µονόµερα ή βαµωά µεγέη υπάρχει µόνο ένας ρόπος πολλαπλασιασµού, όµως µε α ιανυσµαικά και ανυσικά µεγέη υπάρχουν οι εξής ρόποι: - ngle dot εσωερικό γινόµενο - doble dot : ιπλό γινόµενο - co : εξωερικό γινόµενο Οι παρακάω ύποι παρένεσης α χρησιµοποιηούν για να ηλώσουν α αποελέσµαα ων ιαορεικών πράξεων Αριµηικό µέγεος, σ : ] ιανυσµαικό µέγεος ], ] { } Τανυσικό µέγεος {σ } Το σύµβολο πολλαπλασιασµού µπορεί να ερµηνευεί σύνωνα µε α παρακάω: Σηµείο ή σύµβολο πολλαπλασιασµού Mltplcaton gn None Τάξη Ode of Relt Σ- Σ- : Σ-4 Σ

2 Παραείγµαα: η άξη είναι εύερης άξης ανυσής η άξη είναι - πρώης άξης ιάνυσµα σ: η άξη είναι -4 µηενικής άξης αριµηικό µέγεος Ορισµός ιανύσµαος: Μία ποσόηα που έχει ένα συγκεκριµένο µέγεος και ιεύυνση είναι ο µέγεος ου ιανύσµαος ύο ιανύσµαα είναι ίσα όαν α µεγέη ους είναι ίσα και οι ιευύνσεις ους συµπίπουν Πρόσεση και ααίρεση ιανυσµάων: Εσωερικό γινόµενο ngle dot ύο ιανυσµάων: co Μεαεικός commtatve v v Μη-προσεαιρισικός not aocatve v v Επιµερισικός dtbtve v ] v

3 Εξωερικό γινόµενο Co Podct ύο ιανυσµάων: ] n n όπου n είναι ένα µοναιαίο η κανονικό ιάνυσµα nt vecto κάεο nomal σο επίπεο που περιέχει α and και έχει έοια ιεύυνση, που ένας εξιόσροος κοχλίας ght-handed ce α µεακινόαν εάν σρέαµε ο προς ο µε ον συνοµόερο ρόπο Μη-µεαεικός not commtatve ] -] Μη-προσεαιρισικός not aocatve v ]] v] ] Επιµερισικός dtbtve v] ] ] v ]

4 4 ΙΑΝΥΣΜΑΤΙΚΕΣ ΠΡΑΞΕΙΣ ΑΠΟ ΑΝΑΛΥΤΙΚΗ ΠΛΕΥΡΑ ANALYTICAL VIEWPOINT Καρεσιανές συνεαγµένες,,, y, ανίσοιχα Πολλές εξισώσεις µπορούν να γραούν εύκολα χρησιµοποιώνας ο έλα ου Κonece και ον εναλλασσόµενο µοναιαίο ανυσή altenatng nt teno ε, α οποίο ορίζοναι σαν: και f f ε εάν,, ε - εάν,, ε εάν ύο ή περισσόεροι είκες είναι ίιοι Εύκολα µπορεί κάποιος να αποείξει: ε ε h h και ε ε mn m n - n m Σύµωνα µε α ανωέρω η ορίζουσα detemnant µίας µήρας µπορεί να γραεί: α α α α α α ε α α α α α α

5 5 ΟΡΙΣΜΟΣ ΙΑΝΥΣΜΑΤΟΣ ΚΑΙ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΟΥ - ΜΟΝΑ ΙΑΙΑ Ή ΚΑΝΟΝΙΚΑ ΙΑΝΥΣΜΑΤΑ Ενα ιάνυσµα ορίζεαι από ις ρεις συνισώσες ου component ή α µεγέη ων προβολών ου the magntde of t poecton,, and επάνω σους άξονες,, and, ανίσοιχα Εσι µπορούµε να γράψουµε, όπου,, and είναι α ανίσοιχα κανονικά ιανύσµαα Οι παρακάω αυόηες µπορούν να αποειχούν εύκολα: ] ] ] Ολες οι ανωέρω σχέσεις µπορούν να γραούν σαν: - ] ] - ] - ε ]

6 6 Πρόσεση ιανυσµάων: Βαµωός πολλαπλασιασµός ιανύσµα µε αριµηικό µέγεος: ] Εσωερικό γινόµενο ιανυσµάων: ] ] Εξωερικό γινόµενο ιανυσµάων: ] ] ] ε

7 7 Απόειξη Ταυόηας Παράειγµα: Απόειξε ην παρακάω αυόηα v ] v - v Η αυόηα µπορεί να αποειχεί για ην -συνισώσα -component, έσι ο άροισµα mmaton Σ µπορεί να παραληεί για λόγους απλούσευσης v ] Σ Σ ε v ] Σ Σ ε Σ l Σ m ε lm v l m ] Σ Σ Σ l Σ m ε ε lm v l m Σ Σ Σ l Σ m ε ε lm v l m Σ Σ l Σ m l m - m l v l m Σ Σ l Σ m l m v l m - Σ Σ l Σ m m l v l m Ανικαισούµε l σον πρώο όρο και m σον εύερο όρο v Σ Σ m m m - Σ Σ l l v l Ανικαισούµε m σον πρώο όρο και l σον εύερο όρο v Σ - Σ v v - v v - v

8 8 ΙΑΝΥΣΜΑΤΙΚΕΣ ΙΑΦΟΡΙΚΕΣ ΠΡΑΞΕΙΣ VECTOR DIFFERENTIAL OPERATIONS Ο ελεσής ανάελα del opeato ορίζεαι είναι ιάνυσµα ως: Η κλίση αριµηικού βαµωού πείου gadent of a cala feld: Μη-µεαεικός not commtatve L Μη-προσεαιρισικός not aocatve Επιµερισικός dtbtve Η απόκλιση ιανυσµαικού πείου dvegence of a vecto feld: ] ] Μη-µεαεικός not commtatve Μη-προσεαιρισικός not aocatve Επιµερισικός dtbtve

9 9 O σροβιλισµός ιανυσµαικού πείου cl of a vecto feld: ] ] ] ] cl ot Είναι µόνο επιµερισική Ο ελεσής ου Laplace The Laplacan Opeato: Ο ελεσής ου Laplace ορίζεαι ως: Ο ελεσής ου Laplace για ένα ιάνυσµα είναι: ] ] - Η ουσιασική παράγωγος The Sbtantal Devatve: Εάν είναι η οπική αχύηα ου ρευσού local fld velocty όε: t Dt D

10 Η ουσιασική παράγωγος btantal devatve για µια αριµηική ποσόηα είναι: D Dt t Η ουσιασική παράγωγος btantal devatve για µία ιανυσµαική ποσόηα είναι: D Dt t t Οι παραπάνω ποσόηες µπορούν να χρησιµοποιηούν για καρεσιανές συνεαγµένες Για όλες ις άλλες συνεαγµένες: ]]

11 ΤΑΝΥΣΤΕΣ Ενα ιάνυσµα,, ορίζεαι απο ις ρείς συνισώσες ου,, and Οµοια, ένας ανυσής ορίζεαι από εννέα συνισώσες ή σοιχεία nne component Τα σοιχεία,, και λέγοναι ιαγώνια, ενώ α άλλα µη-ιαγώνια Εάν,, και όε ο ανυσής λέγεαι συµµερικός ymmetc Ο ανάσροος ανυσής tanpoe ου ορίζεαι ως: * Εάν είναι συµµερικός, όε * υαικό γινόµενο ύο ιανυσµάων Dyadc Podct of To Vecto:

12 Ταυοικός ή µοναιαίος ανυσής Unt Teno: Οι συνισώσες ου µοναιαίου ανυσή είναι Κonece delta fo,, Μοναιαία υάα Unt Dyad: Είναι απλώς α υαικά γινόµενα ων µοναιαίων ιανυσµάων, m n σα οποία m,n,, Εσι, ένας ανυσής µπορεί να γραεί ως: Και ο υαικό γινόµενο ύο ιανυσµάων ως: Επίσης επισηµαίνουµε και ις εξής αυόηες:

13 cala : l l vecto ] vecto ] teno l l Αροισµα ανυσών: σ σ σ Πολλαπλασιασµός ενός ανυσή µε ένα αριµηικό µέγεος: ιπλό γινόµενο Doble Dot Podct ύο ανυσών: : : l l l σ σ σ l l : l σ l l l Ανικαισούµε l και για να απλοποιηεί ως: 4 - a cala hch σ

14 4 Εσωερικό γινόµενο ύο ανυσών Dot Podct of To Teno: l l l σ σ σ l l l σ l l l l l σ l Εσωερικό γινόµενο Dot Podct ενός ανυσή µε ένα ιάνυσµα: ] ] ιαορικές Πράξεις Dffeental Opeaton: ] ] ] Μερικές άλλες αυόηες που µπορούν εύκολα να αποειχούν: :

15 ΟΛΟΚΛΗΡΩΤΙΚΑ ΘΕΩΡΗΜΑΤΑ ΓΙΑ ΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΑΝΥΣΤΕΣ INTEGRAL THEOREMS FOR VECTORS AND TENSORS 5 Θεώρηµα απόκλισης καά Ga - Otogad Dvegence Theoem: Εάν V είναι µια κλεισή περιοχή η οποία εσωκλείεαι από µία επιάνεια S όε dv n ds n ds n ds V S S S όπου n είναι ο κάεο µοναιαίο ιάνυσµα µε ιεύυνση προς α έξω otadly dected nomal vecto dv n ds όπου είναι ένα αριµηικό µέγεος V S όπου είναι ένας ανυσής ] dv V n ] ds S Θεώρηµα σροβιλισµού καά Stoe Cl Theoem: Εάν S είναι µία επιάνεια η οποία εσωκλείεαι από µία κλεισή καµπύλη C, όε: ] S n ds t C dc όπου t είναι ο µοναιαίο εαπόµενο ιάνυσµα σην καεύυνση ολοκλήρωσης και n είναι ο µοναιαίο κάεο ιάνυσµα σο S σην καεύυνση όπου ένας εξιόσροος κοχλίας α µεακινόαν εάν η κεαλή ου περισρεόαν σην καεύυνση ολοκλήρωσης καά µήκος ου C

16 ιαόριση ή παραγώγιση ριπλού ολοκληρώµαος καά Lebnt The Lebnt Fomla fo Dffeentatng a Tple Integal: 6 d dt dv V V dv t S n ds όπου είναι η αχύηα ενός σοιχείου ης επιάνειας face element, και είναι µία αριµηική ποσόηα, η οποία µπορεί να είναι συνάρηση έσης και χρόνου, πχ,,y,,t Επίσης VVt και SSt Εάν η επιάνεια ου όγκου κινείαι µε µια οπική αχύηα ου ρευσού local fld velocty, όε d dt D ρ dv ρ dv Dt V V όπου ρ είναι η πυκνόηα ου ρευσού

17 7 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΕΓΜΕΝΕΣ CURVILINEAR COORDINATES Mέχρι ώρα έχουµε εωρήσει καρεσιανές συνεαγµένες,, y and Οµως πολλές ορές είναι πιο υσικό βολικό να λύσουµε προβλήµαα σε καµπυλόγραµµες συνεαγµένες Οι πιο γνωσές καµπυλόγραµµες συνεαγµένες είναι οι κυλινρικές cylndcal και οι σαιρικές phecal Σην παρούσα ανάπυξη ενιαερόµασε σο πως να γράψουµε ιαορικά, όπως, v], και :v σε καµπυλόγραµµες συνεαγµένες Για να ο κάνουµε αυό χρειαζόµασε ύο εργαλεία α Την παράσαση epeon για σε καµπυλόγραµµες συνεαγµένες β Τα ιαορικά ως προς ον χώρο patal devatve ων µονοιάσαων ιανυσµάων σε καµπυλόγραµµες συνεαγµένες Κυλινρικές Συνεαγµένες Cylndcal Coodnate Οι ιµές ων,, and ανί ων, y, and Από απλή γεωµερία οι εξής παρασάσεις µπορούν να γραούν: co y y n actan y/ Για να µεαρέψουµε ιαορικά ως προς, y, and σε ιαορικά ως προς,, and, µπορούµε να χρησιµοποιήσουµε ον κανόνα ης αλυσίας σην παραγώγιση chan le of dffeentaton Εσι, n co -

18 8 co n y Με αυές ις παρασάσεις, α ιαορικά οποιωνήποε αριµηικών παρασάσεων ως προς, y and µπορούν να εκρασούν ως προς α, and αλλάζουν Χρησιµοποιώνας ριγωνοµερία, co n -n co y y y Τώρα σρέουµε ην προσοχή µας σις σχέσεις µεαξύ ων µονοιάσαων ιανυσµάων Σε καρεσιανές συνεαγµένες, y, and και σε κυλινρικές συνεαγµένες,, and Σο Σχήµα βλέπουµε όι όπως ο σηµείο P µεακινείαι οι καευύνσεις ων, Οαν λυούν οι παραπάνω σχέσεις ως προς, y, and, α εξής αποελέσµαα µπορούν να παραχούν: co - n n co y Τα ιανύσµαα και οι ανυσές µπορούν να αναλυούν σις συνισώσες ους σε όλα α συσήµαα συνεαγµένων, όπως και σην περίπωση ων καρεσιανών συνεαγµένων που έχουµε εξεάσει Για παράειγµα: v ] v - v v - v v - v

19 9 σ σ σ σ Σαιρικές Συνεαγµένες Sphecal Coodnate εξής σχέσεις: Οι σαιρικές συνεαγµένες συσχείζοναι µε ις ανίσοιχες καρεσιανές σύµωνα µε ις Σχήµα: Σαιρικές συνεαγµένες n co y y n n actan y / co actany/ Οι ιαορικές πράξεις devatve opeato είναι: co co n n co - - n co n co n n y n n co - Οι σχέσεις µεαξύ ων µοναιαίων ιανυσµάων είναι: n co n n co co co co n -n - n co Οι παραπάνω σχεσεις µπορούν να λυούν για, y, and : y y y

20 n co co co -n n n co n co y co -n Μερκά παραείγµαα πράξεων σε σαιρικές συνεαγµένες είναι: σ : σ σ σ σ σ σ σ σ σ v ] v v v

21 ΙΑΦΟΡΙΚΕΣ ΠΡΑΞΕΙΣ ΣΕ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ DIFFERENTIAL OPERATIONS IN CURVILINEAR COORDINATES Ο ελεσής opeato α παραχεί σε κυλινρικές και σαιρικές συνεαγµένες Κυλινρικές: Οι εξής σχέσεις µπορούν να εξαχούν µε ιαορισµό ων σχέσεων µεαξύ ων µοναιαίων ιανυσµάων σε κυλινρικές συνεαγµένες και καρεσιανές συνεαγµένες - Ο ορισµός ου σε καρεσιανές συνεαγµένες είναι: y y Ανικαισώνας, y, and σαν συναρήσεις ων,, and και απλοποιώνας, ο ελεσής σε κυλινρικές συνεαγµένες µπορεί να γραεί:

22 Σαιρικές συνεαγµένες Οι εξής σχέσεις µπορούν να εξαχούν µε ιαορισµό ων σχέσεων µεαξύ ων µοναιαίων ιανυσµάων σε σαιρικές συνεαγµένες και καρεσιανές συνεαγµένες co - n - co n - Ο ορισµός ου ελεσή σε καρεσιανές συνεαγµένες είναι: y y Ανικαισώνας, y, and σαν συναρήσεις ων,, and, και απλοποιώνας, ο ελεσής σε σαιρικές συνεαγµένες µπορεί να γραεί: ϕ n Fo moe detal ee: RB Bd, WE Steat and EN Lghtfoot, "Tanpot Phenomena," Wley, Ne Yo, 96 RB Bd, RC Amtong and O Haage, "Dynamc of Polymec Lqd," Vol, "Fld Mechanc," Wley, Ne Yo, 977

23

24 4

25 5

26 6

27 7

_Σχήµα 2_. Σελίδα 1 από 5. τον οποίο γίνεται η µεταπτωτική κίνηση. Άξονας περιστροφής τροχού. Άξονας γύρω από. τον οποίο γίνεται η µεταπτωτική κίνηση

_Σχήµα 2_. Σελίδα 1 από 5. τον οποίο γίνεται η µεταπτωτική κίνηση. Άξονας περιστροφής τροχού. Άξονας γύρω από. τον οποίο γίνεται η µεταπτωτική κίνηση ιονύσης Μηρόπουλος Κίνηση σερεού Παραηρήσεις ση µεαπωική κίνηση ενός σρεφόµενου ροχού Η ανάρηση αυή έγινε µε αφορµή: 1) Την πολύ καλή και ενδιαφέρουσα ανάρηση ου συναδέλφου Νίκου αµαόπουλου µε ίλο «Μεαπωική

Διαβάστε περισσότερα

13. Συνήθεις διαφορικές εξισώσεις

13. Συνήθεις διαφορικές εξισώσεις Κ Χρισοδολίδης: Μαθηµαικό Σµπλήρµα για α Εισαγγικά Μαθήµαα Φσικής 67 3 Σνήθεις διαφορικές εξισώσεις 3 Ορισµοί Μια εξίσση πο περιέχει παραγώγος κάποιας σνάρησης, ονοµάζεαι διαφορική εξίσση ( Ε) Αν η σνάρηση

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτρικών κυκλωμάτων

Εργαστήριο Ηλεκτρικών κυκλωμάτων Εργασήριο Ηλεκρικών κυκλωμάων Αυό έργο χορηγείαι με άδεια Creaive Commons Aribuion-NonCommercial-ShareAlike Greece 3.. Σκοπός ων πειραμάων Ονομ/νυμο: Μηρόπουλος Σπύρος Τμήμα: Ε6 Το εργασήριο πραγμαοποιήθηκε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ V. ΜΙΚΡΟΠΛΑΣΤΙΚΟΤΗΤΑ ΤΩΝ ΚΡΥΣΤΑΛΛΩΝ 1. Εισαγωγή Ση µέχρι ώρα συζήησή µας για ην µηχανική συµπεριφορά ων µεαλλικών υλικών, όπου εξεάσαµε ην ελασική και ην πλασική ους συµπεριφορά

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ-I

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ-I ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ-I ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΑ ΣΗΜΑΤΑ Μοναδιαία βηµαική συνάρηση (Ui Sep Fucio) U () =, U () =, .5 - -

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ETY-445 ΡΕΥΣΤΟ ΥΝΑΜΙΚΗ. Μέρος Α (2007-08)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ETY-445 ΡΕΥΣΤΟ ΥΝΑΜΙΚΗ. Μέρος Α (2007-08) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ETY-445 ΡΕΥΣΤΟ ΥΝΑΜΙΚΗ ΣΗΜΕΙΩΣΕΙΣ Μέρος Α (2007-08) ΕΙΣΑΓΩΓΗ I-1 Ρευσοµηχανική (Fluid Mechanics) είναι ο κλάδος ης εφαρµοσµένης µηχανικής (applied

Διαβάστε περισσότερα

Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ

Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ ΕΙΣΑΓΩΓΗ Όπως είαι γωσό, η Μουσική είαι Μαθημαικά και (σο βάθος) υπάρχει, μία «αδιόραη αρμοία» μεαξύ αυώ ω δύο. Έα μουσικό έργο, διέπεαι από μαθημαικούς όμους, σε ό,ι αφορά ις σχέσεις

Διαβάστε περισσότερα

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ 1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΘΟΔΟΙ ΜΕΤΡΗΣΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ Δισολή (θερμική δισολή σερεών-υγρών-ερίων) Ηλεκρική νίσση (εξάρησή ης πό θερμοκρσί) Θερμοηλεκρικό

Διαβάστε περισσότερα

Multi Post. Ενδοριζικοί άξονες ανασύστασης

Multi Post. Ενδοριζικοί άξονες ανασύστασης Multi Post Ενδορζοί άξς ανασύσασης MultiPost Σύσηµα νδορζών αξόνων α αποαάσαση µ ρηνώδη υλά Το σύσηµα Multi Post ης D+Z που πρλαµβάν άξς αασυασµένους από αθαρό άνο ίνα ένα ύολο σο χρσµό α δοµασµένο σύσηµα

Διαβάστε περισσότερα

TO MONTEΛΟ ΤΗΕ ΕΡΠΙΣΗΣ (Reptation Model)

TO MONTEΛΟ ΤΗΕ ΕΡΠΙΣΗΣ (Reptation Model) TO MOTEΛΟ ΤΗΕ ΕΡΠΙΣΗΣ (epttion Moel) Η έννοια ου σωλήνα (tube) σις περιελίξεις (entglements). Αλληλεπιδράσεις-interpenetrtion Τοπολογικοί περιορισμοί (σην lterl/κάθεη κίνηση) Tube moel [e Gennes ; Ewrs

Διαβάστε περισσότερα

Θεματική ενότητα : Βασικά εργαλεία και Μέθοδοι για τον έλεγχο της ποιότητας.

Θεματική ενότητα : Βασικά εργαλεία και Μέθοδοι για τον έλεγχο της ποιότητας. Εργασία 5 Θεμαική ενόηα : Βασικά εργαλεία και Μέθοδοι για ον έλεγχο ης ποιόηας. Άσκηση 1 (η άσκηση έχει λυθεί βάσει ων διευκρινίσεων που δόθηκαν από ον καθηγηή ) α) Το καάλληλο σαισικό εργαλείο που θα

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΑΘΡΟΙΣΤΙΚΗ ΑΜΟΙΒΑΙΑ ΠΛΗΡΟΦΟΡΙΑ ΩΣ ΣΤΑΤΙΣΤΙΚΟ ΕΛΕΓΧΟΥ ΜΗ-ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΧΡΟΝΟΣΕΙΡΩΝ

ΑΘΡΟΙΣΤΙΚΗ ΑΜΟΙΒΑΙΑ ΠΛΗΡΟΦΟΡΙΑ ΩΣ ΣΤΑΤΙΣΤΙΚΟ ΕΛΕΓΧΟΥ ΜΗ-ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΧΡΟΝΟΣΕΙΡΩΝ Ελληνικό Σαισικό Ινσιούο Πρακικά 8 ου Πανελληνίου Συνεδρίου Σαισικής (5) σελ.35-34 ΑΘΡΟΙΣΤΙΚΗ ΑΜΟΙΒΑΙΑ ΠΛΗΡΟΦΟΡΙΑ ΩΣ ΣΤΑΤΙΣΤΙΚΟ ΕΛΕΓΧΟΥ ΜΗ-ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΧΡΟΝΟΣΕΙΡΩΝ Παπάνα Αγγελική και Κουγιουμζής Δημήρης

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Σήµατα και Συστήµατα ΗΜΥ220 24/1/2007. of them occurring as the solution of a problem indicates some inconsistency or absurdity.

Σήµατα και Συστήµατα ΗΜΥ220 24/1/2007. of them occurring as the solution of a problem indicates some inconsistency or absurdity. Σήµατα και Συστήµατα ΗΜΥ0 //007 Μιγαδικοί Αριµοί Παναγιώτης Παναγή, ppanagi@ucy.ac.cy ηµήτρης Ηλιάδης, eldemet@ucy.ac.cy The imaginary expression a and the negative expression b, have this resemblance,

Διαβάστε περισσότερα

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/44 1. Ορισµοί 2. Είδη διανυσµάτων 3. Πράξεις διανυσµάτων 4. Εσωτερικό, εξωτερικό και µικτό γινόµενο

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 1 ΕΙΣΑΓΩΓΙΚΟ-ΠΑΡΑΓΩΓΟΙ Ορισμός παραγώγου συνάρτησης σε σημείο Μια συνάρτηση f (X) λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΟΝΤΕΛΑ ΚΥΚΛΟΦΟΡΙΑΣ ΚΑΙ ΔΙΑΔΟΣΗΣ ΠΕΤΡΕΛΑΪΚΗΣ ΡΥΠΑΝΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΟΥ ΛΙΜΕΝΑ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΟΝΤΕΛΑ ΚΥΚΛΟΦΟΡΙΑΣ ΚΑΙ ΔΙΑΔΟΣΗΣ ΠΕΤΡΕΛΑΪΚΗΣ ΡΥΠΑΝΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΟΥ ΛΙΜΕΝΑ ΘΕΣΣΑΛΟΝΙΚΗΣ 8ο Πανελλήνιο Συμποσιο Ωκεανογαφίας & Αλιείας ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΟΝΤΕΛΑ ΚΥΚΛΟΦΟΡΙΑΣ ΚΑΙ ΔΙΑΔΟΣΗΣ ΠΕΤΡΕΛΑΪΚΗΣ ΡΥΠΑΝΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΟΥ ΛΙΜΕΝΑ ΘΕΣΣΑΛΟΝΙΚΗΣ Χισόφοος Γ. Κουίας*, Αχιλλέας Γ. Σαμαάς** *Ο.Λ.Θ. Α.Ε.,

Διαβάστε περισσότερα

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη ΘΩΜΑΣ Α. ΚΥΒΕΝΤΙΔΗΣ Γεννήθηκε το 1947 στο Νέο Πετρίτσι του Ν. Σερρών. Το 1965 αποφοίτησε από το εξατάξιο Γυμνάσιο Σιδηροκάστρου του Ν. Σερρών και εγγράφηκε

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

Σειρά Ασκήσεων στην Αντοχή των Υλικών

Σειρά Ασκήσεων στην Αντοχή των Υλικών Σιρά Ακήων ην Ανοχή ων Υλικών Άκηη η Σο ημίο Α μιας πίπδης μαλλικής πιφάνιας μ μέρο λαικόηας 00 GP και λόγο Pissn 0.5 μρήθηκαν οι πιμηκύνις ις καυθύνις, και μ η διάαξη ων πιμηκυνιομέρων ου χήμαος, ως 900,

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 3 Μεταφορά Θερμότητας Μεταβατική Αγωγή Θερμότητας: ιαγράμματα Hesle και Αναλυτικές Λύσεις ΜΜΚ 3 Μεταφορά Θερμότητας Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 3 Μεταφορά Θερμότητας Μεταβατική

Διαβάστε περισσότερα

Η αρχή της ανεξαρτησίας των κινήσεων

Η αρχή της ανεξαρτησίας των κινήσεων Η αρχή της ανεξαρτησίας των κινήσεων Την διετύπωσε ο Γαλιλαίος εξετάζοντας την περίπτωση της οριζόντιας βολής. «Η µετά χρόνο t θέση ενός κινητού που συµµετέχει σε δύο κινήσεις προσδιορίζονται, εάν φανταστούµε

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

α ία,anastasiosba@gmail.com goumas.kostas@gmail.com

α ία,anastasiosba@gmail.com goumas.kostas@gmail.com Η - 14 ο ο 2015 «Η ν οχ ( ο ν ν ο : χ ο) : / ο : ων ( ν χ ο ων χ ν ο ) οο» anastasiosba@gmailcom goumaskostas@gmailcom - Η 2000/60 & & & ) Η & Η ( & & - 90% Ζ 2000/60 Ζ & 1 & Ο & 2000 1979/87 2000/60 &

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ).

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ). 7. Εισαγωγή στο διπολικό τρανζίστορ-ι.σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 7. TΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ Ανάλογα µε το υλικό διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και 2. τρανζίστορ πυριτίου

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα

Διαβάστε περισσότερα

Μοριακά Τροχιακά ιατοµικών Μορίων

Μοριακά Τροχιακά ιατοµικών Μορίων Μοριακά Τροχιακά ιατοµικών Μορίων Για την περιγραφή της ηλεκτρονικής δοµής των µορίων θα χρησιµοποιήσουµε µοριακά τροχιακά που θα είναι γραµµικοί συνδυασµοί ατοµικών τροχιακών. Τα µοριακά τροχιακά θα αποτελούν

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Σχ.6.1. Απλή συνδεσµολογία καθρέπτη ρεύµατος.

ΚΕΦΑΛΑΙΟ 6. Σχ.6.1. Απλή συνδεσµολογία καθρέπτη ρεύµατος. ΚΕΦΑΛΑΙΟ 6 6.1 ΚΑΘΡΕΠΤΕΣ ΡΕΥΜΑΤΟΣ Σε ένα καθρέπτη ρεύµατος, το ρεύµα του κλάδου της εξόδου είναι πάντα ίσο µε το ρεύµα του κλάδου της εισόδου, αποτελεί δηλαδή το είδωλο του. Μία τέτοια διάταξη δείχνει

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ 1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά.

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 53 ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. 5. Άσκηση 5 5.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Παράρτημα α υπολογισμοί κύριων τάσεων

Παράρτημα α υπολογισμοί κύριων τάσεων Παράρημα α υπολογιμοί κύριων άεων Οι κύριες άεις μπορούν να υπολογιούν εύκολα αφού υπολογιούν πρώα, οι αναλλοίωες ου αποκλίνονος ανυή άεων:, καώς και η πρώη αναλλοίωη ου ανυή άεων Ι. Υπολογίζεαι αρχικά

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ΕΠΙΠΕΔΗ ΚΑΜΠΥΛΟΓΡΑΜΜΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ-ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ-ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ

ΕΠΙΠΕΔΗ ΚΑΜΠΥΛΟΓΡΑΜΜΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ-ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ-ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ ΕΠΙΠΕΔΗ ΚΑΜΠΥΛΟΓΡΑΜΜΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ-ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ-ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ ΠΑΡΑΔΟΧΕΣ 1) Ο χώρος, όπως τον αντιλαμβανόμαστε, έχει τρεις διαστάσεις που συμβολίζονται με τρεις διευύνσεις κάετες μεταξύ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ Σοφία Α. Ξεργιά PT, MSc, PhD Ανάλυση της Ανθρώπινης Κίνησης Εμβιομηχανική Κινησιολογία Κινηματική Κινητική Λειτουργική Ανατομική Γραμμική Γωνιακή Γραμμική Γωνιακή Θέση Ταχύτητα

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 3. ΙΟ ΟΣ ΚΑΙ ΚΥΚΛΩΜΑΤΑ ΙΟ ΩΝ Kρυσταλλοδίοδος ή δίοδος επαφής ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια

Διαβάστε περισσότερα

Caption describing picture or graphic.

Caption describing picture or graphic. Α Ω Α ύ ια σ ία: Α Α Α έ α ια ι ό σ Α Α σ ι ό ί ο ι ώ σ οι ί ι ι ώ α ώ ί αι ι ή ο ία α ώ ι ό α: ι ο ο ία 1-3 ι θ ίς έσ ις 3-4 ά ς 4 Α θέ σ Α σ ο ίς α α οί σ ι ι ή βέ σ, σ ια οσ άθ ια α σ ί ι ό ή α σ ο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ -

ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - Σχήµα 2.1: Τυπική µεταφορική ταινία Σχήµα 2.2α: Κοίλη µεταφορική ταινία Σχήµα 2.2β: Κυρτή µεταφορική ταινία Σχήµα 2.2γ: Οριζόντια

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

«Προσβλητική» και «απαξιωτική» ενέργεια

«Προσβλητική» και «απαξιωτική» ενέργεια Σκέψου ον πλανήη σου... ανακύκλωσε η ΦΩΝΗ σου Εβδομαδιαία πολιική εφημερίδα Πάρου - Ανιπάρου 67 ΧΡΟΝΙΑ αφιερωµένα σην ενηµέρωση Παρασκευή 1 Οκωβρίου 2010 Φύλλο 127 www.fonitisparou.gr Έος 65 ο Νέα Περίοδος

Διαβάστε περισσότερα

1745 P. v. Musschenbroek 1752. Franklin Α 1785 Coulomb. ό ος Coulomb 1800 A. Volta. 1 1820 H. C. Oersted. 1820 Α.. Ampere. 1827 G. S.

1745 P. v. Musschenbroek 1752. Franklin Α 1785 Coulomb. ό ος Coulomb 1800 A. Volta. 1 1820 H. C. Oersted. 1820 Α.. Ampere. 1827 G. S. Η ο :Η ι ά ο ί ισ ς ύ ος Κο ο ί ς ο ή ο ι ή ή Η ο ι ώ ο οί Η οι οί σ φι βσι ά ο ι ά 2 ι Η ο Η ι ι ι ίο ισ ς 3 Η ο ισ ς Κ σσι ς. έ ι 900.Χ. «οσ ς» ο ι σί ι άς Ασί 600.Χ. ής ύ ιβής 1000 ; ήσ ά ύ ισ ι ι ισ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ Η έννοια της ερμοκρασίας Τι είναι ερμοκρασία; η ερμοκρασία αποτελεί ένα μέτρο του πόσο ερμό ή ψυχρό είναι ένα σώμα Υποκειμενική παρατήρηση: Ένα σώμα Α είναι ερμότερο ή ψυχρότερο

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗΣ Πανελή Α. Δείρογλου Πυχιούχου Παιδαγωγικού Τήαος Δηοικής Εκπαίδευσης Το Ολοήερο Δηοικό Σχολείο από η σκοπιά ων

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς έ ν τ ε κ α ( 1 1 ) τ ο υ μ ή ν α Α π ρ ι λ ί ο υ η μ έ ρ α Π α ρ α σ κ ε υ ή, τ ο

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

ΚΗΠΟΣ & ΒΕΡΑ. τα «πώς ντας σε όλα μας ό πλούσιο φωτογρ. λίδα 3. όλης. Διαβάστε στη σελ. 7 για ένα βιβλίο που θα κάνει τις ιδέες σας...

ΚΗΠΟΣ & ΒΕΡΑ. τα «πώς ντας σε όλα μας ό πλούσιο φωτογρ. λίδα 3. όλης. Διαβάστε στη σελ. 7 για ένα βιβλίο που θα κάνει τις ιδέες σας... μ Κηπο ανία Π ΕΡ Ι Ο Δ Ι ΚΗ ΕΚ Δ ΟΣΗ ΓΙΑ ΤΗ ΦΥΣΗ ΚΑ Ι ΤΟ ΠΕ ΡΙ ΒΑ ΛΛΟ Ν Αγαπηοί φίλοι ου πράσινου, Όλοι μας διαπισώνουμε καθημερινά ο έλλειμμα που υπάρχει σε καθαρό νερό και αέρα, σο πράσινο, ση διαχείριση

Διαβάστε περισσότερα

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο Κίνηση σε µία διάσταση Copyright 9 Pearson Education, Inc. Περιεχόµενα Κεφαλαίου Συστήµατα Αναφοράς και µετατόπιση Μέση Ταχύτητα Στιγµιαία Ταχύτητα Επιτάχυνση Κίνηση µε σταθερή επιτάχυνση Προβλήµατα

Διαβάστε περισσότερα