Fourier transform of continuous-time signals

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fourier transform of continuous-time signals"

Transcript

1 Fourier ransform of coninuous-ime signals Specral represenaion of non-periodic signals Fourier ransform: aperiodic signals repeiion of a finie-duraion signal x()> periodic signals. x x T x kt x kt k k () () δ () () δ( ) ( ) Periodic signal (T )> non-periodic signal x() T () x() x

2 Non-periodic signal & periodic signal, period T. Non-periodic Δ, T x() pt (), oherwise repeiion T Periodic 3 T () x() x 4

3 analyze a non-periodic signal in he frequency domain: using he frequency analysis of he corresponden periodic signal and compue he limi for T. 5 The periodic signal is non band-limied. 6 3

4 The produc T c k & he envelope () envelope for T c k Relaion beween hem? 7 General case he Fourier coefficiens of he periodic signal : T jk T () ck x e d T Equal on [-T/, T/] T jk T () ck x e d T 8 4

5 Fourier ransform ouside [-T/,T/] he non-periodic signal jk () ck x e d T Wih he funcion: j ( ) ( ) x e d ( ) π ck k, T T (The envelope of T c k ) 9 Square wave:differen values of T 5

6 Remarks The envelope is no affeced by T. Increase T specral componens are closer. T disance he discree specral represenaion becomes coninuous. he periodic signal non-periodic. Fourier pair Definiion j j x() ( ) e d ( ) x( ) e d π Inverse Fourier Transform Fourier Transform (specrum) 6

7 Remarks periodic signals : specral lines ( ) π ck k, T T non-periodic signals specra are coninuous 3 CTFT for signals in he class L for signals in L, he Fourier ransform is no necessarily from L Reconsrucion heorem! 4 7

8 x () p () σ () σ ( ) τ τ ( ) sin τ p τ () d < he Fourier ransform is convergen (he signal x() L ) bu () L. he reconsrucion of he signal from is 5 specrum is no obvious. Reconsrucion heorem If he signal x() belongs o L and has bounded variaion on he enire real axis hen is Fourier ransform can be invered using : x R () { x () }( ) e j lim F d R R 6 8

9 . Lineariy If x() and y() L and have he Fourier ransform () and Y() hen for any complex consans a and b he signal ax()+by() L and has he Fourier ransform a()+by(). Homework: Prove i. () + by( ) a ( ) by ( ) ax + 7. Time Shifing Time shifing -> modulaion in frequency (muliplicaion wih a complex exponenial). j x e Proof ( ) ( ) τ F j j { ( )} ( ) ( τ ) ( τ + ) j x x e d x e dτ e ( ). 8 9

10 Remarks Fourier ransform: complex funcion. The Fourier ransform H() of he impulse response h() of a sysem: frequency response. frequency dependence of he magniude of H() magniude characerisic of he sysem H() frequency dependence of he argumen of H() phase characerisic of he sysem arg{h()} 9 3. Modulaion Modulaion in ime -> shifing in frequency. Proof F e ( ) ( ) j e x j { () x e } x() j () ( ).. j j e e d j () ( ) x e d ( ) x

11 Dualiy operaion in ime anoher operaion in frequency : modulaion shifing (3 rd propery) nd operaion in ime firs operaion in frequency. ime shifing modulaion ( nd propery) This behavior is named dualiy. 4. Time Scaling If x() L is scaled version x(/a) L and he specrum of x(/a) is a frequency scaled version of he specrum of x(). he scaling is an auo-dual operaion. ( ) x a. a a

12 Proof F x j { x( a )} x( a ) e d x( τ ) a a ( a ). τ a a j τ e a dτ a ; a 3 Example: he square wave specrum is ime-scaled varian, a: a/ p τ () sinτ sin τ sin τ p ( ) () τ pτ () sin τ sin p p τ τ τ 4

13 ime compression frequency dilaion ime dilaion frequency compression 5 CTFT of he consan disribuion F () πδ ( ) 6 3

14 Proof he consan disribuion can be approximaed: lim p ( ) ( ) We know ha pτ lim pτ τ () e j τ τ () () d lim τ j e sinτ d j e d lim τ sinτ sinτ, τ τ, 7 The area under he graphical represenaion of he specrum: sinτ sin sin τ u + 4 τ u A d du du Si u u ( ) π So: (), e j d, and: A π j () e d πδ ( ) () πδ ( ) F 8 4

15 An immediae consequence: a new represenaive sring for he Dirac disribuion: lim τ sinτ δ π ( ) 9 5. Complex Conjugaion complex conjugaion in ime -> reversal and complex conjugaion in frequency. Proof F * x * F x * () ( ) * j j { ()} () () ( ) * x x* e d x e d ( ) F * () ( ) * 3 5

16 6. Time Reversal Time reversal -> reversal in frequency. Homework. Prove i. x F ( ) ( ) 3 7. Signal s Derivaion Time differeniaion -> muliplicaion wih j in frequency. x' F () j ( ) 3 6

17 Proof: F Inegraing by pars: F he signal is in L : j { x' () } x' ( ) e d j j { x' () } x( ) e + j x() e d j () e lim x() lim x ± ± So: x' F () j ( ) Signal s Inegraion For x() L wih () (no DC componen), is inegral L Time inegraion -> muliplicaion wih / j in frequency ( ) F x( τ) dτ for ( ) j 34 7

18 Proof We have: y() x( τ d )τ Apply for y() he differeniaion propery: F ( ) ( ) ( ) ( ) ( ) ( ) y ' x jy Y j Y defined in : So: x ( ) F ( τ ) ( ) dτ j Signals convoluion convoluion heorem he convoluion of wo signals from L belongs o L. convoluion of wo signals in ime -> produc in frequency. F ( ) ( ) ( ) ( ) x y Y 36 8

19 F x j { x() y() } ( x y)( ) e d x( τ ) y( τ ) x Proof: jτ j ( ) ( ) ( τ τ τ ) jτ e x e ddτ x( τ ) e dτ y( u) F () y() ( ) Y ( ) τ u j dτ e d ju e du. 37 Example. Triangle s specrum convoluion of wo recangular pulses, same duraion a riangle p p τ τ pτ τ () () τ () pτ () τ τ sin sin τ τ τ sin p () τ τ τ τ τ (convoluion heorem) 38 9

20 39. Specrum s Derivaion The derivaive of he specrum is he Fourier ransform of he signal jx(). () x ( ) d j d ( ) d d x d d ()( j) e x j () d j e d x() ( e ) j d d d 4

21 . CTFT of Real Signals. Properies. (The Specrum of he Even and Odd Pars of a Real Signal) The specrum of a real and even signal is real and even. The specrum of a real and odd signal is imaginary and odd. { } E( ) { } O( ) ( ) { } () Im ( ) x Re and e x j j o 4 Proof he real signal x() wih specrum (), complex : jφ( ) ( ) ( ) e Re{ ( ) } + jim{ ( ) } Polar form Is complex conjugae real ( ) ( ) ( ) x Caresian form ( ) * ( ) * { ( )} Im ( ) * jφ e Re j { } Polar form Caresian form 4

22 For real signals: By idenificaion: () ( ) ( ) ( ) * * x x ( ) ( ) Φ ( ) Φ( ) ( ) ; ; { } { ( ) } { ( ) } { ( ) } Re Re ; Im Im. Magniude and real par of specrum are even funcions Phase and imaginary par of specrum are odd funcions 43 Example - odd real signal τ sin τ τ j j τ τ x() p p e e τ τ + The specrum of a real and odd signal is imaginary and odd 44

23 p τ () τ sin ime shifing p τ τ e τ j τ sin and p τ τ + e τ j τ sin τ sin τ τ j j cos x () τ e e j Euler s relaion sin(u) -cos (u) 45. A Parseval like heorem for signals from L F { ( )}() () ( ) F { ()}( ) x y d x y d equivalen form: Fourier ransform of he signal x() wih he variable ( ) y( ) d x( ) Y ( ) d Signal x() wih variable 46 3

24 3. Relaion Fourier Transform of a non-periodic signal & exponenial Fourier series coefficiens of he periodic signal (see previous slides) ( ) π ck k, T T 47 Example T () T + x pt p T 48 4

25 he specrum of he signal x(): T cos ( ) j Applying he propery 3: c x k kt cos j coskπ j T k kπ 49 ) finie energy signals x() L L The Fourier ransform of a signal from L L is from L he energy of a signal in he frequency / ime domain. (Parseval or Rayleigh relaion) () energy densiy. using he L norm: ( ) π () d x d ( ) π x() 5 5

26 Proof If x() L L x*(-) L L. Their convoluion belongs o L. y( ) x( ) x * ( ) So, i has Fourier ransform, Y(). from he convoluion heorem : Y * * ( ) ( ) ( ( ) ) ( ) ( ) ( ) 5 We have: for : y y π j * () Y ( ) e d x( τ) x ( τ ) dτ π * () ( ) d x() τ x ()τ τ d So: ( ) π ( ) d y finie In consequence he funcion () belongs o L. 5 6

27 ) finie energy signals x() L \L he Fourier ransform of a finie energy signal: Fourier ransform in L space convergence in mean square τ j I { x() }( ) l.i.m. x( ) e d τ τ The L norm of he Fourier ransform : I { x() }( ) lim x() τ τ τ e j d 53 Truncaion x() by muliplicaion wih p τ () approximaion of x() L L Two approximaions. The beer one - longer suppor. The oher -an approximaion of he firs. The error ends o zero if he wo duraions end o infiniy. 54 7

28 he approximaion error I { x() p () }( ) I { x() p () }( ) limi for τ τ y ( ) L L ( ) x( ) p ( ) p ( ) τ τ () pτ () x() pτ () π x() d + π x() π x d τ,, τ > τ lim τ τ, τ >τ τ x τ τ τ j j () e d x() e d τ τ τ Parseval τ τ j () I () () x e d x p { τ } in mean square. 55 Plâncherel s Theorem The Fourier ransform definiion of a finie energy signal already given can be found under he name of Plâncherel s Theorem: 56 8

29 Plâncherel s Theorem i) Plâncherel s heorem shows ha he Fourier ransform of any finie energy signal belongs o L. ii) The Fourier ransform on L is a paricular case of he Fourier ransform on L. All he properies of he Fourier ransform on L are verified by he Fourier ransform on L. The Parseval s relaion - proved for signals in L L. I is no verified by signals in L L iii) The Parseval s relaion can be generalized on L, in he form: x π (), y() ( ), Y ( ) 57 he definiion of he scalar produc on L : If he wo signals are equal : Parseval s relaion. x π * * () y () d ( ) Y ( ) d x() d ( ) d π 58 9

30 4. Specrum s Convoluion The convoluion of he Fourier ransforms () and Y() gives he Fourier ransform of he produc x() y() muliplied by π. ( ) ( ) πf { ( ) ( )}( ) Y x y The convoluion of wo finie energy signals is of finie energy. Convolving wo finie energy specra () and Y() a finie energy specrum Z() 59 ( ) ( ) ( ) ( ) ( ) Z Y u Y u du j( u) π ( u) y() e d du π Z π ju j ( ) π y( ) ( u) e du e d Z ( ) π x() y() e j d Inverse Fourier ransform of x() he Fourier ransform of he produc x() y(). 6 3

31 5. Dualiy The inverse Fourier ransform : For : ( ) ( ) πx j () ( ) e d Applying wo imes he Fourier ransform a reversed varian of he original signal weighed by π. j πx e d, dualiy πx Fourier ransform of (). ( ) I { I { x( ) }( ) }( ) 6 πx double change of variables: j ( ) ( ) e d and j ( ) ( ) { ( )}( ) πx e d I, anoher form of dualiy. 5. Dualiy Using he wo forms of dualiy we can compue he specrum of a signal. 6 3

32 Sar from a known pair (x(), ()) Wha is he specrum of he signal ()? Change he variable and consans of ime wih variable and consans of frequency and vice versa obain he corresponding pair ((), πx(-)). 63 The Fourier Transform of signals Temporal window he specrum p τ sin τ () σ( + τ) σ( τ). In his case, x () p () and ( ). τ sin τ Changing he variables and consans τ sin ( ) ( ). π x π p () 64 3

33 Symmeric riangular signal he specrum () (). T sin p T T ri T T () () ( ). and T sin ri x T () sin ( ) ( ). π π ri x

34 Decreasing causal exponenial () (). e x wih > σ ( ) ( ) ( ) j e j d e d e e j j j ( ) j j ( ) ( ) { } {} { } + + Φ arcg j arg arg j arg arg

35 ( ) + ( ) arcg Φ 69 Decreasing non-causal exponenial x () e σ( ) >. x wih () e σ( ) >. wih j ( ) ( ). ( ) ( ) arg ( ) + { } arg arcg. j 7 35

36 36 7 Symmeric decreasing exponenial () ; < <, e, e e x s ( ) ( ) ( ). x x x s + ( ) ( ) ( ) j j s 7

37 Gaussian signal e a π e a 4a, a >. The specrum of a Gaussian signal is Gaussian 73 The Fourier Transform of Disribuions ) The specrum of he Dirac s disribuion for any es funcion ϕ(): ϕ ()() δ d ϕ( ) or ϕ()( δ ) d ϕ( ) he Dirac s disribuion is even. j j () e () e d { () }( ) Hence, we have obained: δ ϕ δ I δ ( ) ( ) 74 37

38 ) The specrum of he consan () dualiy () πδ( ) πδ( ) c πcδ ( ) 75 3) The specrum of he uni sep σ() I u() sgn and v(). { u' ( ) }( ) I{ δ( ) }( ). { u ( ) }( ) I ' I { u() }( ) σ u + v j j Iσ +πδ j { () }( ) ( ) () () () 76 38

39 4) The specrum of sgn() I { sgn} I{ u( ) } j, > sgn,, < 77 5) The specrum of he signal /(π) sgn j j π sgn ( ) π sgn (dualiy) j, > j sgn, π j, < 78 39

40 79 6) Fourier Transform of he inegral of a signal having DC componen, () x () τ dτ ( ) j + π ( ) δ( ) Proof: y () x() τ dτ x( τ)( σ -τ)τ d ( ) Y( ) ( ) I{ σ ( ) }( ) ( ) + πδ( ) π δ j + j ( ) δ( ) ( ) δ( ) ( ) ( ) 8 4

41 7) The specrum of he complex exponenial ( ) ( ) πδ e j πδ Modulaion: ( - ) 8 8) The specrum of cos j j e + e cos π δ - + δ + ( ) ( ) 8 4

42 Specrum for a limied cosine of duraion τ ( ) ( ) x cos p τ ( ) I{ cos} I{ pτ () } π sinτ δ( ) +δ( +) π sin( ) τ sin( +) τ ( ) τ + ( ) τ ( +) τ

43 9) The specrum of sin ( ) ( ) j j e e πδ - πδ + sin j j ( ) ( ) sin jπ δ - δ + 85 Fourier ransform of periodic signals The periodic signal y() convoluion of is resricion a one period, x() and he periodic Dirac s disribuion () x() δ () y T δ δ jk () e ( ) T T k he Fourier ransform of periodic δ T () wih period T -proporional wih he periodic δ () wih period

44 δ jk () e δ( kt ) T T k k Bu: { () }( ) I δ( -kt )}( ) { I δt k δ j () and δ( - ) e So: δt () e T I jk k { δ ()}( ) T e k jkt Variable and consan changes and T δ ( ) k I jkt e { δt () }( ) 87 ( ) ( ) I{ δ ( ) }( ) ( ) δ ( ) Y T Y π T k ( ) ( k ) δ( - k ) We have he relaion Fourier coefficiens of he periodic signal y() wih he Fourier ransform of he non-periodic signal x(): The Fourier ransform of he periodic signal is: Y ( k ) c y k T y ( ) π c δ( - k ) k k 88 44

45 The effec of signal s runcaion sin x() p ( ) π sin sinτ p p ˆ τ π π () ( ) ( ) + sin uτ sin uτ π u π u π ( ) ( ) Si( ) ˆ p u du du y Si τ( + ) Si τ( ) π π ˆ converges in mean square o p : ( ) ( ) ( ) F{ () τ ()} F{ ()} lim... x p x τ τ( + ) τ( )

46 The effec of he specrum s runcaion on he reconsruced signal sinτ Recangular pulse: x() pτ () ( ) ; sinτ Truncaed specrum from o : xˆ? p sin sinτ p ( ) and p ( ) τ π sin sinτ xˆ () pτ () p ( ) π sin p τ () Si ( + ) Si ( ) τ τ π π π Dualiy: () ˆ ( ) ( ) ( ) ( ) sin τ sin τ Si ( + τ) Si ( τ) π p ( ) p ( ) π π π So, xˆ 9 () Si ( + τ) Si ( τ) π π -- Truncaion in ime > Gibbs phenomenon in frequency Truncaion in frequency > Gibbs phenomenon in ime 9 46

47 Repariion Differen energy concenraion measures. The repariion of a random variable is described by is probabiliy densiy funcion f (x) : f ( x) and f ( x) dx i) Mean ii) Power μ E dx E{ } x f ( x) dx; { } xf ( x) ; iii) Variance { } ( ) μ ( ) { } ( μ ) Var E x f x dx iv) Sandard deviaion ( ) σ Var. 93 Example: Gaussian (normal) repariion ( x μ ) σ f ( ) x e πσ μ -mean σ -sandard deviaion πσ μ,σ e ( x μ ) σ x e dx π dx 94 47

48 Signal energy s disribuion in ime The energy of a signal x() : W x() d x() energy disribuion funcion, in ime. W - Average ime c - he energy of he signal is concenraed wih he dispersion of σ ime spreading x c x () () d d ( ) c x( ) σ x () d d 95 Signal energy s disribuion in frequency The energy of signal x(), specrum (): W ( ) d π ( ) energy disribuion funcion, in frequency. W Average frequency c -he energy of he signal is concenraed wih dispersion of σ frequency spreading, ( ) d c ( ) d σ ( ) c ( ) ( ) d d 96 48

49 The Heisenberg-Gabor uncerainy principle If σ and σ can be defined, hen for any signal we have: σσ The sign equal appears if and only if is a Gaussian signal. x( ) -here are no signals wih perfec concenraion of energy in he ime-frequency plane 97 Example: Gaussian signal a π 4a x () e ( ) e a c ; σ ; c σ a 4a The produc σσ. The Heisenberg-Gabor inequaliy is saisfied wih he equal sign

50 The energy in he (ime) inerval [ σ σ ] 3 a a π W6 σ W6 σ e d % a W 3 a The energy in he bandwidh π W π a a W 3 a π a W6 σ e d 3 a,3σ 3 3 3,3, a a 6σ.9974 ; 99.74% 3 Signal duraion T ; is bandwidh B 3 a a produc duraion-bandwidh TB 9 for 99.74%energy 99 Remarks: i)inerpreaion of Heisenberg-Gabor inequaliy σσ If he signal duraion σ increases bandwidh σ decreases. Example: he ime-scaling propery. For a fixed duraion, he specral sandard deviaion is C σ σ σ Beween all he signals wih he same duraion, he Gaussian one has minimum bandwidh. Reciprocically, beween all he signals wih he same bandwidh, he Gaussian one has minimum duraion. The Gaussian signal is ideal for elecommunicaions ransmission: a an imposed bandwidh i offers he highes ransmission speed. Someimes, he values σ and σ can be compued. 5

51 ii) The signal () x e σ () ( ) + j ( ) x () d ; W x () d ( ) ( ) C e d ; 3 8 σ () σ ( ) d d arcg d ( ) (even funcion) σ C ; + d σ can' be defined + ( ) 5

52 For : W 995, W B he duraionbandwidh produc is 3. A he same duraion he recangular pulse has a smaller bandwidh han he exponenial. 3 Special problems regarding signals i) Band-limied signals The band-limied signals have infinie duraion. They respec he Bernsein s heorem. A band-limied signal bounded by M has all he derivaives bounded : ( k x ) () M k M - signal wih slow variaion. 4 5

53 5 ii) Causal Signals and he Paley-Wiener Theorem The signal x() is causal if and only if he inegral: ( ) log I d + is convergen. The specrum can be zero, in a counable se of poins, having a null Lebesque measure. The causal signals are non band-limied. 6 53

3 Frequency Domain Representation of Continuous Signals and Systems

3 Frequency Domain Representation of Continuous Signals and Systems 3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12 ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

Fourier Transform. Fourier Transform

Fourier Transform. Fourier Transform ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Riemann Hypothesis: a GGC representation

Riemann Hypothesis: a GGC representation Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

The canonical 2nd order transfer function is expressed as. (ω n

The canonical 2nd order transfer function is expressed as. (ω n Second order ransfer funcions nd Order ransfer funcion - Summary of resuls The canonical nd order ransfer funcion is expressed as H(s) s + ζ s + is he naural frequency; ζ is he damping coefficien. The

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

CT Correlation (2B) Young Won Lim 8/15/14

CT Correlation (2B) Young Won Lim 8/15/14 CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Spectrum Representation (5A) Young Won Lim 11/3/16

Spectrum Representation (5A) Young Won Lim 11/3/16 Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

TRM +4!52# 6!#!-!2&'!5$27!842//22&'9&2:1*;832< TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

INDIRECT ADAPTIVE CONTROL

INDIRECT ADAPTIVE CONTROL INDIREC ADAPIVE CONROL OULINE. Inroducion a. Main properies b. Running example. Adapive parameer esimaion a. Parameerized sysem model b. Linear parameric model c. Normalized gradien algorihm d. Normalized

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall 64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

Femtosecond laser pulses

Femtosecond laser pulses Femosecon laser pulses Inroucion on femosecon lasers Numerical analysis Compuer conrolle experimens Lab wor Pulse shaping Femosecon laser pulses : lab wor Time omain eraher specroscopy Specral inerferomery

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

BandPass (4A) Young Won Lim 1/11/14

BandPass (4A) Young Won Lim 1/11/14 BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

Sampling Basics (1B) Young Won Lim 9/21/13

Sampling Basics (1B) Young Won Lim 9/21/13 Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ

Διαβάστε περισσότερα