(1,1)-Tensor sphere bundle of Cheeger Gromoll type

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(1,1)-Tensor sphere bundle of Cheeger Gromoll type"

Transcript

1 Aab. J. Math : DOI 0.007/s Aabia Joua of Mathematics E. Peygha L. Noumohammadifa A. Tayebi,-Teso sphee bude of Cheege Gomo type Received: 3 Jauay 207 / Accepted: 30 Api 207 / Pubished oie: 6 May 207 The Authos 207. This atice is a ope access pubicatio Abstact We costuct a metica famed f 3, -stuctue o the, -teso bude of a Riemaia maifod equipped with a Cheege Gomo type metic ad by estictig this stuctue to the, -teso sphee bude, we obtai a amost metica paacotact stuctue o the, -teso sphee bude. Moeove, we show that the, -teso sphee budes edowed with the iduced metic ae eve space foms. Mathematics Subect Cassificatio 53C5 53C2 Itoductio Maybe, the best ow Riemaia metic o the taget bude is itoduced by Sasai i 958 [20]. Howeve, i most cases, the study of some geometic popeties of the taget bude equipped with this metic ead to the fatess of the base maifod. A few yeas ate, some eseaches became iteested i fidig othe ifted stuctues o the taget budes, cotaget, ad taget sphee budes with iteestig popeties see [2,4 0,3,6,2]. The taget sphee bude T M cosistig of sphees with costat adius see as hypesufaces of the taget bude TM has sigificat appicatios i geomety [,2]. Recety, some iteestig esuts wee obtaied by edowig the taget sphee budes with Riemaia metics iduced by the atua ifted metics fom TM, which ae diffeet fom Sasaia see [,8,5]. Teso budes Tq p M of type p, q ove a diffeetiabe maifod M ae pime exampes of fibe budes, which ae studied by mathematicias such as Ledge, Yao, Cegiz, ad Saimov [3,4,8]. The tagetbude TMad cotaget bude T M ae the specia cases of Tq p M. E. Peygha B L. Noumohammadifa Depatmet of Mathematics, Facuty of Sciece, Aa Uivesity, Aa, Ia E-mai: e-peygha@aau.ac.i A. Tayebi Depatmet of Mathematics, Facuty of Sciece, Qom Uivesity, Qom, Ia E-mai: aba.tayebi@gmai.com

2 36 Aab. J. Math : Saimov ad Geze [9] itoduced the Sasai metic S g o the, -teso bude T M of a Riemaia maifod M ad studied some geometic popeties of this metic. By the simia method used i the taget bude, the peset authos defied i [7] the Cheege Gomo type metic CG g o T M which is a extesio of Sasai metic. The, the authos studied some eatios betwee the geometic popeties of thebasemaifodm, g ad T M, CG g. I the peset pape, we coside Cheege Gomo type metic CG g o T M, ad by appyig it, we itoduce a metica famed f 3, -stuctue o T M. The, by estictig this stuctue to the, -teso sphee bude of costat adius, T M, we obtai a metica amost paacotact stuctue o T M. Fiay, we show that the, -teso sphee budes edowed with the iduced metic ae eve space foms. 2 Peimiaies Let M be a smooth -dimesioa maifod. We defie the bude of, -teos o M as T M = p M T p, whee deotes the disoit uio, ad we ca it, -teso bude. We aso defie the poectio π : T M M to p. Ifxi ae ay oca coodiates o U M, adp U, the coodiate vectos { i,whee i :=, fom a basis fo T x i p M whose dua basis is dx i. Ay teso t T M ca be expessed i tems of this basis as t = t i i dx. Fo ay coodiate chat U,x i o M, coespodece t T x x,ti U R2 detemies oca tiviaizatios φ : π U T M U R2, which shows that T M is a vecto bude o M. Theefoe, each oca coodiate eighbohood {U, x = i M iduces o T M a oca coodiate eighbohood {π U; x, x = t i =, = +, i.e., T M is a smooth maifod of dimesio + 2. We deote by FM ad I M, the ig of ea-vaued C fuctios ad the space of a C teso fieds of type, o M. Ifα I M, the by cotactio, it is egaded as a fuctio o T M,whichwe deote by ıα.ifα has the oca expessio α = α i dx i i a coodiate eighbohood Ux M,the x ıα = αt has the oca expessio ıα = α i ti with espect to the coodiates x, x i π U. Suppose that A I M. The, the vetica ift V A I 0 T M of A has the foowig oca expessio with espect to the coodiates x, x i T M: V A = V A, 2. whee V A = A i ad := =. Moeove, if V I x t i 0 M, the the compete ift C V ad the hoizota ift H V I 0 T M of V to T M have the foowig oca expessios with espect to the coodiates x, x i T M see [3]ad[4]: C V = V + t m H V = V + V s Ɣ m s ti m Ɣi sm tm m V i tm i V m, 2.2, 2.3 whee Ɣi ae the oca compoets of a symmetic affie coectio o M. Let Ux h be a oca chat of M. Usig 2.ad2.3, we obtai e := H = H δ h h = δ h h + Ɣ s h t s Ɣ s ts h h, 2.4 e := V i dx = V δ i δ h dx h = δ i δ h h, 2.5 whee δ h is the Koece s symbo ad = +,..., + 2.These + 2 vecto fieds ae ieay idepedet ad geeate the hoizota distibutio of ad vetica distibutio of T M, espectivey. Ideed,wehave H X = X e ad V A = A i e see [9]. The set {e β={e, e is caed the fame adapted to the affie coectio o π U T M.

3 Aab. J. Math : Lemma 2. Let α, α 2, α 3, ad α 4 be smooth fuctios o T M, such that α g ti g δ m δv + α 2g i g m δ δv t + α 3 t m t i δ δv t + α 4 t t t i δm δv = The, α = α 2 = α 3 = α 4 = 0. Poof Cotactig 2.6 with t v, the diffeetiatig the obtaied expessio thee times, it foows that, α 3 = α 4. Aso diffeetiatig the emaiig expessio two times, we have α g ti g t m α 2g i g m t t = 0. Cotactig the above equatio with t i, yied α = α 2. Mutipyig 2.6 byg h g i ad δm h δ, we obtai α 3 = α 4 = 0. Fiay cotactig 2.6 with t i, tm, we cocude that α = α 2 = 0. 3 Cheege Gomo type metic o T M Fo each p M, the extesio of the scaa poduct g, deoted by G, is defied o the teso space π p = T p by GA, B = gitg A i Bt, A, B I p, whee g i ad g i ae the oca covaiat ad cotavaiat tesos associated with the metic g o M. Now, we coside o T M a Riemaia metic CG g of Cheege Gomo type, as foows [7]: CG g V A, V B = V aga, B + bgt, AGt, B, CG g H X, H Y = V gx, Y, CG g V A, H Y = 0, 3. fo each X, Y I 0 M ad A, B I M, wheea ad b ae smooth fuctios of τ = t 2 = t i tt g itxg x o T M that satisfies the coditios a > 0ada + bτ >0. The symmetic matix of type 2 2 g 0 0 ag g it + b t, 3.2 i t t associated with the metic CG g i the adapted fame {e β,hastheivese g 0 0 a g g it aa+bτ b, 3.3 ti tt whee t i = g h g i th. I the specia case, if a = adb = 0, we have the Sasai metic S g see [9]. Let ϕ = ϕ i dx be a teso fied o M. The, γϕ = t m x i ϕi m ad γϕ = t i x m ϕm ae vecto x fieds o T M. The bacet opeatio of vetica ad hoizota vecto fieds is give by the fomuas [ V A, V B]=0, [ H X, V A]= V X A, 3.4 [ H X, H Y ]= H [X, Y ]+ γ γrx, Y, 3.5 whee R deotes the cuvatue teso fied of the coectio ad γ γ : ϕ I 0 T M is the opeato defied by 0 γ γϕ = t m ϕi, ϕ I M. m t i m ϕm

4 38 Aab. J. Math : Popositio 3. [7] The Levi-Civita coectio CG associated with the Riemaia metic CG gothe, -teso bude T M has the fom CG e e = Ɣ e + R s 2 tv s R s v ts e, s CG e e = a 2 CG e e = a 2 CG e e = g ta R s ts a gb Rts ts b g ia R s ts a g b Ris ts b e, e + Ɣi v δ Ɣ Lt t δ δi v + t i δ δv t + Mg g ti t v + Nt t t i tv whee R ae the compoets of the cuvatue teso fied of the Levi-Civita coectio o the base maifod M, g ad L := a a,m:= a +2b a+bτ, ad N := b a 2a b aa+bτ. I the foowig sectios, we coside the subset T M of T M cosistig of sphee of costat adius.now, we coside the, -teso fied P o T M as foows: [7] P H X = c V X Ẽ + d gx, E V E Ẽ, P V X Ẽ = c H 2 X + d 2 gx, E H E, P V A = V A, whee c, c 2, d,add 2 ae smooth fuctios of the eegy desity t ad Ẽ = g E I 0 M. Usig the adapted fame {e i, E e, e to T M, P has the foowig ocay expessio: Pe i = c E e + d E i E v E e, PE e = c 2e i + d 2 E i E e, 3.6 Pe = e, whee E = g E.Wehave Theoem 3.2 [7] The atua teso fied P of type, o T M, defied by the eatios 3.6,isaamost poduct stuctue o T M, if ad oy if its coefficiets ae eated by δv i e, e, c c 2 =, c + d E 2 c 2 + d 2 E 2 =. 3.7 Theoem 3.3 [7] CG g, P is a Riemaia amost poduct stuctue o T M if ad oy if ad 3.7 hod good. c = Now, we coside vecto fieds ad -foms a E, c 2 = E a, d = 2 a E 3, d 2 = 2 a E, 3.8 ξ := α H E, ξ 2 := β V E Ẽ, ξ 3 := κ V A, 3.9 η = γ E v dx v, η 2 = λe v E δt v, η3 = ρ t v δtv, 3.0 o T M,wheeα, β, κ, γ, λ, adρ ae smooth fuctios of the eegy desity o T M ad δtv is a dua of e. Usig 3.6ad3.9, we get Pξ = α β c + d E 2 ξ 2, Pξ 2 = β α c 2 + d 2 E 2 ξ, Pξ 3 = ξ 3, 3. ad η ξ = αγ E 2, η 2 ξ 2 = βλ E 4, η 3 ξ 3 = κρτ, η a ξ b = 0, 3.2

5 Aab. J. Math : whee a, b =, 2, 3 with coditio a = b. We have aso the foowig equatios usig 3.6ad3.0: η P = γ λ E 2 c 2 + d 2 E 2 η 2, η 2 P = λ E 2 c + d E 2 η, η 3 P = η γ Now, we defie a teso fied p of type, o T M by px = PX η Xξ 2 η 2 Xξ η 3 Xξ This ca be witte i a moe compact fom as p = P η ξ 2 η 2 ξ η 3 ξ 3.Fom3.4, the foowig oca expessio of p yieds: pe i = c δ i v + d βγe i E v E e, pe e c = 2 δi + d 2 αλ E 2 E i E e, 3.5 pe = δ δi v κρ t i tv e. Lemma 3.4 We have pξ = β α c + d βγ E 2 ξ 2, pξ 2 = β α c 2 + d 2 αλ E 2 E 2 ξ, pξ 3 = κρτξ 3, η p = γ c λ E d 2 αλ E 2 E 2 η 2, η 2 p = λ E 2 γ c + d βγ E 2 η, η 3 p = κρτ η 3, β p 2 = I α c 2 + d 2 E 2 + λ E 2 c + d E 2 βλ E 4 η ξ γ α β c + d E 2 + γ λ E 2 c 2 + d 2 E 2 αγ E 2 η 2 ξ 2, + κρτ 2η 3 ξ Poof We oy pove 3.8. Usig 3., 3.2, ad 3.3, we have p 2 X = ppx = P [ PX η Xξ 2 η 2 Xξ η 3 ] Xξ 3 η [ PX η 2 ] Xξ ξ2 η 2 [ PX η ] Xξ 2 ξ η 3 [ PX η 3 ] Xξ 3 ξ = X β c2 + d 2 E 2 η Xξ α α c + d E 2 η 2 Xξ 2 γ c2 β λ E 2 + d 2 E 2 η 2 Xξ 2 The above equatio gives us 3.8. Lemma 3.5 Let P satisfy Theoem 3.2.If + E 2 αγη 2 Xξ 2 2η 3 Xξ 3 λ E 2 γ + E 4 βλη Xξ + κρτη 3 Xξ 3. c + d E 2 η Xξ αγ E 2 =, βλ E 4 =, κρτ =, λ = γ E 2 c 2 + d 2 E 2, 3.9 the p 3 p = 0 ad p has the a o coa 3.

6 320 Aab. J. Math : Poof If 3.9 hods, the fom the above emma, we obtai p 2 = I η ξ η 2 ξ 2 η 3 ξ 3, pξ = 0, η ξ = δ, η p = 0, 3.20 whee, =, 2, 3. Theefoe, we have p 3 = p. To pove the secod pat of the emma, it is sufficiet to show that e p = spa{ξ,ξ 2,ξ 3. Fom the secod eatio i 3.20, we otice that spa{ξ,ξ 2,ξ 3 e p. Now, et X = X e + X v E e + X e e p. The, px = 0 impies that Thus Sice P 2 = I, the usig 3., we get PX η Xξ 2 η 2 Xξ η 3 ξ 3 = 0. P 2 X = η XPξ 2 + η 2 XPξ + η 3 XPξ 3. X = β α c 2 + d 2 E 2 η Xξ + α β c + d E 2 η 2 Xξ 2 + η 3 Xξ 3, that is X spa{ξ,ξ 2,ξ 3, i.e., e p spa{ξ,ξ 2,ξ 3. Theoem 3.6 Let P be the amost poduct stuctue chaacteized i Theoem 3.2 ad ξ, η, =, 2, 3, ad p be defied by 3.9, 3.0, ad 3.4, espectivey. The, the tipe p,ξ, η povides a famed f 3, - stuctue if ad oy if 3.9 hods. Poof Let p,ξ, η be a famed f 3, -stuctue o T M. The, by the defiitio of a famed f 3, -stuctue, we have η ξ = δ,whee, =, 2, 3. Thus, 3.2givesus αγ E 2 = βλ E 4 = κρτ =. 3.2 We have aso pξ 3 = 0. The above equatio ad the secod eatio i 3.6 yied λ = γ c E d 2 E 2. Usig Lemmas 3.4 ad 3.5, the covese of the theoem is poved. Lemma 3.7 Let CG g, P satisfy Theoem 3.3. The, the Riemaia metic CG g satisfies CG gpx, py = CG 2c + d E 2 gx, Y aβ β E 2 E 2 η Xη Y γ 2c2 + d 2 E 2 α η 2 Xη 2 Y fo each X, Y I 0 T M. κa + bτ λ E 2 α E 2 2 ρ κτ η 3 Xη 3 Y, Poof Obviousy, we have CG gξ,ξ 2 = 0. Usig 3.9, we deduce We have aso CG gξ,ξ = α 2 E 2, CG gξ 2,ξ 2 = aβ 2 E 4, CG gξ 3,ξ 3 = κ 2 a + bττ. CG gx,ξ = α γ η X, CG gx,ξ 2 = aβ λ η2 X, CG gx,ξ 3 = κ ρ a + bτη3 X. Usig 3.3 ad the above equatios, we deduce CG gpx, py = CG gpx, PY 2aβ γ c + d E 2 E 2 η Xη Y + α 2 E 2 η 2 Xη 2 Y + aβ 2 E 4 η Xη Y 2α c2 λ E 2 + d 2 E 2 η 2 Xη 2 Y

7 Aab. J. Math : κa + bτ ρ κτ η 3 Xη 3 Y. Howeve, CG gpx, PY = CG gx, Y, sice CG g, P is a Riemaia amost poduct stuctue. Thus, the emma is poved. Theoem 3.8 If CG g, P is the Riemaia amost poduct stuctue chaacteized i Theoem 3.3, ad ξ, η,=, 2, 3, p ae defied by 3.9, 3.0, ad 3.4, espectivey, the CG g, p,ξ, η povides a metica famed f 3, -stuctue if ad oy if 3.9 ad hod good. Poof Usig Lemma 3.7, it is easy to see that the meticity coditio γ = α, λ = aβ, ρ = κa + bτ, 3.22 CG gpx, py = CG gx, Y η Xη Y η 2 Xη 2 Y η 3 Xη 3 Y, of the famed f 3, stuctue chaacteized by 3.9issatisfiedifadoyif3.22 hods good. Thus, the poof is compete. 4O, -teso sphee bude Let be a positive umbe. The, the, -teso sphee bude of adius ove a Riemaia M, g is the hypesuface T M ={x, t T M G xt, t = 2. It is easy to chec that the teso fied N = t i e, is a teso fied o TM which is oma to T M. I geea fo ay teso fied A I M, the vetica ift V A is ot taget to T M at poit x, t. We defie the tagetia ift T A of a teso fied A to x, t T M by T A x,t = V A x,t 2 G xa, tn x,t. 4. Now, the taget space TT M is spaed by e ad e T = t 2 i tv. We otice that thee is the eatio t i et = 0, ad hece, i ay poit of T M, the vectos et, = +,..., + 2,spaa 2 - dimesioa subspace of TT M. Usig 4. ad the computatio statig with the fomua 3., we see that the Riemaia metic g o T M, iduced fom CG g, is competey detemied by the idetities g T A, T B = a V GA, B Gt, AGt, B, 2 g T A, H Y = 0, 4.2 g H X, H Y = V gx, Y, fo a X, Y I 0 M ad A, B I M, wheea is costat that satisfy a > 0. The bacet opeatio of tagetia ad hoizota vecto fieds is give by the fomuas [ ] e T, e T = 2 t t δv i δ t i δv t δ [ ] e, e T = Ɣi v δ Ɣ δv i e T, [ ] e, e = R s tv s R s v ts e T, e T. Usig the Levi-Civita coectio of the Cheege Gomo type metic itoduced by the authos i [7], we ca cocude the foowig:

8 322 Aab. J. Math : Popositio 4. The Levi-Civita coectio, associated with the Riemaia metic g o the teso bude T M, has the fom e e = Ɣ e + R s 2 tv s R s v ts e T, e = a g e T ta R s ts a 2 gb Rts ts b e, et e = a g ia R s ts a 2 g b Ris ts b e + Ɣi v δ Ɣ δv i e T, et e T = 2 t i δ δv t et. 4. A amost paacotact stuctue o T M I this sectio, we show that the famed f 3, -stuctue o T M, give by Theoem 3.6, iduces a amost paacotact stuctue o T M. Fist, we show that ξ 2 ad ξ 3 ae uit oma vecto fieds with espect to the metic CG g.let x i = x i u α, t i = ti uα, α {,...,, 4.3 be the oca equatios of T M i T M.Siceτ = ti tt g g it = 2,wehave Howeve, we have τ x = 2 Ɣ s ts h Ɣs h t s t h, τ th By epacig 4.5ito4.4, we get x Ɣ s ts h Ɣs h t s u α + t h u α t h The atua fame fied o T M is epeseted by u α = x u α x + t h u α τ x x u α + τ th th = uα t h = x u α e + = 2 t h. 4.5 = x Ɣ s ts h Ɣs h t s u α + t h u α e h. 4.7 The, by 4.6, we deduce that x CG g u α,ξ 3 = κa + bτ Ɣ s ts h Ɣs h t s u α + t h u α t h = Simiay, we obtai CG g u α,ξ 2 = 0. Thus, ξ 2 ad ξ 3 ae othogoa to ay vecto taget to T M.The vecto fied ξ is taget to T M,siceCG gξ,ξ 2 = 0. Lemma 4.2 O T M, we have η 2 = η 3 = 0, px = PX η Xξ, X χt M. Poof Usig η i T M X = CG gx,ξ i = 0, i = 2, 3, the poof is obvious. We put ξ T M = ξ, η T M = η ad p T M = p. The, Theoem 3.6 ad Lemma 4.2 impy the foowig.

9 Aab. J. Math : Theoem 4.3 If 3.9 hods, the the tipe p,ξ,ηdefies a amost paacotact stuctue o T M, that is, i ηξ =, pξ = 0, η p = 0. ii p 2 X = X ηxξ, X χt M. It is easy to show that if 3.9ad3.22 hod, the the Riemaia metic g satisfies gpx, py = gx, Y ηxηy, X, Y χt M. 4.9 Usig the equatio 4.9 ad Theoem 4.3, we cocude the foowig: Theoem 4.4 If 3.9 ad 3.22 hod, the the esembe p,ξ,η, g defies a amost metica paacotact stuctue o the taget sphee bude T M. 4.2 No-existece, -teso sphee budes space fom The cuvatue teso fied R of the coectio is defied by the we-ow fomua R X, Ỹ Z = X Ỹ Z Ỹ X Z [ X,Ỹ ] Z, whee X, Ỹ, Z I 0 T M. Usig the above equatio, Popositio 4., ad the oca fame {e, e,we T obtai Re m, e e = HHHHm e + HHHT met, 4.0 Re m, e e T = HHTH m e + HHTT m et, 4. Re m, e T e = HTHH m e + HTHT m et, 4.2 Re m, e T e T = HTTH m e, 4.3 Re T m, e et = TTHH m e, 4.4 Re T m, e et T = TTTT m et, 4.5 whee HHHHm = Rm + a 4 {g a R sh m R p h + g a R sh R mp Rsh Rsh R p mh 2Rsh m R p + 2Rsh Rmp R p mh t a s t p h t a s t p + g hb Rp R mh s R pm R h s + 2R p Rmh s t p b t s + g hb Rsm R p R s Rmp 2R s Rmp tb s t p h, HHHTm = { m R s 2 tv s Rm s tv s + Rms v ts m Rs v ts, HHTH = a { g m ia m R s ts a 2 g ia R s m ts a + g b Rism ts b g b m R HHTT = R v m mi δ R m δv i + a {g ia Rmh s 4 R p h Rh s R p m h ts v ta p + g ia Rhp v Rs m h Rmhp v Rs h ts a t p + g b Rh s R ipm h R + g b Rmhs v R ip h Rhs v Ripm h t s t p b + R s 2 m tv s R HTHH m = a { g ta m R s ts a 2 gb m Rts ts b, HTHT = R m m 2 δv t Rmt v δ + a { g ta R p h s Rmh 4 tv s ta p is ts b, mh s R ip h ms v ts t i, t p b tv s

10 324 Aab. J. Math : HTTH TTHH TTTT m m m g b R + g b R h tp h R s mh tv s t p b g tar s h tp R mhs v ts t p b, = a g Ritm 2 g it R m + a2 4 g ta R s h g ibr p h g a Rtsh g b R g b R tsm ts b t i, m ts a tb p + gb R ipm h ts a t p b = a g t R m g m Rt g ta R s h g br pm h g a R sm h g b R h ph g tar s h g m g i δ m δv + a2 R 4 ts a tb p + g tar s v mhp t p ts a { g ta R s h g b R tph g iar s m h t p b ta s a 2 2 g ta R s m ta s { g a R sm ipm h ta s t p b h g tbr p h ts a tb p h gmb Rp h ta s t p b t p b ta s sh gb Rts h t p b ts a tp ta s t p b + gb Rtph g a R sm h g mb R t p b ta s + gma R g a Rtsh gmb Rp h t p b ts a, = 4 t m t i δ δv t t t t i δm δv. + 2 g g ti δ m δv I the foowig, we cacuate the Ricci teso Ric of T M, g usig the we-ow fomua: Ric = tacex R X, Ỹ Z, X, Ỹ, Z I 0 T M. Let E,...,E 2 + be the othooma fame, such that the fist vectos E,...,E ae vectos of a fame i HTM ad the ast 2 vectos E +,...,E 2 + ae vectos of a fame i VTM [8]. We coside the ast vecto E 2 + as the uitay vecto of the oma vecto N = t i e to T M. It is easy to see that the vecto fieds e T,...,eT ae ot idepedet. Cosideig the basis e 2,...,e, e T,...,eT 2 fo TT M, oa ope set of T M whee ti = 0, we ca wite the ast vecto et as foows: 2 e T 2 = e T = t Usig the defiitio of the Ricci teso, we have i, = i = = t i et. Rice T, e T = TTTT + HTTH. Diect cacuatios give us TTTT s e T = =,h= =h =,h= =h = = TTTT TTTT TTTT s s s e T + TTTT e T TTTT e T TTTT s t e T s 2 s t t v et.,h= =h = t h et

11 Aab. J. Math : Settig s = i the above equatio, we have TTTT = TTTT t t v TTTT Note that i the eft side of the above equatio, summatio idex is diffeet fom the summatio idex i the ight side. Usig the above expessio of TTTT ad 4.5, we get Hece It foows that: Ric e T, e T t v TTTT t v TTTT t = m = 2 g g ti t 4 t t t i t. = 2 g g ti 4 t t t i. = TTTT + HTTH 2 g g ti + 4 t t t i g ti g 2 t i t t + a2 { g b R 4 g ta R s h g ibr p h ts a tb p ga Rtsh g b Rip h ts a t p b + g ta R s h g b R h. ip ta s t p b. tph g iar s h t p b ta s I a simia way, we get othe compoets of the Ricci teso o T M as foows: Rice T, e = HTHH = a { g ta R s ts a 2 gb Rts ts b, Rice, e T = HHTH = a { g ia R s ts a 2 g b Ris ts b, Rice, e = HHHH + THHT t t v THHT = R + a { g hb Rp Rh s 2 t p b t s g ar sh R p h ta s t p g hb Rs Rp ts b t p h + g ar sh Rp ta s t p h a { g a R sh R p h 4 ta s t p + g va R p h Rh s tv s ta p +g hb Rs R p ts b t p h + gb Rvp h R v. hs ts t p b Theoem 4.5, -teso sphee bude T M, with the Riemaia metic g iduced fom the metic CG g o T M, has eve costat sectioa cuvatue. Poof It is ow that the cuvatue teso fied of the Riemaia maifod T M, g with costat sectio cuvatue satisfies the eatio R X, Ỹ Z = { gỹ, Z X g X, ZỸ, 4.6 whee X, Ỹ, Z I 0 T M. IfT M, g has costat sectioa cuvatue, thewehave { R e T m, e et T ge T, e T et m g e T m, e et T = Usig 4.7ad4.5, we get 2 a 2 [ g ti g δ m δv g ig m δ δv t + 2 t m t i δ δv t t t t i δm δv ] =

12 326 Aab. J. Math : Usig the above equatio ad Lemma 2., we deduce = 0ada =.SiceT 2 M, g has costat sectioa cuvatue, wehave Re m, e e { ge, e e m ge m, e e = ad4.9giveus Rm g δm g mδ a + {g a R sh m 4 R p h R sh R p mh 2Rsh R p mh ts a t p + g a R sh Rmp R sh m R p + 2Rsh Rmp ts a t p h + ghb Rsm R p Rs Rmp 2R s Rmp tb s t p h + ghb Rp R mh s Rpm R h s + 2R p Rmh s t p b t s = Diffeetiatig the expessio 4.20 two times, i the tagetia coodiates x ; =,..., + 2,we cocude Rm = g δm g mδ. 4.2 I additio, we have { R e T m, e e T g e, e T e T m g e T m, e et = Settig a = ad 4.2i4.3 ad the usig 4.22, we obtai 2 [ 2 2 g g tm δi g im δt + 2g it δm ] + git g δm g δm [g 4 4 ta g b g pm g s δi ta s t p b g img s ts a t b g pmg ti a t p b + g img t a p t p b + g ta g ib g s g ts a tb m gs g p δmt s a tb p + g g sp δmt s a tb p g g s ts a tb m + g a g b g sp g im δt ts a t p b g sig pm δt ts a t p b + g tig pm ta t p b g tpg im ta t p b + g ia g b δmδ t t p b ta p δ t t b ta m δ mt b ta t + δt tb ta m + [ 2 4 g ta g s δm ta s g tag tm a g smg b δt ts b + g tmg b tb + 2δ m t t Fom the above equatio i the poit x i, t i = xi,δ i T M,weget 2 2 [ g g tm δ i g im δ t + 2g it δ m ] + git g δ m g δ m ] t i = 0. ] + 4 δ m δ t δ i = 0, which is a cotadictio. Thus, we cocude that the maifod T M, g may eve be a space fom. Fo Sasai metic S g we have a =. The usig Theoem 4.5,wehave Cooay 4.6 The, -teso sphee bude T M, edowed with the metic iduced by the Sasai metic S gfomt M, is eve a space fom. I this pape, we show that cosideig Cheege Gomo type metic CG g o T M, we ca costuct a metica famed f 3, -stuctue o T M. I additio, by estictig this stuctue to the, -teso sphee bude with costat adius, T M, we obtai a metica amost paacotact stuctue o T M. Moeove, we deduce that, -teso sphee budes edowed with the iduced metic ae eve space foms. Ope Access This atice is distibuted ude the tems of the Ceative Commos Attibutio 4.0 Iteatioa Licese ceativecommos.og/iceses/by/4.0/, which pemits uesticted use, distibutio, ad epoductio i ay medium, povided you give appopiate cedit to the oigia authos ad the souce, povide a i to the Ceative Commos icese, ad idicate if chages wee made.

13 Aab. J. Math : Refeeces. Abbassi, M.T.K.; Kowasi, O.: O g-atua metics with costat scaa cuvatue o uit taget sphee budes. I: Matsushita, Y. et a. eds Topics i Amost Hemitia Geomety ad Reated Fieds, Poc i Hoo of K. Seigawa s 60th bithday, pp 29. Hacesac, NJ: Wod Scietific Abbassi, M.T.K.; Saih, M.: O atua metics o taget budes of Riemaia maifods. Ach. Math. Bo 4, Cegiz, N.; Saimov, A.A.: Compete ifts of deivatios to teso budes. Bo. Soc. Mat. Mexicaa 83, Cheege, J.; Gomo, D.: O the stuctue of compete maifods of oegative cuvatue. A. Math. 962, Duţă-Romaiuc, S.L.: Kaehe Eistei stuctues of geea atua ifted type o the cotaget budes. Baa J. Geom. App. 4, Duţă-Romaiuc, S.L.: Geea atua Riemaia amost poduct ad paa-hemitia stuctues o taget budes. Taiwa. J. Math 62, Duţă-Romaiuc, S.L.: Riemaia amost poduct ad paa-hemitia cotaget budes of geea atua ift type. Acta Math. Hug. 393, Duţă-Romaiuc, S.L.; Opoiu, V.: Taget sphee budes of atua diagoa ift type. Baa J. Geom. App. 5, Duţă-Romaiuc, S.L.; Opoiu, V.: Taget sphee budes which ae η-eistei. Baa J. Geom. App. 62, Duţă-Romaiuc, S.L.; Opoiu, V.: The hoomophic φ-sectioa cuvatue of taget sphee budes with Sasaia stuctues. A. ştiiţ. Uiv. A. I. Cuza Iaşi, Mat. 57Supp., Kaeyui, S.; Kozai, M.: Paacompex stuctues ad affie symmetic spaces. Toyo J. Math. 8, Koa, I.; Micho, P.W.; Sova, J.: Natua opeatios i diffeetia geomety. Spige, Bei Kowasi, O.; Seizawa, M.: Natua tasfomatios of Riemaia metics o maifods to metics o taget budes a cassificatio. Bu. Toyo Gaugei Uiv. 404, Ledge, A.J.; Yao, K.: Amost compex stuctues o the teso budes. J. Diff. Geom., Muteau, M.I.: New CR-stuctues o the uit taget bude. A. Uiv. Timisoaa Se. Mat. Ifom. 38o., Muteau, M.I.: Some aspects o the geomety of the taget budes ad taget sphee budes of a Riemaia maifod. Medite. J. Math. 5, Peygha, E.; Tayebi, A.; Noumohammadi Fa, L.: Cheege Gomo type metic o, -teso bude. J. Cotemp. Math. Aa. 6, Saimov, A.A.; Cegiz, N.: Liftig of Riemaia metics to teso budes. Russ. Math. IZ. VUZ. 47, Saimov, A.; Geze, A.: O the geomety of the, -teso bude with Sasai type metic. Chi. A. Math. 32B3, Sasai, S.: O the diffeetia geomety of taget budes of Riemaia maifods. Tohou Math. J. 0, Seizawa, M.: Cuvatues of taget budes with Cheege Gomo metic. Toyo J. Math. 42,

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Differential Equations (Mathematics)

Differential Equations (Mathematics) H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod

Διαβάστε περισσότερα

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Product of two generalized pseudo-differential operators involving fractional Fourier transform

Product of two generalized pseudo-differential operators involving fractional Fourier transform J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay

Διαβάστε περισσότερα

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS Asia Pacific Joual of Mathematics, Vol. 5, No. 08, 9-08 ISSN 57-05 CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS M.I.QURESHI, SULAKSHANA BAJAJ, Depatmet of

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation.

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation. 1 Additional lemmas Supplementay Mateial APPENDIX Lemma A1. Let (T 1,1, T 2,1, T 3,1, T 4,1 ),..., (T 1,N, T 2,N, T 3,N, T 4,N ) be independent andom vectos of length 4 such that E(T,i ) = 0 (i = 1,...,

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

4. ELECTROCHEMISTRY - II

4. ELECTROCHEMISTRY - II 4. ELETROHEMISTRY - II Molar coductace, Equivalet coductace, cell cetat ad Kohlraush Law :. Give : l 0.98 cm a.3 cm cell cost. cell cost. a l cell cost. a l 0.98.3 0.7538 cm As : ell costat for the cell

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα