On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay"

Transcript

1 Kaewwisetkul and Sitthiwirattham Advances in Difference Equations 207) 207:29 DOI 0.86/s R E S E A R C H Open Access On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay Bunjong Kaewwisetkul and Thanin Sitthiwirattham 2,3* * Correspondence: thanin.s@sci.kmutnb.ac.th 2 Department of Mathematics, Faculty of Applied Science, King Mongkut s University of Technology North Bangkok, Bangkok, Thailand 3 Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand Full list of author information is available at the end of the article Abstract In this article, we study the existence and uniqueness results for a nonlocal fractional sum-difference boundary value problem for a Caputo fractional functional difference equation with delay, by using the Schauder fixed point theorem and the Banach contraction principle. Finally, we present some examples to display the importance of these results. MSC: 39A05; 39A2 Keywords: Caputo fractional functional difference equations; boundary value problem; delay; existence Introduction In this paper, we consider a nonlocal fractional sum boundary value problem for a Caputo fractional functional difference equation with delay of the form α C ut)=f[ t + α,u t+α, β C ut + α β)], γ Cuα γ )=0, ut + α)=ρ ω uη + ω), t N 0,T := {0,,...,T},.) Ɣω)α 3)[α 2)2 γ )+2]+T+α)[T α+5)2 γ ) 2]) and u α 3 = ψ, where ρ η, α s=α 3 η+ω σ s))ω α 3)[α 2)2 γ )+2]+η+ω)[η+ω 2α+5)2 γ ) 2]) 2, 3), β, γ, ω 0, ), η N α,t+α are given constants, F CN α 3,T+α C r R, R) and ψ is an element of the space C + r α 3):={ ψ C r : ψα 3)=0, β C ψs β +)=0,s N α r 3,α 3}. For r N 0,T+3 we denote C r is the Banach space of all continuous functions ψ : N α r 3,α 3 R endowed with the norm ψ Cr = max ψs). s N α r 3,α 3 The Authors) 207. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original authors) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

2 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 2 of 4 If u : N α r 3,α 3 R, then for any t N α 3,T+α we denote by u t the element of C r defined by u t θ)=ut + θ) forθ N r,0. Fractional difference calculus or discrete fractional calculus is a very new field for mathematicians. Basic definitions and properties of fractional difference calculus can be found in the book []. Some real-world phenomena are being studied with the assistance of fractional difference operators, one may refer to [2, 3] and the references therein. Good papers related to discrete fractional boundary value problems can be found in [4 2]andthereferences cited therein. At present, the development of boundary value problems for fractional difference equations which show an operation of the investigative function. The study may also have other functions related to the ones we are interested in. These creations are incorporating with nonlocal conditions which are both extensive and more complex. For example, Goodrich [6] considered the discrete fractional boundary value problem ν yt)=λf t + ν,yt + ν )), t N,b+, yν 2)= N i= F i yt i )), yν + b +)= M i= F2 i yt2 i )),.2) where b > 0 is an integer, and λ > 0 is a parameter, ν, 2] is a real number, f : N ν,ν+b R R is a continuous function, Fi, F2 i : R [0, ] are continuous functions for each i and satisfy some growth conditions to be specified later, and {ti }N i=, {t2 i }M i= N ν,ν+b.the existence of positive solutions are obtained by Krasnosel skii fixed point theorem. Reunsumrit et al. [8] obtained sufficient conditions for the existence of positive solutions for the three-point fractional sum boundary value problem for Caputo fractional difference equations via an argument with a shift α C ut)+at + α )f u θt + α ) )) =0, t N 0,T, uα 3)= 2 uα 3)=0,.3) ut + α)=λ β uη + β), where 2 < α 3, 0 < β, η N α,t+α, α C is the Caputo fractional difference operator of order α,andf :[0, ) [0, ) is a continuous function. The existence of at least one positive solution is proved by using Krasnoselskii s fixed point theorem. Recently, Sitthiwirattham [6] investigated three-point fractional sum boundary value problems for sequential fractional difference equations of the forms α C [φ p β Cx)]t)=f t + α + β,xt + α + β )), β C xα )=0, xα + β +.4) T)=ρ γ xη + γ ), where t N 0,T,0<α, β, < α + β 2, 0 < γ, η N α+β,α+β+t, ρ is a constant, f : N α+β 2,α+β+T R R is a continuous function, φ p is the p-laplacian operator. Existence

3 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 3 of 4 and uniqueness of solutions are obtained by the Banach fixed point theorem and Schaefer s fixed point theorem. The results mentioned above are the motivation for this research. The plan of this paper is as follows. In Section 2 we recall some definitions and basic lemmas. Also, we derive a representation for the solution of.) by converting the problem to an equivalent summation equation. In Section 3, we prove existence and uniqueness results of the problem.) by using the Schauder fixed point theorem and the Banach contraction principle. Some illustrative examples are presented in Section 4. 2 Preliminaries In the following, there are notations, definitions, and lemma which are used in the main results. We briefly recall the necessary concepts from the discrete fractional calculus; see [] for further information. Definition 2. We define the generalized falling function by t α := Ɣt+), for any t and α Ɣt+ α) for which the right-hand side is defined. If t + α is a pole of the Gamma function and t +isnotapole,thent α =0. Lemma 2. []) Assume the following factorial functions are well defined. If t r, then t α r α for any α >0. Definition 2.2 For α >0andf defined on N a := {a, a+,...},theαth-order fractional sum of f is defined by α f t)= α a f t):= where t N a+α and σ s)=s +. t α ) α f t σ s) s), s=a Definition 2.3 For α >0andf defined on N a,theαth-order Caputo fractional difference of f is defined by α C f t):= N α) a N f t)= ƔN α) t N α) s=a t σ s) ) N α N f s), where t N a+n α and N N is chosen so that 0 N <α < N.Ifα = N,then α C f t)= N f t). Lemma 2.2 [9]) Assume that α >0and f defined on N a. Then α a+n α α C yt)=yt)+c 0 + C t a) + C 2 t a) C N t a) N, for some C i R,0 i N and 0 N <α N. To define the solution of the boundary value problem.) we need the following lemma that deals with a linear variant of the boundary value problem.)andgivesarepresentation of the solution.

4 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 4 of 4 Ɣω)α 3)[α 2)2 γ )+2]+T+α)[T α+5)2 γ ) 2]) Lemma 2.3 Let ρ η, α 2, 3), s=α 3 η+ω σ s))ω α 3)[α 2)2 γ )+2]+η+ω)[η+ω 2α+5)2 γ ) 2]) γ, ω 0, ) and f CN α,t+α, R) be given. Then the problem α C ut)=f t + α ), t N 0,T, 2.) uα 3)=0, γ Cuα γ )=0, 2.2) ut + α)=ρ ω uη + ω), η N α,t+α, has the unique solution ut)= [ ) α 3) α 2)2 γ )+2 +2t 3 α)2 γ ) ) + t 2] [ T ) α f ρ T + α σ s) s + α ) Ɣω) ] η α η α ) ω ) α f η + ω α σ ξ) ξ + α σ s) s + α ) + ξ=s t α ) α f t σ s) s + α ), 2.3) for t N α 3,T+α, where =3 α) [ α 2)2 γ )+2 ] +T + α) [ 2 T α + 5)2 γ ) ] + ρ Ɣω) η ) ω [ ] η + ω σ s) α 3) α 2)2 γ )+2 +η + ω) s=α 3 [ η + ω 2α + 5)2 γ ) 2 ]). 2.4) Proof Using the fractional sum of order α 2, 3) for 2.) and from Lemma 2.2,weobtain ut)=c + C 2 t + C 3 t 2 + t α ) α f t σ s) s + α ), 2.5) for t N α 3,T+α. By substituting t = α 3into2.5) and employing the first condition of 2.2), we obtain C + C 2 α 3) + C 3 α 3) 2 =0. 2.6) Using the Caputo fractional difference of order 0 < γ <for2.5), we obtain γ C ut)= Ɣ γ ) + for t N α γ 2,T+α γ +. ) γ [ t σ s) C2 +2C 3 s ] t+γ s=α 3 Ɣ γ )Ɣα ) t+γ s=α s α+ ) γ ) α 2f t σ s) s σ ξ) ξ + α ), 2.7) ξ=0

5 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 5 of 4 By substituting t = α γ into2.7) and employing the second condition of 2.2)implies 2 γ )C 2 +2 [ +α 3)2 γ ) ] C 3 =0. 2.8) Finally, taking the fractional sum of order 0 < ω <for2.5), we obtain ω ut)= Ɣω) + t ω ) ω [ t σ s) C + C 2 s + C 3 s 2] s=α 3 t ω Ɣω) = Ɣω) + s α ) ω ) α f t σ s) s σ ξ) ξ + α ) s=α ξ=0 t ω ) ω [ t σ s) C + C 2 s + C 3 s 2] s=α 3 Ɣω) t α ω ) ω t α σ ξ) t α ω ξ=s ξ + α σ s) ) α f s + α ), 2.9) for t N α γ +ω 2,T+α γ +ω+. By substituting t = T + α, η + ω into 2.5),2.9), respectively, and employing the last condition of 2.2)implies [ ] ρ η ) ω η + ω σ s) C Ɣω) s=α 3 [ ] + T + α) ρ η ) ω η η + ω σ s) + ω) C 2 Ɣω) s=α 3 [ ] + T + α) 2 ρ η ) ω η η + ω σ s) + ω) 2 C 3 Ɣω) = s=α 3 T ) α f t + α σ s) s + α ) η α ρ s α ) ω + η + ω α σ ξ) Ɣω) s=α ξ=s ξ + α σ s) ) α f s + α ). 2.0) The constants C, C 2 and C 3 can be obtained by solving the system of equations 2.6), 2.8) and 2.0), C = α 3)[ α 2)2 γ )+2 ] Q[f ], C 2 = 2 [ 3 α)2 γ ) ] Q[f ], C 3 = Q[f ],

6 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 6 of 4 where is defined by 2.4) and the functional Q[f ]isdefinedas Q[f ]= T T + α σ s) ) α f s + α ) ρ Ɣω) η α η α ) ω ) α f η + ω α σ ξ) ξ + α σ s) s + α ). ξ=s Substituting the constants C, C 2 and C 3 into 2.5), we obtain 2.3). Corollary 2. Problem 2.)-2.2) has a unique solution of the form T ut)= Gt, s)hs + α ), 2.) where Gt, s)= g t, s), s N 0,t α N 0,η α, g 2 t, s), s N t α+,η α, g 3 t, s), s N η α+,t α, g 4 t, s), s N t α+,t N η α+,t, 2.2) with g i t, s), i 4, as [ ) ) g t, s)=: α 3) α 2)2 γ ) α)2 γ ) t + t 2] [ ] T η α ) α ρ ) ω ) α + α σ s) η + ω α σ ξ) ξ + α σ s) Ɣω) ξ=s + t σ s) ) α, [ ) ) g 2 t, s)=: α 3) α 2)2 γ ) α)2 γ ) t + t 2] [ ] T η α ) α ρ ) ω ) α + α σ s) η + ω α σ ξ) ξ + α σ s), Ɣω) g 3 t, s)=: g 4 t, s)=: [ ) ) α 3) α 2)2 γ ) α)2 γ ) t + t 2] T + α σ s) ) α ) α, + t σ s) [ ) ) α 3) α 2)2 γ ) α)2 γ ) t + t 2] T + α σ s) ) α. ξ=s Lemma 2.4 [22]) AboundedsetinR n is relatively compact; a closed bounded set in R n is compact. Lemma 2.5 [22]) If a set is closed and relatively compact, then it is compact.

7 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 7 of 4 Lemma 2.6 Schauder fixed point theorem [22]) Assume that K is a convex compact set in a Banach space X and that T : K K is a continuous mapping. Then T has a fixed point. 3 Main results In this section, we wish to establish the existence results for the problem.). To accomplish this, we define the Banach space X = { u : u CN α r 3,T+α, R), β C u CN α β r 2,T+α β+, R), 0 < β < } with the norm defined by u X = u + β C u, 3.) where u = max t Nα r 3,T+α ut) and β C u = max t N α r 3,T+α ν Cut β +). For u α 3 = ψ, in view of the definitions of u t and ψ,weobtain u α 3 = u α 3 θ)=uθ + α 3)=ψθ + α 3) forθ N r,0. 3.2) Thus, we have ut)=ψt) fort N α r 3,α ) Since F CN α 3,T+α C r R, R), set F[t, u t, β Cut β +)]:=f t) in Lemma 2.3. We see by Lemma 2.3 that a function u is a solution of boundary value problem.) ifand only if it satisfies T ut)= Gt, s)f[s + α,u s+α, β Cus + α β)], t N α 3,T+α, ψt), t N α r 3,α ) Define an operator T : X X as follows: T T u)t)= Gt, s)f[s + α,u s+α, β Cus + α β)], t N α 3,T+α, ψt), t N α r 3,α 3, 3.5) and = = max t N α r 3,α 3 max t N α r 3,α 3 { T Gt, s)φs + α ) }, 3.6) { T t Gt β +,s)φs + α ) }, 3.7) ϒ = T + α) α Ɣ2 β) Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) { T + α)ɣ2 β) [ 3 γ )T + α +2 γ ) ] +2T + α)+2 [ 3 α)2 γ ) ]} + T + α)α+ {+ } αt + α β +) β. 3.8) T +)Ɣ2 β)

8 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 8 of 4 Theorem 3. Assume the following properties: A) There exists a nonnegative function φ CN α 3,T+α ) such that F[t, x, y] φt)+λ x τ + λ 2 y τ 2, for each x C r, y R where λ, λ 2 are negative constants and 0<τ, τ 2 <; or A2) there exists a nonnegative function φ CN α 3,T+α ) such that F[t, x, y] φt)+λ x τ + λ 2 y τ 2, for each x C r, y R where λ, λ 2 are negative constants and τ, τ 2 >. Then boundary value problem.) has at least one solution. Proof We shall use the Schauder fixed point theorem to prove that the operator T defined by 3.5) has a fixed point. We divide the proof into three steps. Step I. Verify T maps bounded sets into bounded sets. Suppose A) holds, choose { ) T + α β +) β L max 3 +,3λ ϒ) τ,3λ 2 ϒ) τ 2 }, 3.9) Ɣ2 β) and define the P = {u X : u L, L >0}. For any u P,weobtain T u)t) T = Gt, s)f [ s + α,u s+α, β C us + α β)] T Gt, s)φs + α ) + λ u s+α τ + λ 2 β C us + α β) τ ) 2 { α 3) α 2)2 γ )+2 ) +2 3 α)2 γ ) ) t + t 2 T ) α ρ T + α σ s) Ɣω) } η α η α ) ω ) α η + ω α σ ξ) ξ + α σ s) + t α ) α t σ s) ξ=s + λ u s+α τ + λ 2 β C us + α β) τ ){ 2 T + α) α Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) [ T + α) [ 3 γ )T + α +2 γ ) ]] } T + α)α +. Ɣα +) Next, we consider t T u)t) T t Gt, s) F [ s + α,u s+α, β C us + α β)]

9 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 9 of 4 T t Gt, s)φs + α ) + λ u s+α τ + λ 2 β C us + α β) τ ) 2 { ) 2 3 α)2 γ ) +2t T ) α T + α σ s) } η α η α ρ ) ω ) α η + ω α σ ξ) ξ + α σ s) + tα Ɣω) ξ=s + λ u s+α τ + λ 2 β C us + α β) τ ) 2 { 2 T + α) α Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) [ T + α +3 α)2 γ ) ] } T + α)α + and β C T u) t β +) Ɣ β) t ) β t β + σ s) T u)s) { t β +) β + λ u s+α τ + λ 2 β C us + α [ β) τ 2) T + α) α Ɣ2 β) Ɣ2 β) + T + α) α Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) 2T + α)+2 [ 3 α)2 γ ) ] ]} { T + α β +) β + λ u s+α τ + λ 2 β C us + α [ β) τ 2) T + α) α Ɣ2 β) Ɣ2 β) + 2 T + α) α Ɣα +) ρt + α + ω) ] ƔT)Ɣα + ω +) [ ]} T + α +3 α)2 γ ). Hence, we obtain T ut) X + T + α β +) β Ɣ2 β) + λ u s+α τ + λ 2 β C us + α β) τ 2 ) ϒ L 3 + λ u s+α τ + λ 2 β C us + α β) τ 2 ) ϒ L 3 + L 3 + L = L, 3.0) 3 which implies that T : P P. For the second cases, if A2) holds, choose { ) ) ) } T + α β +) β τ τ 2 L max 3 +,,, 3.) Ɣ2 β) 3λ ϒ 3λ 2 ϒ

10 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 0 of 4 and by the same argument as above, we obtain T ut) X + T + α β +) β + λ u s+α τ + λ 2 β C Ɣ2 β) us + α β) τ ) 2 ϒ L 3 + L 3 + L = L, 3.2) 3 which implies that T : P P. Step II. The continuity of the operator T follows from the continuity of F and G. Step III. By Lemma 2.4 and Lemma 2.5, P is compact. Hence, by the Schauder fixed point theorem, we can conclude that problem.)hasat least one solution. The proof is completed. The second result is the existence and uniqueness of a solution to problem.), by using the Banach contraction principle. Theorem 3.2 Assume the following properties: A3) There exists a constant κ >0such that F[t, u, u 2 ] F[t, v, v 2 ] κ u v + u 2 v 2 ), for each u, v C r, u 2, v 2 R. A4) κ + 2 )<, where T + α)α = Ɣα +) + T + α) α Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) T + α) [ 3 γ )T + α +2 γ ) ], 3.3) T + α β +) β 2 = T + α) α Ɣ2 β) Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) { 2 [ ] T + α) α } T + α +3 α)2 γ ) ) Then the problem.) has a unique solution. Proof Consider the operator T : X X defined by 3.5). Clearly, the fixed point of the operator T is the solution of boundary value problem.). We will use the Banach contraction principle to prove that T has a fixed point. We first show that T is a contraction. For each t N α 3,T+α,wehave T u)t) T v)t) = T Gt, s) F [ s + α,u s+α, β Cus + α β)] F [ s + α,v s+α, β C vs + α β)] κ u v X { α 3) α 2)2 γ )+2 ) +2 3 α)2 γ ) ) t + t 2

11 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page of 4 T T + α σ s) ) α ρ Ɣω) } η α η α ) ω ) α η + ω α σ ξ) ξ + α σ s) + t α ) α t σ s) ξ=s { T + α) α κ u v X Ɣα +) + T + α) α Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) T + α) [ 3 γ )T + α +2 γ ) ]} = κ u v X. Next, we consider β C T u) t β +) β C T v) t β +) t ) β [ ] t β + σ s) T u)s) T v)s) Ɣ β) Ɣ β) t t β + σ s) ) β[ T ξ=0 s Gs, ξ) F [ ξ + α,u ξ+α, β C uξ + α β +)] F [ ξ + α,v ξ+α, ] β C vξ + α β +)] κ u v X Ɣ β) t s Gs, ξ) ] ) T β[ t β + σ s) ξ=0 T + α β +) β κ u v X T + α) α Ɣ2 β) Ɣα +) ρt + α + ω) ƔT)Ɣα + ω +) { 2 [ ] T + α) α } T + α +3 α)2 γ ) + = κ u v X 2. Obviously, for each t N α r 3,α 3,wehave T u)t) T v)t) =0. Therefore, we obtain T u)t) T v)t) X κ x y X + 2 ). By A4) implies T is a contraction. Hence, by the Banach contraction principle, we see that T has a fixed point which is a unique solution of the problem.). 4 Examples In this section, to illustrate our results, we consider some examples.

12 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 2 of 4 Example 4. Consider the following fractional difference boundary value problem: 2 5 C ut)= t + 3 ) 2 + e t+ 3 2 ) 2 u ) 4 = 3 2 C u 3 4 t + 5 u 2 )3 t+ 3 τ + e 2t+ 5 2 ) C u t + ) τ 2, t N 0,5, 6 ) ) 5 =0, u = ) u ) Set α = 5 2, β = 2 3, γ = 3 4, ω = 4 5, η = 7 2, T =5, ρ = = Ɣω)α 3)[α 2)2 γ )+2]+T + α)[t α + 5)2 γ ) 2]) η s=α 3 η + ω σ s))ω α 3)[α 2)2 γ )+2]+η + ω)[η + ω 2α + 5)2 γ ) 2]), and F[t, u t, β C u t β+]=t 2 + e t t+) 3 u t τ + e 2t+) 2 3 C u t+ 3 τ 2. For t N 2, 5 2,wehave F [ ) t, u t, β C u ] t β e u t τ + e 2 3 C u t + 3) τ 2, so φt) 95 4, λ = 8 e, λ 2 = e.for0<τ, τ 2 <, A) is satisfied and for τ, τ 2 >,A2)is satisfied. Therefore, by Theorem 3., boundary value problem 4.) has at least one solution. Example 4.2 Consider the following fractional difference boundary value problem: 2 5 u t C ut)= 2 C ut + 6 ), t N 0,5, t )2 [ + u t C ut + 6 ) ] u ) ) ) 4 = C u =0, u = ) u ) Set α = 5 2, β = 2 3, γ = 3 4, ω = 4 5, η = 7 2, T =5, ρ = = Ɣω)α 3)[α 2)2 γ )+2]+T + α)[t α + 5)2 γ ) 2]) η s=α 3 η + ω σ s))ω α 3)[α 2)2 γ )+2]+η + ω)[η + ω 2α + 5)2 γ ) 2]), and F[t, u t, β C u t β+]= For t N 2, 5 2,wehave 2 u t + 3 C ut+ 3 ) t+200) 2 2. [+ u t + 3 C ut+ 3 ) ] F [ t, u t, β C u] F [ [ t, v t, β C v] 4 u t v t + 59, C u t + ) C v t + )], 3

13 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 3 of 4 and for t N 2, 5 2,wehave F [ t, u t, β C u] F [ [ t, v t, β C v] 4 u t v t + 48, C u t + ) C v t + )], 3 so A3) holds with κ = 4. Also, we can show that 59, , 6.027, 2,202.36, and κ + 2 ) <. Therefore A4) holds, by Theorem 3.2, boundary value problem 4.2) hasauniquesolution. Acknowledgements This research was funded by King Mongkut s University of Technology North Bangkok. Contract no. KMUTNB-GEN Competing interests The authors declare that they have no competing interests. Authors contributions The authors declare that they carried out all the work in this manuscript and read and approved the final manuscript. Author details Department of Mathematics, Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, Thailand. 2 Department of Mathematics, Faculty of Applied Science, King Mongkut s University of Technology North Bangkok, Bangkok, Thailand. 3 Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 6 April 207 Accepted: 8 July 207 References. Goodrich, CS, Peterson, AC: Discrete Fractional Calculus. Springer, New York 205) 2. Wu, GC, Baleanu, D: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, ) 3. Wu, GC, Baleanu, D: Chaos synchronization of the discrete fractional logistic map. Signal Process. 02, ) 4. Agarwal, RP, Baleanu, D, Rezapour, S, Salehi, S: The existence of solutions for some fractional finite difference equations via sum boundary conditions. Adv. Differ. Equ. 204, ) 5. Goodrich, CS: On a discrete fractional three-point boundary value problem. J. Differ. Equ. Appl. 8, ) 6. Goodrich, CS: On semipositone discrete fractional boundary value problems with non-local boundary conditions. J. Differ. Equ. Appl. 9, ) 7. Lv, W: Existence of solutions for discrete fractional boundary value problems with a p-laplacian operator. Adv. Differ. Equ. 202, ) 8. Ferreira, R: Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. J. Differ. Equ. Appl. 9, ) 9. Abdeljawad, T: On Riemann and Caputo fractional differences. Comput. Math. Appl. 623), ) 0. Atici, FM, Eloe, PW: Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 7, ). Atici, FM, Eloe, PW: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 22), ) 2. Anastassiou, GA: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 5, ) 3. Sitthiwirattham, T, Tariboon, J, Ntouyas, SK: Existence results for fractional difference equations with three-point fractional sum boundary conditions. Discrete Dyn. Nat. Soc. 203, Article ID ) 4. Sitthiwirattham, T, Tariboon, J, Ntouyas, SK: Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions. Adv. Differ. Equ. 203, ) 5. Sitthiwirattham, T: Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions. Math. Methods Appl. Sci. 38, ) 6. Sitthiwirattham, T: Boundary value problem for p-laplacian Caputo fractional difference equations with fractional sum boundary conditions. Math. Methods Appl. Sci. 396), )

14 Kaewwisetkuland SitthiwiratthamAdvances in Difference Equations 207) 207:29 Page 4 of 4 7. Chasreechai, S, Kiataramkul, C, Sitthiwirattham, T: On nonlinear fractional sum-difference equations via fractional sum boundary conditions involving different orders. Math. Probl. Eng. 205,Article ID ) 8. Reunsumrit, J, Sitthiwirattham, T: Positive solutions of three-point fractional sum boundary value problem for Caputo fractional difference equations via an argument with a shift. Positivity 204), ) 9. Reunsumrit, J, Sitthiwirattham, T: On positive solutions to fractional sum boundary value problems for nonlinear fractional difference equations. Math. Methods Appl. Sci. 390), ) 20. Soontharanon, J, Jasthitikulchai, N, Sitthiwirattham, T: Nonlocal fractional sum boundary value problems for mixed types of Riemann-Liouville and Caputo fractional difference equations. Dyn. Syst. Appl. 25, ) 2. Laoprasittichok, S, Sitthiwirattham, T: On a fractional difference-sum boundary value problems for fractional difference equations involving sequential fractional differences via different orders. J. Comput. Anal. Appl. 236), ) 22. Griffel, DH: Applied Functional Analysis. Ellis Horwood, Chichester 98)

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

arxiv: v3 [math.ca] 4 Jul 2013

arxiv: v3 [math.ca] 4 Jul 2013 POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv:125.1844v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Positive solutions for three-point nonlinear fractional boundary value problems

Positive solutions for three-point nonlinear fractional boundary value problems Electronic Journal of Qualitative Theory of Differential Equations 2, No. 2, -9; http://www.math.u-szeged.hu/ejqtde/ Positive solutions for three-point nonlinear fractional boundary value problems Abdelkader

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

BOUNDARY VALUE PROBLEMS FOR DISCRETE FRACTIONAL EQUATIONS

BOUNDARY VALUE PROBLEMS FOR DISCRETE FRACTIONAL EQUATIONS University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, and Student Research Papers in Mathematics Mathematics, Department of 8-212 BOUNDARY VALUE PROBLEMS

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Fractional-order boundary value problems with Katugampola fractional integral conditions

Fractional-order boundary value problems with Katugampola fractional integral conditions Mahmudov and Emin Advances in Difference Equations 208 208:8 https://doi.org/0.86/s3662-08-538-6 R E S E A R C H Open Access Fractional-order boundary value problems with Katugampola fractional integral

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Santiago de Compostela, Spain

Santiago de Compostela, Spain Filomat 28:8 (214), 1719 1736 DOI 1.2298/FIL148719A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Boundary Value Problems of

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations CJMS. 4()(25), 7-24 Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 735-6 Studies on Sturm-Liouville boundary value problems for multi-term

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα