METODICKÉ SMERNICE NA AKREDITÁCIU METHODICAL GUIDELINES FOR ACCREDITATION DODATOK 1 K MSA VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "METODICKÉ SMERNICE NA AKREDITÁCIU METHODICAL GUIDELINES FOR ACCREDITATION DODATOK 1 K MSA VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII"

Transcript

1 SLOVENSKÁ NÁRODNÁ AKREDITAČNÁ SLUŽBA METODICKÉ SMERNICE NA AKREDITÁCIU METHODICAL GUIDELINES FOR ACCREDITATION DODATOK 1 K MSA VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII SUPPLEMENT 1 TO EAL-R EXPRESSION OF THE UNCERTAINTY OF MEASUREMENT IN CALIBRATION MSA 0104/D1-98 EAL-R-S1 (EA-4/0-S1) BRATISLAVA Október 1998

2 MSA 0104/D1-98 3/7 NÁRODNÝ PREDHOVOR Tieto metodické smernice na akreditáciu SNAS sú prvým dodatkom k MSA a zavádza sa nimi analogický dodatok EAL-R-S1 k publikácii EAL-R, ktorý bol podkladom pre MSA Tento dodatok (podobne ako ďalšie dodatky) obsahuje komentované príklady výpočtu neistôt meraní pri kalibrácii. Po zlúčení EAL a EAC v novembri 1997 EA zaviedla nový systém číslovania publikácií, v ktorom má EAL-R označenie EA-4/0 a EAL-R-S1 má označenie EA-4/0-S1. Táto zmena je spojená aj s novým triedením, farebným rozlišovaním a novou grafickou úpravou obálky publikácií EA (podrobnejšie pozri v EA-1/01). Nové označenie sa uplatňuje pri nových publikáciách EA a pri revidovaných vydaniach publikácií EAL a EAC. Do vykonania revízie majú staršie publikácie pôvodné označenie, v katalógu publikácií EA sú však uvedené aj s novým označením. Je potrebné upozorniť, že publikácie EAL-R a EAL-R-S1 (EA-4/0 a EA-4/0-S1) sú v kategórii záväzných materiálov, čo podčiarkuje záväznosť MSA a MSA 0104/D1-98. Druhý dodatok k EAL-R s ďalšími príkladmi má byť predložený na schválenie valnému zhromaždeniu EA v júni Jeho zavedenie u nás sa predpokladá do konca r.1999 v rámci nového vydania MSA 0104 spolu s obidvomi dodatkami a s podstatne rozšíreným komentárom. S týmito MSA súvisia rovnaké technické predpisy a normatívna dokumentácia ako sa uvádza v národnom predhovore k MSA

3 MSA 0104/D1-98 4/7 EAL Európska kooperácia pre akreditáciu laboratórií Publikácia EAL-R-S1 Dodatok 1 k EAL-R Vyjadrovanie neistôt merania pri kalibrácii PRÍKLADY Účel Tento dokument vypracoval EAL s cieľom poradiť pri výpočte neistôt merania v rôznych oblastiach kalibrácie. Slúži na podporu používania konzistentných postupov a predstavuje odsúhlasený názor a uprednostňované praktiky členov EAL, ako aj implementácie požiadaviek EAL-R akreditovanými kalibračnými laboratóriami. Prístupy majú slúžiť ako návod pre akreditačné orgány, ale aj pre ich klientov - kalibračné a skúšobné laboratóriá. Autorstvo

4 MSA 0104/D1-98 5/7 Tento dokument vypracoval EAL Committee (Kalibračné a skúšobné aktivity) na základe návrhu pripraveného riešiteľskou skupinou EAL "Neistoty pri kalibrácii". Oficiálny jazyk Text sa môže preložiť do iných jazykov, rozhodujúce znenie je v anglickom jazyku. Copyright Držiteľom copyright tohoto textu je EAL. Text sa nesmie kopírovať na účely predaja. Ďalšie informácie O ďalšie informácie o tejto publikácii obráťte sa na svojho národného člena EAL. Štát Národný člen Národný člen pre kalibráciu pre skúšanie Rakúsko BMwA BMwA Belgicko BKO/OBE BELTEST Dánsko DANAK DANAK Fínsko FINAS FINAS Francúzsko COFRAC COFRAC Nemecko DKD DAR Grécko ESYD ESYD Island ISAC ISAC Írsko NAB NAB Taliansko SIT SINAL Holandsko RvA RvA Nórsko NA NA Portugalsko IPQ IPQ Španielsko ENAC ENAC Švédsko SWEDAC SWEDAC Švajčiarsko SAS SAS Veľká Británia UKAS UKAS

5 MSA 0104/D1-98 6/7 OBSAH CONTENTS Kapitola S1 Úvod Introduction S Kalibrácia závažia s nominálnou hmotnosťou 10 kg Calibration of a weight of nominal value 10 kg S3 Kalibrácia etalónového odporu s nominálnou hodnotou 10 kω Calibration of a nominal 10 kω standard resistor S4 Kalibrácia koncovej mierky s nominálnou dĺžkou 50 mm Calibration of a gauge block of nominal length 50 mm S5 Kalibrácia termoelektrického snímača teploty typu N pri 1000 C Calibration of a type N thermocouple at 1000 C S6 Kalibrácia snímača výkonu pri frekvencii 18 GHz Calibration of a power sensor at a frequency of 18 GHz S7 Kalibrácia koaxiálneho stupňovitého útlmového člena pri nastavení 30dB (prídavná strata) Calibration of a coaxial step attenutor ata setting of 30 db (incremental loss) Strana S1 Úvod

6 MSA 0104/D1-98 7/7 S1.1 Tieto príklady sa vybrali na demonštrovanie metód vyhodnocovania neistôt merania. Je potrebné, aby ďalšie typické a názorné príklady založené na prislúchajúcich modeloch v jednotlivých oblastiach vypracovali osobitné pracovné skupiny. Uvedené príklady slúžia viac menej ako všeobecné návody na postup. S1. Príklady sú založené na návrhoch pripravených expertnými skupinami EAL. Tieto návrhy boli zjednodušené a zosúladené, aby sa stali názornejšími pre pracovníkov laboratórií vo všetkých oblastiach kalibrácie. Veríme, že tento rad príkladov prispeje k lepšiemu pochopeniu detailov pri vytýčení modelu vyhodnocovania a zosúladení procesu vyhodnocovania neistoty merania, nezávisle od oblasti kalibrácie. S1.3 Príspevky a hodnoty uvedené v príkladoch sa nemajú chápať ako záväzné alebo prednostné požiadavky. Laboratóriá by mali určiť neistoty na základe modelu merania, ktorý používajú k vyhodnoteniu vykonaných čiastkových kalibrácií a ktorý udáva vyhodnotenú neistotu merania na vystavenom kalibračnom certifikáte. Vo všetkých uvedených príkladoch sú splnené podmienky uvedené v kapitole 5 pre voľbu koeficientu pokrytia k =. S1.4 V každom príklade sa dodržiava postupnosť vyhodnocovania podľa všeobecnej schémy z kapitoly 7 EAL-R nasledovne: - krátky opisný názov, - všeobecný opis procesu merania, - model vyhodnotenia spolu s vysvetlením použitých symbolov, - rozšírený súpis vstupných údajov s krátkym opisom ako boli získané, - súpis pozorovaní a vyhodnotenie štatistických parametrov, - bilancia neistôt v tabelárnej forme, - rozšírená neistota merania, - uvádzaný úplný výsledok merania. S1.5 Za týmto prvým dodatkom k EAL-R by mali nasledovať ďalšie, ktoré budú obsahovať vypracované príklady odhadov neistôt merania spojených s kalibráciou prístrojov. Príklady možno tiež nájsť v návodoch EAL pojednávajúcich o kalibrácii špecifických typov meracích prístrojov. S Kalibrácia závažia s nominálnou hmotnosťou 10 kg S.1 Kalibrácia závažia s nominálnou hmotnosťou 10 kg triedy M1 OIML sa vykonáva porovnaním s referenčným etalónom (triedy F OIML) s rovnakou nominálnou hmotnosťou s použitím váh, ktorých pracovné charakteristiky sa určili predtým. S. Neznáma konvenčná hmotnosť m X sa získa zo vzťahu: m X = m S + δm D + δm + δm C + δb (S.1) kde:

7 MSA 0104/D1-98 8/7 m S - konvenčná hmotnosť etalónu, δm D - drift hodnoty etalónu od jeho poslednej kalibrácie, δm - namerané rozdiely v hmotnosti medzi neznámou hmotnosťou a etalónom, δm C - korekcia excentricity a magnetických vplyvov, δb - korekcia na vztlak vzduchu. S.3 Referenčný etalón (m S ): Kalibračný list pre referenčný etalón udáva hodnotu 10000,005 g spolu s príslušnou rozšírenou neistotou 45 mg (koeficient pokrytia k =). S.4 Drift hodnoty etalónu (δm D ): Drift hodnoty referenčného etalónu odhadnutý z predchádzajúcich kalibrácií leží v hraniciach (0 až +15) mg. S.5 Váhy (δm, δm C ): Predchádzajúce vyhodnotenie opakovateľnosti merania rozdielu hmotnosti medzi dvomi hmotnosťami s rovnakými nominálnymi hodnotami poskytli odhad smerodajnej odchýlky 5 mg.. Korekcia na vyosenosť a magnetické vplyvy pre použité váhy sa nevykonáva, odchýlky spôsobené vyosenosťou a magnetickými vplyvmi sa odhadujú v hraniciach ±10 mg s rovnomerným rozdelením. S.6 Vztlak vzduchu (δb): Vplyv vztlaku vzduchu sa nekoriguje, hranice odchýlky sú odhadované na ± z nominálnej hodnoty. S.7 Korelácia: Korelácie medzi všetky vstupnými veličinami sa považujú za zanedbateľné. S.8 Merania: Použitím substitučnej metódy so substitučnou schémou ABBA ABBA ABBA sa získali tri hodnoty rozdielov medzi neznámou hmotnosťou a hmotnosťou etalónu: č.m. konvenčná hmotnosť odčítaná hodnota rozdiel 1 etalón neznáma hmotnosť neznáma hmotnosť etalón +0,010 g +0,00 g +0,05 g +0,015 g +0,01 g etalón neznáma hmotnosť neznáma hmotnosť etalón 3 etalón neznáma hmotnosť neznáma hmotnosť etalón +0,05 g +0,050 g +0,055 g +0,00 g +0,03 g +0,05 g +0,045 g +0,040 g +0,00 g +0,0 g aritmetický priemer: prierezový odhad smerodajnej odchýlky: (získaný z predchádzajúcich vyhodnotení) δ m = 0,00 g s p (δm) = 5 mg

8 MSA 0104/D1-98 9/7 štandardná neistota: u(δm) = s( δ m ) = 5mg 3 = 14,4 mg S.9 Bilancia neistôt (m X ): veličina X i odhad x i štandardná neistota u(x i ) rozdelenie pravdepodobnosti citlivostný koeficient c i príspevok neistoty u i (y) m S ,005 g,5 mg normálne 1,0,5 mg δm D 0,0075 g 4,33 mg rovnomerné 1,0 4,33 mg δm 0,00 g 14,4 mg normálne 1,0 14,4 mg δm C 0,000 g 5,77 mg rovnomerné 1,0 5,77 mg δb 0,000 g 5,77 mg rovnomerné 1,0 5,77 mg m X ,035 g 8,7 mg NÁRODNÁ POZNÁMKA: V origináli EAL-R-S1 je uvedená hodnota δm D = 0,000g a štandardná neistota 8,95g (15g/ 3), čo by však znamenalo drift hodnoty etalónu uvedený v bode S.4 ±15mg. V našom prípade je drift etalónu +7,5mg s odchýlkami v hraniciach ±7,5mg. S.10 Rozšírená neistota U = k u(m X ) = 8,7 mg 57 mg S.11 Komentovaný výsledok Meraná hmotnosť s nominálnou hodnotou 10 kg je 10, kg ± 57 mg. Uvedená rozšírená neistota merania je vyjadrená ako štandardná neistota merania vynásobená koeficientom pokrytia k =, ktorá pri normálnom rozdelení zodpovedá konfidenčnej pravdepodobnosti približne 95 %. S3 Kalibrácia etalónu elektrického odporu s nominálnou hodnotou 10 kω S3.1 Odpor etalónu odporu so štyrmi svorkami je určený priamou substitúciou použitím digitálneho multimetra (7 1 / digit DMM) v jeho odporovom rozsahu s kalibrovaným referenčným etalónom odporu ako referenčným etalónom so štyrmi svorkami a s nominálnou hodnotou rovnakou ako etalón, ktorý má byť kalibrovaný. Rezistory sú ponorené v dobre miešanom olejovom kúpeli s teplotou 3 C, ktorá je kontrolovaná v strede uloženým ortuťovým teplomerom. Rezistory sú stabilizované pred vlastným meraním. Štyri výstupné svorky každého rezistora sú stredovo spojené so svorkami DMM. Je zistené, že merací prúd 100 µa, pri 10 kω rozsahu DMM je dostatočne nízky, aby nespôsobil významné vlastné ohrievanie rezistorov. Použitý merací postup tiež zabezpečuje, že vplyvy vonkajších parazitných odporov na výsledok merania možno považovať za bezvýznamné.

9 MSA 0104/D /7 S3. Odpor R X kalibrovaného rezistora sa získa zo vzťahu: R X = (R S + δr D + δr TS ) r C r - δr TX (S3.1) kde: R S - odpor referenčného etalónu, δr D - drift odporu referenčného etalónu od jeho poslednej kalibrácie, δr TS - teplotou spôsobené zmeny hodnoty odporu referenčného etalónu, r = R ix / R is - pomer odčítaných hodnôt odporov (index i označuje 'indikovaný') neznámeho a referenčného rezistora, r C - opravný faktor pre parazitné napätia a rozlíšiteľnosť prístroja, - teplotou spôsobené zmeny odporu kalibrovaného rezistora. δr TX S3.3 Referenčný etalón (R S ): Kalibračný certifikát pre referenčné etalóny udáva hodnotu odporu ,053 Ω ±5 mω (koeficient pokrytia k = ) pri referenčnej teplote 3 C. S3.4 Drift hodnoty etalónu (δr D ): Drift odporu referenčného etalónu od jeho poslednej kalibrácie sa odhadne z jeho predchádzajúcich kalibrácií ako +0 mω s odchýlkami v hraniciach ±10 mω. S3.5 Teplotné opravy (δr TS, δr TX ): Teplota olejového kúpeľa sa sleduje teplomerom (má platnú kalibráciu), ktorý ukazuje hodnotu 3 C. Pri uvažovaní metrologických charakteristík použitého teplomera a teplotných gradientov v olejovom kúpeli sa predpokladá, že zhoda medzi teplotou rezistorov a odčítanou teplotou je v rozsahu ±0,055 K. Pri známej hodnote teplotného koeficienta referenčného rezistora K -1 sú hranice odchýliek odporu od hodnoty v certifikáte spôsobené možnými odchýlkami pracovnej teploty ±,75 mω. Z literatúry od výrobcu vyplýva, že teplotný koeficient kalibrovaného rezistora neprekročí K -1, a teda zmeny hodnôt neznámeho odporu spôsobené kolísaním teploty sa budú pohybovať v hraniciach ±5,5 mω. S3.6 Merania odporu (r, r C ): Keďže sa používa rovnaký prístroj DMM pre meranie R ix aj R is, sú tieto merania korelované. Tento vplyv zmenšuje výslednú neistotu a treba ešte zohľadniť relatívne rozdiely v odčítaní odporov spôsobené systematickými vplyvmi, ako sú parazitné napätia a rozlíšiteľnosť prístroja (pozri matematickú poznámku v odseku S3.1), ktorých hranice sú odhadnuté ±0, pre každé odčítanie. Rozdelenie prislúchajúce pomeru r C je trojuholníkové so strednou hodnotou 1, a hranicami ±1, S3.7 Korelácia: Korelácie medzi všetky vstupnými veličinami sa považujú za zanedbateľné. S3.8 Merania: Pre určenie pomeru r sa vykonalo päť meraní: č.m. nameraný pomer 1 1,

10 MSA 0104/D / , , , , aritmetický priemer: r = 1, výberová smerodajná odchýlka s(r) = 0, štandardná neistota: u(r) = s( r ) = S3.9 Bilancia neistôt (R X ): 0, = 0, veličina X i odhad x i štandardná neistota u(x i ) rozdelenie pravdepodob. citlivostný koeficient c i príspevok neistoty u i (y) R s ,053 Ω,5 mω normálne 1,0,5 mω δr D 0,00 Ω 5,8 mω rovnomerné 1,0 5,8 mω δr TS 0,000 Ω 1,6 mω rovnomerné 1,0 1,6 mω δr TX 0,000 Ω 3, mω rovnomerné 1,0 3, mω r C 1, , trojuholníkové Ω 4,1 mω r 1, , normálne Ω 0,7 mω R x ,178 Ω 8,33 mω S3.10 Rozšírená neistota U = k u(r X ) = 8,33 mω 17 mω S3.11 Komentovaný výsledok Nameraná hodnota rezistora s nominálnym odporom 10 kω pri teplote 3 C a meracom prúde 100 µa je (10 000,178±0,017) Ω. Uvedená rozšírená neistota merania je vyjadrená ako štandardná neistota merania vynásobená koeficientom pokrytia k =, ktorá pri normálnom rozdelení zodpovedá konfidenčnej pravdepodobnosti približne 95 %. S3.1 Matematická poznámka k štandardnej neistote merania pomeru indikovaných hodnôt odporu: Kalibrovaný rezistor a referenčný etalón majú približne rovnaké odpory. Pri zvyčajnej lineárnej aproximácii odchýliek hodnoty odporov spôsobujúce údaje digitálneho multimetra R ix a R is sú definované vzťahmi: R X = R ix (1 + δ R X ) R

11 MSA 0104/D1-98 1/7 R S = R is (1 + δ R RS ) (S3.) kde R je nominálna hodnota rezistorov a δr X a δr S sú neznáme odchýlky. Pomer odporov vyvodený z týchto vzťahov je RX R S = r r C (S3.3) kde pomer indikovaných odporov pre kalibrovaný a referenčný rezistor je r = R i R X is (S3.4) a korekčný faktor (lineárna aproximácia odchýliek) r C = 1 + δr δr X S R (S3.5) Pretože odchýlky vo vzťahu (S3.5) sa odčítavajú, korelačné príspevky systematických vplyvov pochádzajúcich od vlastného DMM neovplyvňujú výsledok. Štandardná neistota korekčného faktora je určená iba nekorelovanými odchýlkami spôsobenými parazitnými javmi a rozlíšiteľnosťou DMM. Za predpokladu, že u(δr X ') = u(δr S ') = u(δr) bude u (r C ) = u ( δ R ) R (S3.6) S4 Kalibrácia koncovej mierky s nominálnou dĺžkou 50 mm S4.1 Kalibrácia koncovej mierky triedy 0 (ISO 3650) s nominálnou dĺžkou 50 mm sa vykonáva pomocou komparátora porovnávaním s kalibrovanou koncovou mierkou, ktorá má rovnakú nominálnu dĺžku a je z rovnakého materiálu ako referenčný etalón. Rozdiel v strednej dĺžke sa určuje v zvislej polohe oboch koncových mierok pomocou dvoch indikátorov dĺžky, ktoré sú v kontakte s hornými a dolnými meracími plochami mierok. Dĺžka l X ' koncovej mierky, ktorú treba zmerať a dĺžka l S ' referenčného etalónu je vo vzťahu l X ' = l S ' + δl (S4.1) kde δl je rozdiel meraných dĺžok. l X ' a l S ' sú dĺžky mierok v daných meracích podmienkach, teda pri teplote, ktorá s ohľadom na neistotu merania teploty v laboratóriu nemusí byť zhodná s referenčnou teplotou dĺžkových meraní.

12 MSA 0104/D /7 S4. Dĺžka l X kalibrovanej koncovej mierky pri referenčnej teplote sa získa zo vzťahu: l X = l S + δl D + δl + δl C - L( α δt + δα t ) - δl V (S4.) kde: l S δl D δl δl C L α = (α X + α S )/ δt = (t X t S ) δα = (α X α S ) t = (t X + t S )/ t 0 δl V - dĺžka referenčnej koncovej mierky pri referenčnej teplote t 0 = 0 C podľa kalibračného certifikátu, - zmena dĺžky referenčnej koncovej mierky od jeho poslednej kalibrácie v dôsledku driftu, - nameraný rozdiel v dĺžke medzi kalibrovanou a referenčnou koncovou mierkou, - korekcia v dôsledku nelinearity a chyby nuly komparátora, - nominálna dĺžka uvažovaných koncových mierok, - priemerný koeficient teplotnej rozťažnosti kalibrovanej a referenčnej koncovej mierky, - teplotný rozdiel medzi kalibrovanou a referenčnou koncovou mierkou, - rozdiel v koeficientoch teplotnej rozťažnosti materiálu kalibrovanej a referenčnej koncovej mierky, - odchýlka priemernej teploty kalibrovanej a referenčnej koncovej mierky od referenčnej teploty, - korekcia na dotyk indikátora mimo stredu meracích plôch kalibrovanej koncovej mierky. S4.3 Referenčný etalón (l S ): Dĺžka referenčnej koncovej mierky spolu s príslušnou rozšírenou neistotou merania je uvedená v kalibračnom liste koncovej mierky ako 50,000 0 mm ± 30 nm (koeficient pokrytia k = ). S4.4 Drift etalónu (δl D ): Drift dĺžky referenčnej koncovej mierky sa odhadne z predchádzajúcej kalibrácie ako nulový v hraniciach ±30 nm. Všeobecné skúsenosti s koncovou mierkou tohto typu ukazujú, že nulový drift je najpravdepodobnejší a že možno použiť trojuholníkové rozdelenie pravdepodobnosti. S4.5 Komparátor (δl C ): Komparátor je potrebné overiť, aby spĺňal požiadavky definované v EAL-G1. Z týchto vyplýva, že pre rozdiely dĺžok D do ±10 µm, korekcie uchovaných rozdielov dĺžok sú v hraniciach ±(30 nm + 0,0 D ). Pri uvažovaní triedy 0 kalibrovanej koncovej mierky a triedy K referenčnej koncovej mierky maximálny rozdiel dĺžok bude v rozsahu ±1 µm, čo podľa spomínaného vzťahu vedie k hraniciam ±3 nm pre korekciu nelinearity a chyby nuly (ofsetu) použitého komparátora. S4.6 Korekcie od teploty (α, δt, δα, t ): Pred kalibráciou treba dbať na to, aby sa koncové mierky ohriali na teplotu v meracej miestnosti. Zostávajúci rozdiel v teplote medzi etalónovou a kalibrovanou koncovou mierkou sa odhaduje na ±0,05 K. Podľa kalibračného listu referenčnej koncovej mierky a údajov od výrobcu pre kalibrovanú koncovú mierku sa predpokladá, že lineárny koeficient teplotnej rozťažnosti oceľovej

13 MSA 0104/D /7 koncovej mierky je v intervale (11,5±1,0) 10-6 C -1. V kompozícii dvoch pravouhlých rozdelení rozdiel koeficientov teplotnej rozťažnosti má trojuholníkové rozdelenie v hraniciach ± 10-6 C -1. Odchýlka strednej teploty pri meraní od referenčnej teploty t 0 = 0 C sa odhaduje v rozsahu ±0,5 C. Najlepšie odhady rozdielu lineárnych koeficientov teplotnej rozťažnosti a odchýliek strednej teploty od referenčnej teploty sú nulové. Preto je treba vziať do úvahy členy druhého poriadku pri vyhodnocovaní príspevkov ich neistôt k súčinu štandardných neistôt spojeného s faktormi súčinu δα t vo vzťahu (S4.) (pozri matematickú poznámku v odseku S4.13, rovnica (S4.5)). Výsledná štandardná neistota je u(δα t ) = 0, S4.7 Kolísanie dĺžky (δl V ): Pri koncovej mierke triedy 0 rozdiel dĺžok v strede a na štyroch rohoch majú ležať v hraniciach ±0,1 µm (ISO 3650). Predpokladajúc, že toto kolísanie sa objavuje na kratších hranách dĺžky 9 mm a vzhľadom na to, že stredná dĺžka sa meria vo vnútri kruhu s polomerom 0,5 mm, korekcia na vystredenie kontaktného bodu sa odhaduje v hraniciach ±6,7 nm. S4.8 Korelácie: Korelácie medzi všetky vstupnými veličinami sa považujú za zanedbateľné. S4.9 Merania: Namerali sa nasledujúce rozdiely medzi kalibrovanou koncovou mierkou a referenčným etalónom, keď komparátor bol nastavený použitím referenčného etalónu pred každým odčítaním pri použití každého referenčného etalónu. č.m odčítaná hodnota nm - 90 nm - 80 nm - 90 nm nm aritmetický priemer: prierezový odhad smerodajnej odchýlky: (získaný z predchádzajúcich vyhodnotení) δl = -94 nm s p (δl) = 1 nm štandardná neistota: u(δl ) = s( δl ) = 1 nm = 5,37 nm 5 Prierezový odhad smerodajnej odchýlky bol prebratý zo skúšok zhody použitého komparátora s požiadavkami EAL-G1. S4.10 Bilancia neistôt: veličina odhad štandardná neistota pravdepod. rozdelenie citlivostný koeficient príspevok neistoty

14 MSA 0104/D /7 X i x i u(x i ) c i u i (y) l S 50, mm 15 nm normálne 1,0 15,0 nm δl D 0 mm 1,5 nm trojuholníkové 1,0 1,5 nm δl -0, mm 5,37 nm normálne 1,0 5,37 nm δl C 0 mm 18,5 nm rovnomerné 1,0 18,5 nm δt 0 C 0,089 C rovnomerné -575 nm C -1-16,6 nm δα t 0 0, mm -11,8 nm δl V 0 mm 3,87 nm rovnomerné -1,0-3,87 nm l X 49,999,96 mm 34,3 nm NÁRODNÁ POZNÁMKA: V origináli EAL-R-S1 je pri δl D uvedené rozdelenie rovnomerné s hodnotou u(x i ) = 17,3 mm, čo nezodpovedá textu v bode S4.4, kde je uvedené trojuholníkové rozdelenie. S4.11 Rozšírená neistota U = k u(l X ) = 34,3 nm 69 nm S4.1 Komentovaný výsledok Meraná hodnota koncovej mierky s nominálnou dĺžkou 50 mm je 49, mm ±69 nm. Uvedená rozšírená neistota merania je vyjadrená ako štandardná neistota merania vynásobená koeficientom pokrytia k =, ktorá pri normálnom rozdelení zodpovedá konfidenčnej pravdepodobnosti približne 95 %. S4.13 Matematická poznámka k štandardnej neistote merania súčinu dvoch veličín s nulovou strednou hodnotou: Pre súčin dvoch veličín, ak odhady hodnôt jednej alebo oboch veličín sú nulové, je potrebné modifikovať všeobecnú metódu výpočtu neistôt založenú na linearizácii funkcie. Ak členy súčinu sú štatisticky nezávislé s nenulovými hodnotami, štvorec relatívnej štandardnej neistoty (relatívny rozptyl) prislúchajúci súčinu možno vyjadriť bez linearizácie pomocou štvorcov relatívnych štandardných neistôt jednotlivých členov súčinu podľa vzťahu w (x 1 x ) = w (x 1 ) + w (x ) + w (x 1 ) w (x ) (S4.) Použitím definície o relatívnej štandardnej neistote merania sa dá toto vyjadrenie ľahko transformovať do všeobecného vzťahu u (x 1 x ) = x u ( x ) x u ( x ) u ( x ) u ( x ) + + (S4.3) 1 1 Ak štandardné neistoty u(x 1 ) a u(x ) prislúchajúce odhadom x 1 a x sú omnoho menšie ako absolútne hodnoty odhadov x 1 a x, tretí člen na pravej strane možno zanedbať. Výsledný vzťah predstavuje prípad opísaný všeobecnou metódou založenou na linearizácii modelovej funkcie. Ak jedna z absolútnych hodnôt odhadu, napríklad x, je omnoho menšia ako štandardná neistota u(x ) prislúchajúca tomuto odhadu alebo je nulová, bude výsledný 1

15 MSA 0104/D /7 vzťah u (x 1 x ) xu( x) u( x) u( x) 1 + (S4.4) 1 Ak absolútne hodnoty oboch členov súčinu sú oveľa menšie ako ich štandardné neistoty alebo sú nulové, iba tretí člen v rovnici (S4.3) udáva nezanedbateľný príspevok u (x 1 x ) u (x 1 ) u (x ) (S4.5) NÁRODNÁ POZNÁMKA: Príklady na výpočet pri kalibrácii koncovej mierky sú uvedené aj v publikácii EAL-G1 Calibration of Gauge Block Comparators (EA-4/14). S5 Kalibrácia termoelektrického snímača teploty typu N pri 1000 C S5.1 Termoelektrický snímač teploty (TST) typu N sa kalibruje porovnávaním s dvomi referenčnými TST typu R v horizontálnej peci pri teplote 1000 C. Napätie generované TST je merané digitálnym voltmetrom cez prepínač. Všetky TST majú referenčné spoje na 0 C. Kalibrovaný TST je spojený referenčným spojom kompenzačným vedením. S5. Teplota t X meraciaho spoja kalibrovaného TST je δt tx = ts Vi S + δvi S1 + δvi S + δvr C + δtd + δtf CS t ( V ) C V C V C t t t S is + S is1 + S is δ 0 + δ + δ S0 S0 S0 S D F (S5.1) S5.3 Napätie V X TST medzi meracím a referenčným spojom pri 0 C počas kalibrácie je t δtx0 t δt VX() t VX( tx) + = Vα + δvi X1 + δvi X + δvr + δvlx + + C C C C X X0 X X0 X0 (S5.) kde: t S (V) V is, V ix δv is1, δv ix1 δv is, δv ix δv R - teplota meraná referenčným TST v závislosti od napätia pri teplote referenčného spoja 0 C. Funkcia je uvedená v kalibračnom certifikáte, - údaje voltmetra, - korekcie napätia získané z kalibrácie voltmetra, - korekcie napätia v dôsledku obmedzenej rozlíšiteľnosti voltmetra, - korekcie napätia v dôsledku vplyvu kontaktov prepínača,

16 MSA 0104/D /7 δt 0S, δt 0X C S,, C X C S0, C X0 δt D δt F t t = t t X δv LX - korekcie teploty v dôsledku odchýlky referenčnej teploty od 0 C, - citlivosti TST (teplota/napätie) pri meracej teplote 1000 C, - citlivosti TST (teplota/napätie) pri referenčnej teplote 0 C, - zmena hodnoty referenčného TST od jeho poslednej kalibrácie v dôsledku driftu, - korekcia teploty v dôsledku nehomogenity teploty pece, - teplota, pri ktorej sa kalibruje TST (kalibračný bod), - korekcia teploty kalibračného bodu od teploty pece, - korekcia napätia spôsobená kompenzačnými vedeniami. S5.4 Výsledkom kalibrácie je údaj výstupného napätia TST pri teplote jeho meraciaho spoja. Keďže sa merací proces skladá z dvoch krokov - určenie teploty pece a určenie napätia kalibrovaného TST - vyhodnotenie neistoty merania je rozdelené na dve časti. S5.5 Referenčné etalóny (t S (V)): Referenčné TST majú kalibračné certifikáty, ktoré udávajú vzťah medzi ich teplotami na meracom a referenčnom spoji a napätím v ich vedení. Rozšírená neistota merania pri 1000 C je U = 0,3 C (koeficient pokrytia k = ). S5.6 Kalibrácia voltmetra (δv is1, δv ix1 ): Voltmeter bol kalibrovaný. Korekcie meraných napätí boli urobené pre všetky hodnoty. Kalibračný certifikát udáva konštantnú rozšírenú neistotu merania U =,1 µv (koeficient pokrytia k = ) pre napätia menšie ako 50 mv. S5.7 Rozlíšiteľnosť voltmetra (δv is, δv ix ): Bol použitý 4 1 / digitový voltmeter, čo pri jeho rozsahu 10 mv znamená maximálnu rozlíšiteľnosť ±0,5 µv pre každý údaj. S5.8 Parazitné napätia (δv R ): Zvyškové parazitné napätia (pri nulovom napätí) spôsobené kontaktmi prepínača sa odhadli ako nulové v hraniciach ± µv. S5.9 Referenčné teploty (δt 0S, δt 0X ): Referenčné teploty jednotlivých TST boli 0 C v hraniciach ±0,1 C. S5.10 Napäťová citlivosť (C S, C X, C S0, C X0 ): Napäťová citlivosť TST sa prevzala z referenčných tabuliek: 1000 C 0 C referenčný TST C S = 0,077 C/µV C S0 = 0,189 C/µV kalibrovaný TST C X = 0,06 C/µV C X0 = 0,039 C/µV S5.11 Drift referenčného etalónu (δt D ): Z predchádzajúcich kalibrácií sa odhaduje drift referenčného etalónu ako nulový v hraniciach ±0,3 C. S5.1 Teplotný gradient (δt F ): Teplotný gradient v peci sa ustálil meraním. Pri 1000 C odchýlky homogenity teploty v meracej časti sú v hraniciach ±1 C. S5.13 Kompenzačné vedenie (δv LX ): Kompenzačné vedenie sa skúmalo v rozsahu od 0 C

17 MSA 0104/D /7 do 40 C. Z neho vyplýva, že napäťové rozdiely medzi kompenzačnými vedeniami a samotným TST ležia v odhadnutých hraniciach ±5 µv. S5.14 Merania (V is, t S (V is ), V ix ): Údaje na voltmetri sú zaznamenávané v nasledujúcich operačných procedúrach, ktoré dávajú štyri údaje pre každý TST a znižujú vplyv teplotného driftu v zdroji tepla a parazitného tepelného napätia v meracom obvode: 1. cyklus: etalón č. 1, kalibrovaný TST, etalón č., etalón č., kalibrovaný TST, etalón č. 1. Zmena polarity.. cyklus: etalón č. 1, kalibrovaný TST, etalón č., etalón č., kalibrovaný TST, etalón č. 1. S5.15 Postup vyžaduje, aby rozdiel medzi dvomi referenčnými etalónmi nepresiahol ±0,3 C. Ak rozdiel nie je v týchto hraniciach, treba meranie opakovať a/alebo treba zistiť príčiny takého veľkého rozdielu. TST etalón č. 1 kalibrovaný etalón č. snímač Korigovaný údaj napätia µv µv µv µv µv µv µv 3648 µv µv µv 3651 µv µv Priemerná hodnota napätia 1050,5 µv 3648 µv µv Teplota teplého spoja 1000,4 C 1000,6 C Teplota pece 1000,5 C S5.16 Zo štyroch údajov pre každý TST uvedených v hornej tabuľke je odvodená priemerná hodnota napätia každého TST. Hodnoty napätia referenčných TST sa prevedú na hodnoty teploty na základe teplotne-napäťových vzťahov uvedených v kalibračnom certifikáte. Namerané hodnoty teploty sú značne korelované (korelačný koeficient je skoro jednotkový). Preto, pri uvažovaní ich strednej hodnoty, sú kombinované iba vzhľadom na jedno meranie, ktoré je pri teplote pece v mieste kalibrovaného TST. Podobným spôsobom sa získalo napätie kalibrovaného TST. Na vyhodnotenie neistoty merania spojenej s týmito odčítaniami sa vopred vykonala séria desiatich meraní pri rovnakej pracovnej teplote. Získal sa tak prierezový odhad smerodajnej odchýlky pre teplotu pece a napätie kalibrovaného TST. Príslušné štandardné neistoty merania sledovaných veličín sú: prierezový odhad smerodajnej odchýlky: s p (t S ) = 0,10 C štandardná neistota: u(t S ) = s p (t S )/ 1 = 0,10 C

18 MSA 0104/D /7 prierezový odhad smerodajnej odchýlky: s p (V ix ) = 1,6 µv štandardná neistota: u(v ix ) = s p (V ix )/ 1 = 1,6 µv S5.17 Bilancia neistôt (teplota t X v peci): veličina odhad štandardná neistota u(x i ) pravdepod. Rozdelenie citlivostný koeficient c i príspevok neistoty u i (y) Xi x i t S 1000,5 C 0,10 C normálne 1,0 0,10 C δv is1 0 µv 1,00 µv rovnomerné 0,077 C/µV 0,077 C δv is 0 µv 0,9 µv rovnomerné 0,077 C/µV 0,0 C δv R 0 µv 1,15 µv rovnomerné 0,077 C/µV 0,089 C δt 0S 0 C 0,058 C rovnomerné -0,407-0,04 C δt S 0 C 0,15 C normálne 1,0 0,15 C δt D 0 C 0,173 C rovnomerné 1,0 0,173 C δt F 0 C 0,577 C rovnomerné 1,0 0,577 C δt X 1000,5 C 0,641 C S5.18 Bilancia neistôt (napätia V X kalibrovaného TST) 1 : veličina X i odhad x i štandardná neistota u(x i ) pravdepod. Rozdelenie citlivostný koeficient c i príspevok neistoty u i (y) V S µv 1,60 µv normálne 1,0 1,60 µv δv ix1 0 µv 1,00 µv normálne 1,0 1,00 µv δv ix 0 µv 0,9 µv rovnomerné 1,0 0,9 µv δv R 0 µv 1,15 µv rovnomerné 1,0 1,15 µv δv LX 0 µv,9 µv rovnomerné 1,0,9 µv t 0,5 C 0,641 C normálne 38,5 µv/ C 4,5 µv δt 0X 0 C 0,058 C rovnomerné -5,6 µv/ C -1,48 µv V X 36 9 µv 5,0 µv S5.19 Rozšírená neistota Rozšírená neistota merania teploty pece je U = k u(t X ) = 0,641 C 1,3 C Rozšírená neistota napätia kalibrovaného TST je U = k u(v X ) = 5,0 µv 50 µv 1 Štandardná neistota merania rozdielu teplôt medzi kalibračným bodom a teplotou pece je štandardná neistota merania teploty pece, lebo teplotný bod je definovaná hodnota (presne známa).

19 MSA 0104/D1-98 0/7 S5.0 Komentovaný výsledok Kalibrovaný TST typu N pri teplote 1000 C s referenčným spojom na hodnote 0 C, má napätie µv ±50 µv. Uvedená rozšírená neistota merania je vyjadrená ako štandardná neistota merania vynásobená koeficientom pokrytia k =, čo pri normálnom rozdelení zodpovedá konfidenčnej pravdepodobnosti približne 95 %. NÁRODNÁ POZNÁMKA: Príklady na výpočet pri kalibrácii termočlánku sú uvedené aj v publikácii EAL-G31 Calibration of Thermocouples (EA-4/1). S6 Kalibrácia snímača výkonu pri frekvencii 18 GHz S6.1 Meranie zahrnuje kalibráciu neznámeho snímača výkonu vzhľadom na kalibrovaný snímač výkonu, ktorý sa používa ako referenčný pri zámene (substitučná metóda) na výstupe stabilného prenosového etalónu so známym malým koeficientom odrazu. Meria sa kalibračný činiteľ, ktorý je definovaný ako pomer postupného výkonu pri referenčnej frekvencii 50 MHz k postupnému výkonu pri frekvencii kalibrácie za podmienky, že oba postupné výkony vyvolajú rovnakú odozvu snímača výkonu. Pri každej frekvencii je treba určiť (indikovaný) výkon pre kalibrovaný snímač vzhľadom na referenčný snímač a vnútorný snímač, ktorý tvorí súčasť prenosového etalónu, pri použití dvojkanálového merača výkonu s možnosťou merania pomeru. S6. Schéma meracieho systému Prenosový etalón G S X A B B/A Γ G Meradlo výkonu Γ X alebo Γ S S6.3 Veličina K, nazývaná niektorými výrobcami "kalibračný činiteľ", je definovaná ako: = P = ( 1+ Γr ) PAr ( 1+ Γ c ) P Ac lr K Plc pri zhodných údajoch meradla výkonu kde: (S6.1)

20 MSA 0104/D1-98 1/7 P lr P lc Γ r Γ c P Ar P Ac - postupný výkon pri referenčnej frekvencii (50 MHz), - postupný výkon pri kalibračnej frekvencii, - činiteľ odrazu snímača pri referenčnej frekvencii, - činiteľ odrazu snímača pri kalibračnej frekvencii, - výkon absorbovaný snímačom pri referenčnej frekvencii, - výkon absorbovaný snímačom pri kalibračnej frekvencii. S6.4 Kalibračný činiteľ neznámeho snímača sa získa zo vzťahu K X M SrM Xc = ( K S + δk D ) pcr pcc p (S6.) M M Sc Xr kde: K S δk D M Sr M Sc M Xr M Xc p Cr p Cc - kalibračný činiteľ referenčného snímača výkonu, - odchýlka kalibračného činiteľa referenčného snímača výkonu od jeho poslednej kalibrácie v dôsledku driftu, - činiteľ neprispôsobenia referenčného snímača pri referenčnej frekvencii, - činiteľ neprispôsobenia etalónového snímača pri kalibračnej frekvencii, - činiteľ neprispôsobenia kalibrovaného snímača pri referenčnej frekvencii, - činiteľ neprispôsobenia kalibrovaného snímača pri kalibračnej frekvencii, - korekcia nameraného pomeru v dôsledku nelinearity a obmedzenej rozlíšiteľnosti meradla výkonu pri úrovni pomeru výkonov zodpovedajúce referenčnej frekvencii, - korekcia nameraného pomeru v dôsledku nelinearity a obmedzenej rozlíšiteľnosti meradla výkonu pri úrovni pomeru príkonov zodpovedajúce kalibračnej frekvencii p Sr Xc p = - pozorovaný podiel pomerov výkonov, kde: p Sc p p Xr p Sr p Sc p Xr p Xc - indikovaný pomer pre referenčný snímač pri referenčnej frekvencii, - indikovaný pomer pre referenčný snímač pri kalibračnej frekvencii, - indikovaný pomer pre kalibrovaný snímač pri referenčnej frekvencii, - indikovaný pomer pre kalibrovaný snímač pri kalibračnej frekvencii, S6.5 Referenčný snímač (K S ): Referenčný snímač bol kalibrovaný pred šiestimi mesiacmi. Hodnota kalibračného činiteľa, uvedená v kalibračnom certifikáte je (95,7±1,1)% (koeficient pokrytia k = ), ktorú možno tiež vyjadriť ako 0,957±0,011.

21 MSA 0104/D1-98 /7 S6.6 Drift etalónu (δk D ): Drift kalibračného činiteľa referenčného etalónu sa odhaduje z každoročných kalibrácií ako 0,00 za rok s odchýlkou v rozsahu ±0,004. Z týchto hodnôt drift referenčného snímača, ktorý bol kalibrovaný pred pol rokom, sa odhaduje 0,001 s odchýlkami v hraniciach ±0,00. S6.7 Linearita a rozlíšiteľnosť meradla výkonu (p Cr, p Cc ): Rozšírená neistota je 0,00 (koeficient pokrytia k = ) v dôsledku nelinearity použitého meradla pri hodnotách odčítaných z meradla pri výkonovom pomere a referenčnej frekvencii a 0,000 pri hodnotách odčítaných z meradla pri výkonovom pomere a kalibračnej frekvencii. Tieto hodnoty boli získané z predchádzajúcich meraní. Keďže na získanie oboch hodnôt p S a p X bolo použité rovnaké meradlo výkonu, príspevky neistôt pri referenčnej ako aj pri kalibračnej frekvencii sú korelované. Pretože tu ide o podiel hodnôt pri oboch frekvenciách, korelácia spôsobuje zmenšovanie neistoty. Preto stačí uvažovať iba relatívny rozdiel v odčítaných hodnotách v dôsledku systematických vplyvov (pozri matematickú poznámku v odseku S3.1), čím sa získa štandardná neistota 0,0014 prislúchajúca ku korekčnému faktoru p Cr a 0,00014 ku faktoru p Cc. S6.8 Činiteľ neprispôsobenia (M Sr, M Sc, M Xr, M Xc ): Keďže prenosový etalónový systém nie je dokonale prispôsobený a nie je známa fáza činiteľov odrazu prenosového etalónu, neznámeho a etalónového snímača výkonu, pri referenčnej a kalibračnej frekvencii vzniká neistota v dôsledku neprispôsobenia každého snímača. Odpovedajúce hranice odchýlok sa vypočítajú pre referenčnú a kalibračnú frekvenciu zo vzťahu: M S,X = 1 ± Γ G Γ S,X (S6.3) kde veľkosti činiteľov odrazu prenosového etalónu, referenčného snímača a kalibrovaného snímača sú: 50 MHz 18 GHz Γ G 0,0 0,07 Γ S 0,0 0,10 Γ X 0,0 0,1 Rozdelenie pravdepodobností jednotlivých príspevkov je v tvare U. Z toho vyplýva, že sa nahrádza faktor 1/3 v prípade rovnomerného rozdelenia za 1/ zo štvorca polovičnej šírky intervalu určených hraníc pri výpočte rozptylu. Štandardná neistota v dôsledku chýb sa potom získa ako: Γ G Γ u(m S,X ) = S (S6.4) POZNÁMKA: Hodnoty činiteľov odrazu sú výsledkami meraní, ktoré sú samé vystavené neistotám. Toto sa zohľadňuje pripočítaním druhej odmocniny súčtu štvorcov neistôt meraných hodnôt.

22 MSA 0104/D1-98 3/7 Rozšírená neistota merania určená pre odčítania meradla výkonu obsahuje vplyvy linearity a vplyvy rozlíšiteľnosti. Vplyvy linearity sú korelované a vplyvy rozlíšiteľnosti nie sú korelované. Ako je uvedené v S3.1, vzťah pre výpočet výkonového pomeru spôsobuje vzájomné rušenie vplyvu korelácie a udáva redukovanú štandardnú neistotu merania prislúchajúcu pomeru. V predchádzajúcich výpočtoch nie sú zvlášť známe korelované a nekorelované príspevky a zadané hodnoty sú hornými hranicami štandardnej neistoty merania prislúchajúcim pomerom. Bilancia neistôt nakoniec ukazuje, že príspevky vychádzajúce z pomerov sú signifikantné, inými slovami, že priblíženia sú platné. S6.9 Korelácia: Korelácie medzi všetky vstupnými veličinami sa považujú za zanedbateľné. S6.10 Merania: Vykonali sa tri oddelené odčítania, ktoré zahrňujú rozpojenie a opätovné spojenie oboch snímačov referenčného a kalibrovaného k prenosovému etalónu, aby sa počítalo aj s opakovateľnosťou spoja. Údaje odčítané z meradla výkonu sa použijú na výpočet výkonového pomeru p a sú nasledovné: č.m. p Sr p Sc p Xr p Xc p 1 1,0001 0,994 1,0001 0,9698 0,977 1,0000 0,994 1,0000 0,9615 0, ,9999 0,9953 1,0001 0,979 0,9836 aritmetický priemer: p = 0,9760 experimentálna smerodajná odchýlka: s(p) = 0,0083 štandardná neistota: u(p) = s( p ) = 0, = 0,0048 S6.11 Bilancia neistôt (K X ): veličina X i odhad x i štandardná neistota u(x i ) pravdepod. rozdelenie citlivostný koeficient c i príspevok neistoty u i (y) K S 0,957 0,0055 normálne 0,976 0,00537 δ K D 0,001 0,001 rovnomerné 0,976 0,00113 M Sr 1,000 0,0006 U-tvar 0,933 0,00053 M Sc 1,000 0,0099 U-tvar 0,933 0,0094 M Xc 1,000 0,0006 U-tvar 0,933 0,00053

23 MSA 0104/D1-98 4/7 M Xc 1,000 0,0119 U-tvar 0,933 0,01110 p Cr 1,000 0,0014 normálne 0,933 0,0013 p Cc 1,000 0,0001 normálne 0,933 0,00013 p 0,976 0,0048 normálne 0,956 0,00459 K X 0,933 0,0163 S6.1 Rozšírená neistota U = k u(k X ) = 0,0163 0,03 S6.13 Komentovaný výsledok Kalibračný činiteľ snímača výkonu pri 18 GHz je 0,933±0,03, čo možno tiež vyjadriť ako (93,3±3,)%. Uvedená rozšírená neistota merania je vyjadrená ako štandardná neistota merania vynásobená koeficientom pokrytia k =, ktorá pri normálnom rozdelení zodpovedá konfidenčnej pravdepodobnosti približne 95 %. S7 Kalibrácia koaxiálneho stupňovitého útlmového člena pri nastavení 30 db (prídavná strata) S7.1 Meranie zahrnuje kalibráciu koaxiálneho stupňovitého útlmového člena pri 10 GHz pomocou meracieho systému zoslabenia obsahujúceho stupňovitý útlmový člen vo funkcii referenčného zoslabovača. Meracia metóda zahrnuje určenie zoslabenia medzi prispôsobeným zdrojom a prispôsobenou záťažou. V tomto prípade neznámy útlmový člen môže byť prepnutý medzi nastaveniami 0 db a 30 db a je to táto zmena (nazývajúca sa prídavná strata), ktorá sa určuje pri kalibrácii. Merací systém zoslabovača má digitálne odčítanie údajov a analógový detektor nuly, ktorý indikuje vyvážený stav. S7. Schéma meracieho systému Stupňovitý zoslabovač G db db s 11a s 11b Γ G Γ L s a s b RF merací systém zoslabenia

24 MSA 0104/D1-98 5/7 S7.3 Zoslabenie L X kalibrovaného útlmového člena sa získa zo vzťahu: L X = L S +δl S +δl D +δl M +δl K + δl ib δl ia + δl 0b δl 0a (S7.1) kde: L S = L ib L ia - rozdiel zoslabení referenčného útlmového člena odvodeného od: L ia - indikované zoslabenie kalibrovaného útlmového člena pri nastavení 0 db, L ib - indikované zoslabenie kalibrovaného útlmového člena pri nastavení 30 db, δl S - korekcia získaná kalibráciou referenčného útlmového člena, δl D - zmena zoslabenia referenčného útlmového člena od jeho poslednej kalibrácie v dôsledku driftu, δl M - korekcia v dôsledku neprispôsobenia, δl K - korekcia parazitného signálu medzi vstupom a výstupom kalibrovaného útlmového člena zapríčinené nedokonalou izoláciou, δl ia, δl ib - korekcie v dôsledku obmedzeného rozlíšenia referenčného detektora pri nastaveniach 0 db a 30 db, δl 0a, δl 0b - korekcie v dôsledku obmedzeného rozlíšenia nulového detektora pri nastaveniach 0 db a 30 db. S7.4 Referenčný útlmový člen (δl S ): Kalibračný certifikát referenčného útlmového člena udáva hodnotu zoslabenia pri nastavení pri 30,000 db 10 GHz na 30,003 db spolu s príslušnou rozšírenou neistotou 0,005 db (koeficient pokrytia k = ). Pre nastavenie zoslabenia referenčného útlmového člena, ktoré sa nelíši viac ako ±0,1 db od kalibračného nastavenia 30,000 db, bude korekcia +0,003 db a jej rozšírená neistota 0,005 db (koeficient pokrytia k = ). S7.5 Drift referenčného prvku (δl D ): Drift zoslabenia referenčného útlmového člena sa odhaduje z predchádzajúcich kalibrácií ako nulový v hraniciach ±0,00 db. S7.6 Straty neprispôsobením (δl M ): Činiteľ odrazu zdroja a záťaže v bode vloženého kalibrovaného útlmového člena bol optimalizovaný impedančným prispôsobením zodpovedajúcim čo najmenším hodnotám. Ich veľkosti a veľkosti rozptylových koeficientov kalibrovaného útlmového člena sa namerali, ale ich fázy zostali neznáme. Bez informácie o fázach sa však nedá vykonať korekcia neprispôsobenia, ale štandardná neistota (v db) v dôsledku nedostatočných vedomostí o prispôsobení sa odhaduje zo vzťahu [1]: 8, ( δlm ) = Γ S ( s11 a + s11b ) + Γ L ( sa + sb ) + Γ S Γ L ( s1 a s1 b ) u + (S7.)

25 MSA 0104/D1-98 6/7 S činiteľom odrazu zdroja a záťaže Γ L = 0,03 a Γ S = 0,03 a rozptylovými koeficientami kalibrovaného útlmového člena pri 10 GHz s 11 s s 1 0 db 30 db 0,05 0,09 0,01 0,01 0,95 0,031 ako u(δl M ) = 0,0 db. POZNÁMKA: Hodnoty činiteľa odrazu a rozptylu sú výsledkom meraní, teda samé o sebe nie sú presne známe. Toto sa zohľadňuje pripočítaním druhej odmocniny súčtu štvorcov neistôt nameraných hodnôt. S7.7 Korekcia parazitných vplyvov (δl K ): Parazitné signály prechádzajúce cez kalibrovaný útlmový člen sa odhadli z meraní pri nastavení 0 db, ktoré má byť aspoň 100 db pod meraným signálom. Korekcia parazitných signálov sa za týchto podmienok odhaduje na ±0,003 db pri nastavení 30 db. S7.8 Rozlíšiteľnosť nastavenia referenčného útlmového člena (δl ia, δl ib ): Digitálny údaj referenčného útlmového člena má rozlíšenie 0,001 db, z ktorého chyba rozlíšenia sa odhaduje v rozsahu ±0,0005 db. S7.9 Rozlíšiteľnosť nulového detektora (δl 0a, δl 0b ): Detekčná rozlíšiteľnosť bola určená z predchádzajúcich vyhodnotení a má štandardnú odchýlku 0,00 db pri každom odčítaní s predpokladaným normálnym pravdepodobnostným rozdelením. S7.10 Korelácia: Korelácie medzi všetky vstupnými veličinami sa považujú za zanedbateľné. S7.11 Merania: Namerané hodnoty prídavnej straty kalibrovaného útlmového člena medzi nastavením 0 db a 30 db: Č.m Odčítaná hodnota pri nastavení 0 db nastavení 30 db 0,000 db 30,033 db 0,000 db 30,058 db 0,000 db 30,018 db 0,000 db 30,05 db aritmetický priemer: experimentálna smerodajná neistota: L S = 30,040 db s( L S ) = 0,018 db štandardná neistota: u( L S ) = s( L S ) = 0, 018 db = 0,009 db 4

26 MSA 0104/D1-98 7/7 S7.1 Bilancia neistôt (L X ): veličina odhad štandardná neistota u(x i ) pravdepod. rozdelenie citlivostný koeficient c i príspevok neistoty u i (y) Xi x i L S 30,040 db 0,0090 db normálne 1,0 0,0090 db δ L S 0,003 db 0,005 db rovnomerné 1,0 0,005 db δ L D 0 db 0,0011 db U-tvar 1,0 0,0011 db δ L M 0 db 0,000 db U-tvar 1,0 0,000 db δ L K 0 db 0,0017 db U-tvar 1,0 0,0017 db δ L ia 0 db 0,0003 db U-tvar 1,0 0,0003 db δ L ib 0 db 0,0003 db rovnomerné 1,0 0,0003 db δ L 0a 0 db 0,000 db rovnomerné 1,0 0,000 db δ L 0b 0 db 0,000 db normálne 1,0 0,000 db L X 30,043 db 0,04 db S7.13 Rozšírená neistota U = k u(l X ) = 0,04 db 0,045 db S7.14 Komentovaný výsledok Nameraná hodnota stupňovitého útlmového člena pri nastavení 30 db pri 10 GHz je (30,043±0,045) db. Uvedená rozšírená neistota merania je vyjadrená ako štandardná neistota merania vynásobená koeficientom pokrytia k =, ktorá pri normálnom rozdelení zodpovedá konfidenčnej pravdepodobnosti približne 95 %. S7.15 Literatúra [1] Harris, I. A.; Warner, F. L.: Re-examination of mismath uncertainty when measuring microwave power and attenuation. In: IEE Proc., Vol. 18, Pt. H, No. 1, Febr. 1981

27 Slovenská národná akreditačná služba (ďalej SNAS) spravovaná Úradom pre normalizáciu, metrológiu a skúšobníctvo SR je jediným národným akreditačným orgánom uznaným vládou SR (Uznesenie vlády SR č. 866 zo dňa ) na udeľovanie akreditácie: - metrologických a skúšobných laboratórií, - certifikačných orgánov pre systémy kvality, výrobky, personál a systémy environmentálneho manažérstva, - inšpekčných orgánov, - správnej laboratórnej praxe. Základným poslaním SNAS je zabezpečiť dôveru zainteresovaných orgánov, inštitúcií a osôb doma a v zahraničí procesom posudzovania zhody uskutočňovaným v Slovenskej republike a potvrdiť kompetencie a spôsobilosť vykonávateľom týchto procesov. Tým sa vytvárajú predpoklady na garantovanie kvality slovenskej produkcie realizovanej na domácom i zahraničnom trhu, kvality dovážaných výrobkov, ochrany spotrebiteľa, ochrany životného prostredia a zdravia obyvateľov. SNAS dbá všetkými prostriedkami, aby procesy posudzovania na účely akreditácie boli transparentné, nestranné, objektívne, na potrebnej odbornej úrovni a aby sa rešpektovali potreby uchádzačov o akreditáciu a potreby užívateľov výsledkov práce akreditovaných subjektov. Pri plnení svojej funkcie SNAS vychádza z medzinárodne prijatých prístupov, pravidiel a postupov obsiahnutých predovšetkým v normách radu STN EN 45000, radu STN ISO 9000, pokynoch ISO/IEC a pokynoch a návodoch medzinárodných organizácií ILAC, IAF, EA a OECD, ktoré plne rešpektuje. Metodické smernice na akreditáciu (ďalej MSA) bližšie špecifikujú zásady a princípy týchto dokumentov s cieľom zabezpečiť kompatibilitu procesu akreditácie v Slovenskej republike s praxou v krajinách Európskej únie. Oznámenia o vydaní, zmenách a doplnkoch MSA sa uverejňujú vo Vestníku ÚNMS SR. Tieto MSA spracoval: Odbor akreditácie ÚNMS SR, Doc. Ing. Rudolf Palenčár, CSc. schválil: riaditeľ SNAS Prof. Ing. Jozef Skákala, CSc. dňa 30. septembra 1998 Účinnosť od 1. decembra 1998 Tieto MSA neprešli jazykovou úpravou. MSA sa nesmú rozmnožovať a kopírovať na účely predaja.

METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII (EA-4/02 M:2013)

METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII (EA-4/02 M:2013) LOVENKÁ NÁRODNÁ AKREDITAČNÁ LUŽBA METODICKÁ MERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEITÔT MERANIA PRI KALIBRÁCII (EA-4/0 M:013) EPREION OF THE UNCERTAINTY OF MEAUREMENT

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII (EA-4/02)

METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII (EA-4/02) SLOVENSKÁ NÁRODNÁ AKREDITAČNÁ SLUŽBA METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION VYJADROVANIE NEISTÔT MERANIA PRI KALIBRÁCII (EA-4/0) EXPRESSION OF THE UNCERTAINTY OF MEASUREMENT

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA: 1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

Meranie na jednofázovom transformátore

Meranie na jednofázovom transformátore Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie

Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie Strana 1/5 Rozsah akreditácie Názov akreditovaného subjektu: CHIRANALAB, s.r.o., Kalibračné laboratórium Nám. Dr. A. Schweitzera 194, 916 01 Stará Turá IČO: 36 331864 Kalibračné laboratórium s fixným rozsahom

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Základy metodológie vedy I. 9. prednáška

Základy metodológie vedy I. 9. prednáška Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna

Διαβάστε περισσότερα

ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI

ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

METODICKÉ SMERNICE NA AKREDITÁCIU METHODICAL GUIDELINES FOR ACCREDITATION NADVÄZNOSŤ MERACÍCH A SKÚŠOBNÝCH ZARIADENÍ NA NÁRODNÉ ETALÓNY

METODICKÉ SMERNICE NA AKREDITÁCIU METHODICAL GUIDELINES FOR ACCREDITATION NADVÄZNOSŤ MERACÍCH A SKÚŠOBNÝCH ZARIADENÍ NA NÁRODNÉ ETALÓNY SLOVENSKÁ NÁRODNÁ AKREDITAČNÁ SLUŽBA METODICKÉ SMERNICE NA AKREDITÁCIU METHODICAL GUIDELINES FOR ACCREDITATION NADVÄZNOSŤ MERACÍCH A SKÚŠOBNÝCH ZARIADENÍ NA NÁRODNÉ ETALÓNY TRACEABILITY OF MEASURING AND

Διαβάστε περισσότερα

2 Chyby a neistoty merania, zápis výsledku merania

2 Chyby a neistoty merania, zápis výsledku merania 2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

ÚLOHA Č.4 CHYBY A NEISTOTY MERANIA DĹŽKOMERY MERANIE DĹŽKOVÝCH ROZMEROV SO STANOVENÍM NEISTÔT MERANIA Chyby merania Všeobecne je možné povedať, že chyba = nesprávna hodnota správna hodnota (4.1) pričom

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION NADVÄZNOSŤ MERACÍCH A SKÚŠOBNÝCH ZARIADENÍ NA NÁRODNÉ ETALÓNY (EA 4/07)

METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION NADVÄZNOSŤ MERACÍCH A SKÚŠOBNÝCH ZARIADENÍ NA NÁRODNÉ ETALÓNY (EA 4/07) SLOVENSKÁ NÁRODNÁ AKREDITAČNÁ SLUŽBA METODICKÁ SMERNICA NA AKREDITÁCIU METHODICAL GUIDELINE FOR ACCREDITATION NADVÄZNOSŤ MERACÍCH A SKÚŠOBNÝCH ZARIADENÍ NA NÁRODNÉ ETALÓNY (EA 4/07) TRACEABILITY OF MEASURING

Διαβάστε περισσότερα

NARIADENIE KOMISIE (EÚ)

NARIADENIE KOMISIE (EÚ) 30.11.2011 Úradný vestník Európskej únie L 317/17 NARIADENIE KOMISIE (EÚ) č. 1235/2011 z 29. novembra 2011, ktorým sa mení a dopĺňa nariadenie Európskeho parlamentu a Rady (ES) č. 1222/2009, pokiaľ ide

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.7 Vzdelávacia

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Model redistribúcie krvi

Model redistribúcie krvi .xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

DIGITÁLNY MULTIMETER AX-100

DIGITÁLNY MULTIMETER AX-100 DIGITÁLNY MULTIMETER AX-100 NÁVOD NA OBSLUHU 1. Bezpečnostné pokyny 1. Na vstup zariadenia neprivádzajte veličiny presahujúce maximálne prípustné hodnoty. 2. Ak sa chcete vyhnúť úrazom elektrickým prúdom,

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk   SLUŽBY s. r. o. SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

SNÍMAČE TEPLOTY A PREVODNÍKY TEPLOTY. P r v á č a s ť Vymedzenie meradiel a spôsob ich metrologickej kontroly

SNÍMAČE TEPLOTY A PREVODNÍKY TEPLOTY. P r v á č a s ť Vymedzenie meradiel a spôsob ich metrologickej kontroly Príloha č. 37 k vyhláške č. 210/2000 Z. z. SNÍMAČE TEPLOTY A PREVODNÍKY TEPLOTY P r v á č a s ť Vymedzenie meradiel a spôsob ich metrologickej kontroly 1. Táto príloha sa vzťahuje na odporové snímače teploty

Διαβάστε περισσότερα

Elektrický prúd v kovoch

Elektrický prúd v kovoch Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S 1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.

Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením. Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým

Διαβάστε περισσότερα

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého

Διαβάστε περισσότερα

Príručka systému HACCP pre zariadenia školského stravovania

Príručka systému HACCP pre zariadenia školského stravovania Metrologický program Príručka systému HACCP pre zariadenia školského stravovania Ing. Tomáš Švantner Bratislava 2012 Vzdelávanie členov Celoslovenskej sekcie školského stravovania MŠVV a Š SR a odborných

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA REGIONÁLNY ÚRAD VEREJNÉHO ZDRAVOTNÍCTVA so sídlom v Prešove Národné referenčné centrum pre organizovanie medzilaboratórnych porovnávacích skúšok v oblasti potravín Hollého 5, 080 0 Prešov MEDZILABORATÓRNE

Διαβάστε περισσότερα

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...iv... Název: Meranie malých odporov Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne... 5. 12. 2005 Odevzdal

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Meno: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf Meranie

Meno: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf Meranie Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 5 MERANIE POMERNÉHO KOEFICIENTU ROZPÍNAVOSTI VZDUCHU Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf

Διαβάστε περισσότερα

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Modul pružnosti betónu

Modul pružnosti betónu f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Cenník. prístrojov firmy ELECTRON s. r. o. Prešov platný od Revízne meracie prístroje

Cenník. prístrojov firmy ELECTRON s. r. o. Prešov platný od Revízne meracie prístroje Cenník prístrojov firmy ELECTRON s. r. o. Prešov platný od 01. 01. 2014 Združené revízne prístroje: Revízne meracie prístroje prístroja MINI-SET revízny kufrík s MINI-01 (priech.odpor), MINI-02 (LOOP)

Διαβάστε περισσότερα

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium Technicá univerzita v Košiciach FAKLTA ELEKTROTECHKY A FORMATKY Katedra eletrotechniy a mechatroniy MERAE A TRASFORMÁTORE Eletricé stroje / Externé štúdium Meno :........ Supina :...... Šolsý ro :.......

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Prevodník pre tenzometrické snímače sily EMS170

Prevodník pre tenzometrické snímače sily EMS170 Charakteristické vlastnosti Technické údaje Napäťové alebo prúdové napájanie snímačov alebo vodičové pripojenie snímačov Pripojenie až snímačov Nastavenie parametrov pomocou DIP prepínačov Prevedenie v

Διαβάστε περισσότερα

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...xviii... Název: Prechodové javy v RLC obvode Vypracoval:... Viktor Babjak... stud. sk... F.. dne... 6.. 005

Διαβάστε περισσότερα

TESTER FOTOVOLTAICKÝCH A ELEKTRICKÝCH INŠTALÁCIÍ. Sprievodca výberom testerov fotovoltaických a elektrických inštalácií

TESTER FOTOVOLTAICKÝCH A ELEKTRICKÝCH INŠTALÁCIÍ. Sprievodca výberom testerov fotovoltaických a elektrických inštalácií Sprievodca výberom testerov fotovoltaických a elektrických inštalácií Model MI 3108 MI 3109 EurotestPV EurotestPV Lite Meranie Popis Izolačný odpor do 1000 V Spojitosť 200 ma BEZPEČNOSŤ Impedancia siete

Διαβάστε περισσότερα

ANALÝZA MERACÍCH SYSTÉMOV

ANALÝZA MERACÍCH SYSTÉMOV UCL CL X R LCL X, σ, Cpk ANALÝZA MERACÍCH SYSTÉMOV Measurement System Analysis - MSA www.unms.sk Poslanie Akreditácia Normalizácia Je Poslaním činnosť, ktorou ÚNMS SR sa zaisťuje je tvorba najvýhodnejší

Διαβάστε περισσότερα

PRINCÍPY MERANIA MALÝCH/VEĽKÝCH ODPOROV Z HĽADISKA POTREBY REVÍZNEHO TECHNIKA

PRINCÍPY MERANIA MALÝCH/VEĽKÝCH ODPOROV Z HĽADISKA POTREBY REVÍZNEHO TECHNIKA XX. Odborný seminár PNCÍPY MEN MLÝCH/EĽKÝCH ODPOO Z HĽDSK POTEBY EÍZNEHO TECHNK 74 ýchova a vzdelávanie elektrotechnikov Doc. ng. Ľubomír NDÁŠ, PhD., Doc. ng. Ľuboš NTOŠK, PhD., katedra Elektroniky/OS

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα

1. MERANIE VÝKONOV V STRIEDAVÝCH OBVODOCH

1. MERANIE VÝKONOV V STRIEDAVÝCH OBVODOCH 1. MERIE ÝKOO TRIEDÝCH OBODOCH Teoretické poznatky a) inný výkon - P P = I cosϕ [] (3.41) b) Zdanlivý výkon - úinník obvodu - cosϕ = I [] (3.43) P cos ϕ = (3.45) Úinník môže by v tolerancii . ím je

Διαβάστε περισσότερα

Ohmov zákon pre uzavretý elektrický obvod

Ohmov zákon pre uzavretý elektrický obvod Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.8. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.8. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.8 Vzdelávacia

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica:

Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica: Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 7 URČENIE HUSTOTY KVPLÍN Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Meranie 1. Úlohy: a) Určte hustotu

Διαβάστε περισσότερα

1. laboratórne cvičenie

1. laboratórne cvičenie 1. laboratórne cvičenie Téma: Úlohy: Určenie povrchového napätia kvapaliny 1. Určiť povrchové napätie vody pomocou kapilárnej elevácie 2. Určiť povrchové napätie vody porovnávacou metódou 3. Opísať zaujímavý

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

MERANIE OSCILOSKOPOM Ing. Alexander Szanyi

MERANIE OSCILOSKOPOM Ing. Alexander Szanyi STREDNÉ ODBORNÁ ŠKOLA Hviezdoslavova 5 Rožňava Cvičenia z elektrického merania Referát MERANIE OSCILOSKOPOM Ing. Alexander Szanyi Vypracoval Trieda Skupina Šk rok Teoria Hodnotenie Prax Referát Meranie

Διαβάστε περισσότερα

SCOPE OF ACCREDITATION TO ISO 17025:2005

SCOPE OF ACCREDITATION TO ISO 17025:2005 SCOPE OF ACCREDITATION TO ISO 17025:2005 TFF CORPORATION TEKTRONIX COMPANY 1-14-1 Midorigaoka, Naka-gun, Ninomiya-machi, Kanagawa Pref. 259-0132 JAPAN Hideki Yuyama Phone: 81 463 70 5634 CALIBRATION Valid

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave iešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave Lineárne elektrické obvody s jednosmernými zdrojmi a rezistormi v ustálenom stave riešime (určujeme prúdy

Διαβάστε περισσότερα

MPO-02 prístroj na meranie a kontrolu ochranných obvodov. Návod na obsluhu

MPO-02 prístroj na meranie a kontrolu ochranných obvodov. Návod na obsluhu MPO-02 prístroj na meranie a kontrolu ochranných obvodov Návod na obsluhu MPO-02 je merací prístroj, ktorý slúži na meranie malých odporov a úbytku napätia na ochrannom obvode striedavým prúdom vyšším

Διαβάστε περισσότερα

MPO-01A prístroj na meranie priechodových odporov Návod na obsluhu

MPO-01A prístroj na meranie priechodových odporov Návod na obsluhu MPO-01A prístroj na meranie priechodových odporov Návod na obsluhu (Rev1.0, 01/2017) MPO-01A je špeciálny merací prístroj, ktorý slúži na meranie priechodového odporu medzi ochrannou svorkou a príslušnými

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Z O S I L Ň O V A Č FEARLESS SÉRIA D

Z O S I L Ň O V A Č FEARLESS SÉRIA D FEARLESS SÉRIA D FEARLESS SÉRIA D Fearless 5000 D Fearless 2200 D Fearless 4000 D Fearless 1000 D FEARLESS SÉRIA D Vlastnosti: do 2 ohmov Class-D, vysoko výkonný digitálny kanálový subwoofer, 5 kanálový

Διαβάστε περισσότερα

Štandardy a kontrolné mechanizmy v metrológii v jedálňach

Štandardy a kontrolné mechanizmy v metrológii v jedálňach Štandardy a kontrolné mechanizmy v metrológii v jedálňach Ing. Tomáš ŠVANTNER Poprad, 28.10.2011 Platné právne predpisy v oblasti metrológie Zákon č. 142/2000 Z. z. o metrológii v znení neskorších predpisov

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα