Συλλογή απο σταθερές και εντολές του Mathematica (Κυρίως για την έκδοση 6)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συλλογή απο σταθερές και εντολές του Mathematica (Κυρίως για την έκδοση 6)"

Transcript

1 Συλλογή απο σταθερές και εντολές του Mathematica (Κυρίως για την έκδοση 6) Σταθερές Pi, E, I, Infinity. Το τελευταίο το γράφουµε \[Infinity]. Π.χ. Sum[1/n^2, {n, Infinity}]. Ακριβείς Αριθµητικές Ποσότητες 2, 2/3, Sin[2]. Πράξεις µε ακριβείς αριθµητικές ποσότητες. 1+2/3, Exp[Sin[5/6]], 2+4/5I, (3/7)^20. Μη Ακριβείς Αριθµητικές Ποσότητες 2., 2./3, 2/3.,N[2,5]. Πράξεις µε µη Ακριβείς Αριθµητικές Ποσότητες 1+2/3.,1.+2/3, Sin[2.], Sqrt[-2.], N[Sqrt[-2], 4], Exp[Sin[5/6]], 2.+4/5I Βοήθεια Βοήθεια απο το Mathematica. Με F1, Help, και?. Π.χ.?Plot*,?*Plot, Βασικές συναρτήσεις Mathematica µη µαθηµατικές FullForm, Attributes, Clear, Remove,?, Head, Options, Trace, Print, Plot, Global, Context, $Context, $ContextPath, Module, If, Do, While, TableForm, MatrixForm, ColumnForm, Which, Map, Apply, Scan, Nest, NestList, Switch, /., //, //., ;, ==,!=, /;, <> (το τελευταίο είναι ένωση δυο strings)τι δουλειά κάνει η την µνήµη του πυρήνα του Mathematica απο τις τιµές των µεταβλητών που έχουν εως τώρα ορισθεί. Με την ;(ελληνικό ερωτηµατικό) µπορούµε να εκτελέσουµε τις εντολές η µια µετά την άλλη. Λογικοί σύνδεσµοι., Or, &&, And, Not, Xor Πως ορίζουµε τις δικές µας συναρτήσεις µε := ή µε το να ορίσουµε µια pure function µε χρήση της # και του & στο τέλος του ορισµού(ή ισοδύναµα µε χρήση της Function). Βασικές συναρτήσεις για να αυξάνουµε την ακρίβεια ή την επακρίβεια ώ- στε να αποφύγουµε τα µεγάλα σφάλµατα στους υπολογισµούς. Precision, SetPrecision, Accuracy, SetAccuracy, AccuracyGoal, PrecisionGoal, MaxSteps, MaxRecursion, MaxIterations, WorkingPrecision, $MachinePrecision, $MachineEpsilon, $MaxMachineNumber, $MinMachineNumber, MachineNumberQ, $MinNumber, MaxNumber Ισχύει Precision[x]== RealExponent[x]+Accuracy[x] όπου µε RealExponent[x] εννούµε Log[10,Abs[x]] Συναρτήσεις που επηρεάζουν ή παρακολουθούν τη ϱοή εκτέλεσης εντολών Timing, TimeConstrained, MemoryConstrained, $RecursionLimit, $IterationLimit, Break, Return, Continue, Print, Trace, Pause Ορισµοί : the precision of an approximate real number is the effective number of decimal digits in it which are treated as significant for computations. The accuracy is the effective number of these digits which appear to the right of the decimal point. Note that to achieve full consistency in the treatment of numbers, precision and accuracy often have values that do not correspond to

2 integer numbers of digits. Βασικά πρέπει να ϑυµόµαστε ότι µια µή ακριβή αριθµητική ποσότητα έστω x έχει τιµή πιθανόν όχι αυτή που ϐλέπουµε στην ο- ϑόνη µας αλλά κάποια άλλη που ϐρίσκεται στο διάστηµα (x d 2, x + d 2 ) όπου 1 P recision[x] d = = Abs[x]10 10 Accuracy[x] Βασικές συναρτήσεις για τα µαθηµατικά. SameQ, Abs, Plus, Times, Log, Sum, NSum, Product, Exp, Sqrt, Power, Random, N, Simplify, FullSimplify, Limit, NLimit, Det, BaseForm, MantissaExponent, RealExponent, ScientificForm, NumberForm, ^^ Η τελευταία χρησιµοποιείται όταν ϑελουµε να εισάγουµε αριθ- µούς σε δυαδική µορφή στο Mathematica. π.χ. 2 ˆˆ ˆˆ100==6.25(οι δυο πρώτοι στο δυαδικό και το άθροισµα στο δεκαδικό σύστηµα) Τι δουλειά κάνει η συνάρτηση N[ ] π.χ N[ (3/7)^20], N[(3/7)^20, 23] προσοχή άλλο το N[(3/7)^20, 23] και αλλο το N[N[(3/7)^20], 23] Τι δουλειά κάνει η Rationalize[ ] π.χ Rationalize[N[(3/7)^20, 23],0 ] Ποιές είναι οι listable συναρτήσεις.οι περισσότερες built-in µαθηµατικές συναρτήσεις είναι Listable. Π.χ. η ˆ ( Power) οι Exp, Log π.χ. : Attributes[Log] : {Listable, NumericFunction, Protected} Παραδείγµατα Log[{a, b, c}] δίνει {Log[a], Log[b], Log[c]} Η f[x_] := If[x > 0, Sqrt[x], Sqrt[-x]]; δεν είναι Listable f[{3, 0, -2}]. Οπότε αναγκαζόµαστε να δώσουµε SetAttributes[f, Listable]; f[{3, 0, -2}] {Sqrt[3], 0, Sqrt[2]}. είτε και την εντολή Map δηλ. την ή την MapAt που κάνουν την ίδια δουλειά. Συναρτήσεις για Μιγαδικούς Conjugate, Abs, Re, Im, Arg, CompleteExpand, ComplexExpand (η τελευταία έχει option TargetFunctions) υνατότητες της Plot. π.χ Clear[g]; g[x_,y_]:=sqrt[sin[x] ^2+Sin[y]^2] Plot3D[g[x,y],{x,-5,5},{y,-5,5}] Χρήσιµες ContourPlot, ContourPlot3D, ParametricPlot, PolarPlot, Inequality- Plot, ImplicitPlot(στη έκδοση 6 έχουν οι δύο τελευταίες αντικατασταθεί µε την RegionPlot), FilledPlot(έχει καταργηθεί στην 6), Graphics, Graphics3D Σχετικές Χρήσιµες Εντολές για µελέτη συναρτήσεων µαζί µε την Plot: Animate, Evaluate, FindMinimum, FindMaximum, Maximize, Minimize, LinearProgramming Οι ListPlot, LabeledListPlot, TextListPlot, ListPlot3D, ListCotourPlot χρησιµοποιούνται για παράσταση λιστών(µερικές απάυτές έχουν τροποποιηθεί στην έκδο-

3 ση 6). Τα πιο σπουδαία Options της Plot είναι AspectRatio, Axes, AxesLabel, AxesStyle, LabelStyle, FrameLabel, AxesOrigin, PlotLabel, PlotStyle, PlotRange, Plot- Points, DisplayFunction, Frame, ColorFunction, Ticks, PlotLegend, Epilog Άλλες χρήσιµες συναρτήσεις για γραφικά : Graphics, Show, GraphicsArray, DisplayTogether Μερικά επιπλέον Options της Plot3D είναι FaceGrids, Mesh, ViewPoint, Shading Λίστες. Βασικές συναρτήσεις : VectorQ, List, Range, Table, Array, Length, Sequence Πως εισάγουµε στοιχεία µέσα σε µια λίστα Insert[list,elem,positions] π.χ Insert[{a, b, c, d, e}, x, 3] {a, b, x, c, d, e}, Insert[{{a, b}, {c, d}}, x, {2, 1}] {{a, b}, {x, c, d}} Insert[{a, b, c, d, e}, x, {{1}, {3}, {-1}}] {x, a, b, x, c, d, e, x} First, Last, Part, Drop, Rest, Extract Prepend[ ], Append[ ], AppendTo[ ], Position[b,6], Sort[list], Max[list], Min[list], Join, Union, Intersection, Partition[list,anaN], Flatten[list], Split[list], Permutation[list], Select[d,critirio], Take[list,what], Norm[d, Infinity], Norm[d,1] Delete. Π.χ. Delete[{{a, b}, {c, d}}, {2, 1}] {{a, b}, {d}} Cases Με list[[i]] δηλώνουµε το i -στό στοιχείο της λίστας, ενώ µε list[[2; ; 5]] ή ισοδύνα- µα list[[range[2, 5]]] µπορούµε να πάρουµε τα στοιχεία της λίστας µε το όνοµα list απο το 2ο έως το 5ο. Βασικές πράξεις στους πίνακες. MatrixQ, IndentityMatrix, DiagonalMatrix, MatrixForm,.(Dot), Det, Cross, Transpose, Inverse, Conjugate, Diagonal(νέα συνάρτηση στην έκδοση 6, ϐρίσκει την διαγώνιο ενος πίνακα) Άλλες πράξεις στους πίνακες MatrixPower[d,10] Η MatrixExp[A] δίνει το e A όπου Α είναι ένας πίνακας. Περισσότερες συναρτήσεις για πίνακες : Απαλοιφή Gauss Rowreduce[matrix] Η τάξη ενός πίνακα MatrixRank[m] CharacteristicPolynomila[matrix,x] Παραγοντοποιήσεις Πινάκων µε JordanDecomposition, LUDecomposition, QRDecomposition, SchurDecomposition Ιδιοτιµές και ιδιοδιανύσµατα: Eigenvalues[squarematrix], Eigenvectors[squarematrix]. Το Eigensystem[m] δίνει µια λίστα της µορφής {values,vectors} απο τις ιδιοτιµές και τα ιδιοδυανύσµατα του τερτραγωνικού πίνακα m.

4 CharacteristicPolynomial Θεωρία Αριθµών: GCD, ExtendedGCD, LCM, IntegerPart, IntegerDigits, IntegerExponent, Exponent, Random, FactorInteger, Divisors, Round, Floor, Ceiling, Modulus, CoprimeQ, Divisable, NumberQ, NumericQ, Sum, IntegerQ, EvenQ, OddQ, PrimeQ, Positive, NonPositive, Negative, NonNegative, Prime, PrimePi, PrimeQ, Euler- Phi, Quotient, Mod, QuotientRemainder, PowerMod, Quotient[m,n], Chineze- Remainder, PolynomialRemainder[p,q,x], Factorial, Element, Integers, Rationals, Reals, Complexes, Algebraics, MoebiusMu, JacobiSymbol, DivisorSigma, PrimitiveRoot Παρατήρηση : Η Mod[m,n,d] δίνει ενα αποτέλεσµα x έτσι ώστε d x < d + n και x (mod n) = m (mod n). Βασικές αλγεβρικές πράξεις ή options µε πολυώνυµα p. PolynomialQ, Expand[p], Factor[p], Collect[p], Decompose, ExpandNumerator[p], ExpandDenominator[p], Simplify, Roots, Eliminate, PowerExpand, Together, Apart, Cancel, Variables, Exponent, Coefficient, CoefficientList, PolynomialQuotient, PolynomilaRemainder, PolynomialMod, PolynomialGCD, PolynomilaLCM, Extension Βασικές τριγωνοµετρικές πράξεις Cos[a], Sin[a], Tan[a], Cot[a](συνεφαπτοµένη), Csc[a], TrigFactor[p], TrigExpand[p], ArcSin, ArcTan, Sinh, Tanh, TrigReduce, TrigToExp, ExpToTrig, Cos[90 Degree] Προσέξτε ένας ϐαθµός σε ακτίνια είναι ίσος περίπου µε N[Degree, 50]= Επίλυση εξισώσεων και συστηµάτων Solve[ eqns, listofvariables], Solve[ eqns&& Modulus==3, listofvariables], NSolve, Reduce, FindRoot, LenearSolve Σχετικές Χρήσιµες Εντολές και options : ToRules, Factor, Eliminate, Inverse- Functions Επίλυση διαφορικών DSolve[eqns, y,x], NDSolve ιαφόριση και Ολοκλήρωση f [x], D[f[x],x], D[f[x],x,4] D[f[x],x]/.x->3, Integrate[f[x],x], Integrate[f[x],{x,0,1}], NIntegrate[f[x],{x,0,Infinity}], Βλέπε και τα options NonConstants, Assumptions Ορια, Σειρές και αθροίσµατα Series[f[x],{x,0,4}], Limit[f[x],x->\[Infinity]], Limit[g[x],x->1, Direction->-1], Sum[f[k],{k,1,5}], Product[f[k],{k,1,5}] Σχετικές Εντολές : Normal, SeriesCoefficient, NLimit Στατιστική Mean[list], Total[list], Variance[list], StandardDeviation[ ]

5 Παρεµβολή και προσέγγιση InterpolatingPolynomial, Interpolation, Fit

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ

EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ ηµιουργία ενός m-αρχείου Εισαγωγή των δεδοµένων στο αρχείο Αποθήκευση του αρχείου Καταχώρηση των δεδοµένων του αρχείου από το λογισµικό Matlab, γράφοντας απλά το όνοµα

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010 Ι ΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙ ΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Ανάθεση: Πέµπτη 15 Απριλίου 2010, 11:00 (πρωί)

Διαβάστε περισσότερα

ιαχείριση Πληροφοριών στο ιαδίκτυο

ιαχείριση Πληροφοριών στο ιαδίκτυο ιαχείριση Πληροφοριών στο ιαδίκτυο Εργαστήριο (Φυλλάδιο 8) ΤΕΙ Καβάλας - Σχολή ιοίκησης & Οικονοµίας Τµήµα ιαχείρισης Πληροφοριών ιδάσκων: Μαρδύρης Βασίλειος, ιπλ. Ηλ. Μηχανικός & Μηχ. Υπολογιστών, MSc

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΠΕΜΠΤΟ Triggers, Stored procedures Γιώργος Μαρκοµανώλης Περιεχόµενα Triggers-Ενηµέρωση δεδοµένων άλλων πινάκων... 1 Ασφάλεια...

Διαβάστε περισσότερα

Pascal Βασικοί τύποι δεδοµένων

Pascal Βασικοί τύποι δεδοµένων Pasal Βασικοί τύποι δεδοµένων «ΜΗ ΕΝ ΠΟΛΛΟΙΣ ΟΛΙΓΑ ΛΕΓΕ, ΑΛΛ ΕΝ ΟΛΙΓΟΙΣ ΠΟΛΛΑ» Σηµαίνει: "Μη λες πολλά χωρίς ουσία, αλλά λίγα που να αξίζουν πολλά" (Πυθαγόρας) Κουλλάς Χρίστος www.oullas.om oullas 2 Στόχοι

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2008 ΔΙΔΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙΔΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Παράδοση: Πέμπτη 10 Απριλίου 2008, 24:00 (μεσάνυχτα)

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Βασικά στοιχεία ενός προγράµµατος της γλώσσας Fortran

Κεφάλαιο 3ο: Βασικά στοιχεία ενός προγράµµατος της γλώσσας Fortran Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 3ο: Βασικά στοιχεία ενός προγράµµατος της γλώσσας Fortran 3.1 Μορφή Προγράµµατος Τα προγράµµατα Fortran γράφονται σε αρχείο

Διαβάστε περισσότερα

No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3

No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3 Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 0 5 Ασκήσεις παραγώγισης γινοµένου No Άσκηση παραγώγισης γινοµένου

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΟΠΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΠAΡΑΘΥΡΙΚΟ ΠΕΡΙΒΑΛΛΟΝ με τη Γλώσσα Προγραμματισμού VISUAL BASIC (1 ο ΕΠΙΠΕΔΟ)

ΔΟΜΗΜΕΝΟΣ ΟΠΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΠAΡΑΘΥΡΙΚΟ ΠΕΡΙΒΑΛΛΟΝ με τη Γλώσσα Προγραμματισμού VISUAL BASIC (1 ο ΕΠΙΠΕΔΟ) Γενικός Σκοπός Το αναλυτικό πρόγραμμα έχει ως γενικό σκοπό να δώσει στους μαθητές τις απαιτούμενες γνωστικές, κριτικές και αναλυτικές δεξιότητες ώστε να είναι ικανοί να χρησιμοποιούν τους υπολογιστές για

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C

ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C 1 Εισαγωγή Ο προγραμματισμός είναι μια διαδικασία επίλυσης προβλημάτων με χρήση Η/Υ. Ένα πρόγραμμα είναι ένα σύνολο εντολών κάποιας γλώσσας προγραμματισμού,

Διαβάστε περισσότερα

Αναλυτικός Πίνακας Περιεχομένων

Αναλυτικός Πίνακας Περιεχομένων Αναλυτικός Πίνακας Περιεχομένων 9 Αναλυτικός Πίνακας Περιεχομένων ΣΥΝΟΠΤΙΚΑ ΠΕΡΙΕΧΟΜΕΝΑ...7 ΑΝΑΛΥΤΙΚΟΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ...9 ΠΡΟΛΟΓΟΣ...15 1. ΕΙΣΑΓΩΓΗ ΣΤO EXCEL ΤΗΣ MICROSOFT...19 1.1. ΕΙΣΑΓΩΓΗ...20

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ-ΓΛΩΣΣΑ C ΑΤΕΙ (ΝΑ ΕΚΤΕΛΕΣΤΟΥΝ ΤΑ ΠΑΡΑΚΑΤΩ ΜΕ ΧΡΗΣΗ ΤΟΥ LCC COMPILER)

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ-ΓΛΩΣΣΑ C ΑΤΕΙ (ΝΑ ΕΚΤΕΛΕΣΤΟΥΝ ΤΑ ΠΑΡΑΚΑΤΩ ΜΕ ΧΡΗΣΗ ΤΟΥ LCC COMPILER) ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ-ΓΛΩΣΣΑ C ΑΤΕΙ (ΝΑ ΕΚΤΕΛΕΣΤΟΥΝ ΤΑ ΠΑΡΑΚΑΤΩ ΜΕ ΧΡΗΣΗ ΤΟΥ LCC COMPILER) 1. Να γραφεί πρόγραµµα το οποίο να αναγνωρίζει αν κάποιος χαρακτήρας είναι ψηφίο, κεφαλαίο γράµµα ή

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΡΟΛΟΓΟΣ...17 ΕΙΣΑΓΩΓΗ...19 ΜΕΡΟΣ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟ ΟΛΟΓΙΑ ΣΧΕ ΙΑΣΗΣ 1.1 Μεθοδολογία σχεδίασης...25 1.2 Η διαδικασία της σχεδίασης...26 1.3 ηµιουργικότητα στη

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Βασικά Στοιχεία της Java

Βασικά Στοιχεία της Java Βασικά Στοιχεία της Java Παύλος Εφραιμίδης Java Βασικά Στοιχεία της γλώσσας Java 1 Τύποι Δεδομένων Η Java έχει δύο κατηγορίες τύπων δεδομένων: πρωτογενείς (primitive) τύπους δεδομένων αναφορές Java Βασικά

Διαβάστε περισσότερα

7.5 ΑΡΑΙΕΣ ΜΗΤΡΕΣ 290 7.5.1 Κατασκευή αραιών µητρών... 290 7.5.2 Πράξεις και συναρτήσεις αραιών µητρών... 294 7.5.3 Συναρτήσεις για γραφήµατα...

7.5 ΑΡΑΙΕΣ ΜΗΤΡΕΣ 290 7.5.1 Κατασκευή αραιών µητρών... 290 7.5.2 Πράξεις και συναρτήσεις αραιών µητρών... 294 7.5.3 Συναρτήσεις για γραφήµατα... Κ. Π Α Π Α Ρ Ρ Ι Ζ Ο Σ M A T L A B 6. 5 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π Ρ Ο Λ Ο Γ Ο Σ............. v Κ Ε Φ Α Λ Α Ι Ο 1 Β Α Σ Ι Κ Ε Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Ε Σ Τ Ο Υ M A T L A B 1 1.1 ΠΡΑΞΕΙΣ ΚΑΙ ΑΡΙΘΜΗΤΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

TI - 40 Collège II. Επιστημονική αριθμομηχανή. Γενικές πληροφορίες 40CII/OM/1L2/A. 1999-2002 Texas Instruments Incorporated

TI - 40 Collège II. Επιστημονική αριθμομηχανή. Γενικές πληροφορίες 40CII/OM/1L2/A. 1999-2002 Texas Instruments Incorporated 40CII/OM/1L2/A TI - 40 Collège II Επιστημονική αριθμομηχανή 1999-2002 Texas Instruments Incorporated Γενικές πληροφορίες Παραδείγματα: Τα παραδείγματα πληκτρολόγησης τα οποία αφορούν τις πολλαπλές λειτουργίες

Διαβάστε περισσότερα

Το «κλειστό» σύστημα. Ανοικτές επικοινωνίες... Εισαγωγή στην Τεχνολογία της Πληροφορικής. Εισαγωγή στην τεχνολογία της πληροφορικής

Το «κλειστό» σύστημα. Ανοικτές επικοινωνίες... Εισαγωγή στην Τεχνολογία της Πληροφορικής. Εισαγωγή στην τεχνολογία της πληροφορικής ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Εισαγωγή στην Τεχνολογία της Πληροφορικής ΓΙΩΡΓΟΣ Ν. ΓΙΑΝΝΟΠΟΥΛΟΣ Λέκτορας στο Πανεπιστήμιο Αθηνών gyannop@law.uoa.gr Το «κλειστό» σύστημα ΕΙΣΟΔΟΣ ΕΠΕΞΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Κεφάλαιο 2.6: Είσοδος / Έξοδος εδοµένων, Μορφοποίηση εδοµένων Εξόδου. ( ιάλεξη 7) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 2.6: Είσοδος / Έξοδος εδοµένων, Μορφοποίηση εδοµένων Εξόδου. ( ιάλεξη 7) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 2.6: Είσοδος / Έξοδος εδοµένων, Μορφοποίηση εδοµένων Εξόδου ( ιάλεξη 7) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 1 Είσοδος/ Έξοδος Σε σχεδόν όλα τα προγράµµατα πρέπει να πάρουµε κάποια δεδοµένα και να δώσουµε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών Προγραµµατισµός Αρχεία εντολών (script files) Τυπικό hello world πρόγραµµα σε script ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών disp( ( 'HELLO WORLD!'); % τυπική εντολή εξόδου

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions)

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αυγερινός Αραμπατζής avi@ee.duth.gr www.aviarampatzis.com Βάσεις Δεδομένων Stored Procedures 1 Stored Routines (1/2) Τμήματα κώδικα τα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

3. Η µερική παράγωγος

3. Η µερική παράγωγος 1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

SPSS Statistical Package for the Social Sciences

SPSS Statistical Package for the Social Sciences SPSS Statistical Package for the Social Sciences Ξεκινώντας την εφαρμογή Εισαγωγή εδομένων Ορισμός Μεταβλητών Εισαγωγή περίπτωσης και μεταβλητής ιαγραφή περιπτώσεων ή και μεταβλητών ΣΤΑΤΙΣΤΙΚΗ Αθανάσιος

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Τι είναι τα υποπρογράμματα Αυτόνομες μονάδες κώδικα Γραμμένα από τον χρήστη Η δομή

Διαβάστε περισσότερα

- S P E C I A L R E P O R T - EMPLOYMENT. -January 2012- Source: Cyprus Statistical Service

- S P E C I A L R E P O R T - EMPLOYMENT. -January 2012- Source: Cyprus Statistical Service - S P E C I A L R E P O R T - UN EMPLOYMENT -January 2012- Source: Cyprus Statistical Service This Special Report is brought to you by the Student Career Advisory department of Executive Connections. www.executiveconnections.eu

Διαβάστε περισσότερα

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας.

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας. Το πρόγραµµα λογιστικών φύλλων (spreadsheet) Microsoft Excel ενσωµατώνει ρουτίνα επίλυσης προτύπων γραµµικού προγραµµατισµού. Η ρουτίνα ονοµάζεται Solver και χρησιµοποιεί το λογιστικό φύλλο του Microsoft

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό Εισαγωγή στην Fortran ΕΠΛ031 Εισαγωγή στον Προγραμματισμό Νέαρχος Πασπαλλής Επισκέπτης Ακαδημαϊκός (Λέκτορας) nearchos@cs.ucy.ac.cy Γραφείο #B120, Τηλ. ext. 2744 FORTRAN: Ιστορική Αναδρομή 1954 1957, πρώτος

Διαβάστε περισσότερα

ΠΡΟΓΡΜΜΑΤΑ ΣΕ C. Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση:

ΠΡΟΓΡΜΜΑΤΑ ΣΕ C. Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση: ΠΡΟΓΡΜΜΑΤΑ ΣΕ C Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση: int b_to_d(int dyad[16]) που δέχεται ως είσοδο έναν θετικό ακέραιο δυαδικό αριθμό με τη μορφή πίνακα δυαδικών ψηφίων και επιστρέφει τον

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα)

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 14-1 Περιεχόμενο

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΦΥΣ 145 - Διαλ.03. Ø Εντολές ελέγχου και λογικής. Ø Εντολές µεταφοράς. Ø Βρόγχοι επανάληψης εντολών. Ø Βρόγχοι επανάληψης µε λογικές σχέσεις

ΦΥΣ 145 - Διαλ.03. Ø Εντολές ελέγχου και λογικής. Ø Εντολές µεταφοράς. Ø Βρόγχοι επανάληψης εντολών. Ø Βρόγχοι επανάληψης µε λογικές σχέσεις ΦΥΣ 145 - Διαλ.03 1 Ø Εντολές ελέγχου και λογικής Ø Εντολές µεταφοράς Ø Βρόγχοι επανάληψης εντολών Ø Βρόγχοι επανάληψης µε λογικές σχέσεις Εντολές Ελέγχου και Λογικής ΦΥΣ 145 - Διαλ.03 2 q Τα assignment

Διαβάστε περισσότερα

Visual Basic Βασικές Έννοιες

Visual Basic Βασικές Έννοιες Visual Basi Βασικές Έννοιες «Είδα στον ύπνο µου ότι η ζωή είναι χαρά. Ξύπνησα και είδα ότι είναι χρέος. Αγωνίστηκα και είδα ότι τo χρέος είναι χαρά.» Ραµπριτανάθ Ταγκόρ Κουλλάς Χρίστος www.oullas.om oullas

Διαβάστε περισσότερα

M files RCL Κυκλώματα

M files RCL Κυκλώματα M files RCL Κυκλώματα Στο MATLAB γράφουμε τις δικές μας εντολές και προγράμματα μέσω αρχείων που καλούνται m-files. Έχουν το επίθεμα.m π.χ compute.m Υπάρχουν δύο είδη m-files: τα αρχεία script (script

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 16 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

Κεφάλαιο 10ο: ιαδικασιακός

Κεφάλαιο 10ο: ιαδικασιακός Diadikasiakos_Programmatismos.nb Κεφάλαιο 0ο: ιαδικασιακός Προγραµµατισµός 0. Ανάθεση τιµών σε µεταβλητές Ο τελεστής ανάθεσης (=, :=) χρησιµοποιείται για να τοποθετήσουµε το αποτέλεσµα µιας έκφρασης (τιµή

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Εισαγωγή στην FORTRAN. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Εισαγωγή στην FORTRAN. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στην FORTRAN Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Fortran FORmula TRANslation: (Μία από τις πρώτες γλώσσες τρίτης γενιάς) Εκδόσεις FORTRAN (1957) FORTRAN II (1958) FORTRAN III

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Program ΕΜΒΑ ΟΝ_ΚΥΚΛΟΥ Variables double: p, R, E Begin π 3.14 Print ώστε ακτίνα κύκλου Input R Print Εµβαδόν κύκλου Ε π*r*r Print Ε End program

Program ΕΜΒΑ ΟΝ_ΚΥΚΛΟΥ Variables double: p, R, E Begin π 3.14 Print ώστε ακτίνα κύκλου Input R Print Εµβαδόν κύκλου Ε π*r*r Print Ε End program Άσκηση 1.1 Το εµβαδόν ενός κύκλου δίνεται από τον τύπο Ε=π*R 2 ; όπου R η ακτίνα του κύκλου. Να δοθεί αλγόριθµος ο οποίος να κάνει τα παρακάτω: 1) Εµφανίζει το µήνυµα «ώστε ακτίνα κύκλου» και διαβάζει

Διαβάστε περισσότερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Βάσεις δεδομένων (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Ευρετήρια Σκανδάλες PL/SQL Δείκτες/Δρομείς 2 Αποθήκευση δεδομένων Πρωτεύουσα αποθήκευση Κύρια μνήμη (main memory) ή κρυφή μνήμη

Διαβάστε περισσότερα

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014 LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

Ο πίνακας συμβόλων (symbol table) είναι μία δομή, όπου αποθηκεύεται πληροφορία σχετικά με τα σύμβολα του προγράμματος

Ο πίνακας συμβόλων (symbol table) είναι μία δομή, όπου αποθηκεύεται πληροφορία σχετικά με τα σύμβολα του προγράμματος HY340 : ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ HY340 : ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ Φροντιστήριο 3 ο Symbol Table & Scopes Ι ΑΣΚΩΝ Αντώνιος Σαββίδης

Διαβάστε περισσότερα

Διάλεξη 6: Δείκτες και Πίνακες

Διάλεξη 6: Δείκτες και Πίνακες Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 6: Δείκτες και Πίνακες (Κεφάλαιο 12, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 6-1 Περιεχόμενο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ 9 40 4 ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 4 4 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ. Να βρείτε την αριθµητική τιµή των παραστάσεων. i) α -α 6α, ii) 4α, για α iii) αβ α β (αβ),

Διαβάστε περισσότερα

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10)

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10) ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Γ.ΝΙΤΟΔΑΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα

Packet Tracer. ηµιουργία τοπολογίας Βήµα 1: Εκτελούµε το Packet Tracer

Packet Tracer. ηµιουργία τοπολογίας Βήµα 1: Εκτελούµε το Packet Tracer Packet Tracer Το Packet Tracer είναι ένα πρόγραµµα που προσοµοιώνει τη λειτουργία ενός δικτύου και των πρωτοκόλλων µε τα οποία λειτουργεί. Αναπτύχθηκε από τον Dennis Frezzo και την οµάδα του στη Cisco

Διαβάστε περισσότερα

Βάσεις Δεδομένων (Databases)

Βάσεις Δεδομένων (Databases) Βάσεις Δεδομένων (Databases) ΕΠΛ 342 Χειμερινό Εξάμηνο 2011 Διδάσκοντες Καθηγητές Γιώργος Σαμάρας (ΧΩΔ01 109) Δημιουργία Πεδίων Ορισμού Πεδίο Ορισμού είναι συστατικό του σχήματος για τον ορισμό των μακροεντολών

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

ΣΥΝΤΟΜΟΣ Ο ΗΓΟΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ WINDOWS MOVIE MAKER

ΣΥΝΤΟΜΟΣ Ο ΗΓΟΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ WINDOWS MOVIE MAKER ΣΥΝΤΟΜΟΣ Ο ΗΓΟΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ WINDOWS MOVIE MAKER Το πρόγραµµα windows movie maker είναι ένα εύκολο στη χρήση πρόγραµµα µοντάζ το οποίο µπορούµε να χρησιµοποιήσουµε για να φτιάξουµε τις δικές

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΜΟΚΡΙΤΟΣ / DEMOKRITOS NATIONAL CENTER FOR SCIENTIFIC RESEARCH ΕΡΓΑΣΤΗΡΙΟ ΟΚΙΜΩΝ ΗΛΙΑΚΩΝ & ΑΛΛΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ LABORATORY OF TESTIN SOLAR & OTHER ENERY

Διαβάστε περισσότερα

7. Βασικά στοιχεία προγραµµατισµού.

7. Βασικά στοιχεία προγραµµατισµού. 7. Βασικά στοιχεία προγραµµατισµού. ΗΜ01-Θ1Γ Δίνονται οι παρακάτω έννοιες: 1. Λογικός τύπος δεδοµένων 2. Επιλύσιµο 3. Ακέραιος τύπος δεδοµένων 4. Περατότητα 5. Μεταβλητή 6. Ηµιδοµηµένο 7. Πραγµατικός τύπος

Διαβάστε περισσότερα

To SIMULINK του Matlab

To SIMULINK του Matlab ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ Β ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΘ. Κ. ΚΥΠΑΡΙΣΣΙΔΗΣ, ΛΕΚΤΟΡΑΣ Χ. ΧΑΤΖΗΔΟΥΚΑΣ Τ.Θ. 472 54 124 ΘΕΣΣΑΛΟΝΙΚΗ Μάθημα: ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΩΝ Ακαδ.

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

(Μέρος 3:Γλώσσα Ορισµού, Γλώσσα Τροποποίησης, Ενσωµατωµένη SQL) Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2

(Μέρος 3:Γλώσσα Ορισµού, Γλώσσα Τροποποίησης, Ενσωµατωµένη SQL) Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2 Η Γλώσσα SQL (Μέρος 3:Γλώσσα Ορισµού, Γλώσσα Τροποποίησης, Ενσωµατωµένη SQL) Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Η γλώσσα SQL H SQL έχει διάφορα τµήµατα: Γλώσσα Ορισµού εδοµένων (ΓΟ ) Γλώσσα

Διαβάστε περισσότερα

www.cloudisologismos.gr APPLICATIONMANUAL v 0.1

www.cloudisologismos.gr APPLICATIONMANUAL v 0.1 www.cloudisologismos.gr APPLICATIONMANUAL v 0.1 ΠΕΡΙΕΧΟΜΕΝΑ 01 02 03 04 05 06 07 08 09 Παρουσίαση Σύνδεση Διαχειριστικό Διαχείριση Αναρτήσεων Εισαγωγή Ανάρτησης Διαχείριση Αρχείων Διαχείριση Χρηστών Διαχείριση

Διαβάστε περισσότερα

Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος.

Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος Σημειώσεις Matlab Γενικά a = 2 Εκχώρηση της τιμής 2 στη μεταβλητή a. b = 3; Εκχώρηση της τιμής

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΜΙΚΡΟ ΥΠΟΛΟΓΙΣΤΕΣ

ΟΙΚΟΝΟΜΕΤΡΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΜΙΚΡΟ ΥΠΟΛΟΓΙΣΤΕΣ «ΣΠΟΥΔΑΙ», Τόμος 43, Τεύχος 3ο-4ο, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 43, No 3-4, University of Piraeus ΟΙΚΟΝΟΜΕΤΡΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΜΙΚΡΟ ΥΠΟΛΟΓΙΣΤΕΣ Ενημερωτική Παρουσίαση* Abstract A review is presented

Διαβάστε περισσότερα

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL 1. Στο Tools menu, click Solver. 2. Εάν η επιλογή Solver δεν είναι διαθέσιµη στο Tools menu, πρέπει να το

Διαβάστε περισσότερα