FIZIKALNE LASTNOSTI ZEMLJIN IN HRIBIN

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "FIZIKALNE LASTNOSTI ZEMLJIN IN HRIBIN"

Transcript

1 FIZIKALNE LASTNOSTI ZEMLJIN IN HRIBIN I. ZEMLJINE W g g W W Dfazni ali trfazni itm. Prznt: g g g... kličnik pr (raln d 4 d 0.4) g g g n n n n n n n... dlž pr (trtičn d d 0 raln d 0.8 d 0.) n n n

2 .0 Zaičnt S r n n S r... tpnja zaičnti ( praki 0 zirma ali 0 zirma 00%).0 Zrnat granulmtrični ta MIT Klaifikacija d d rta znaka dlit zmljin 60 mm 0 dbl 0 6 gramz G rdnji 6 drbn 0.6 dbl pk S rdnji drbn dbl mlj M rdnji drbn dbla glina C rdnja drbna Kličnik nakmrnti: C u d d 60 0 Kličnik ukriljnti: d C c d d

3 4. lažnt knitnca lzn mj: W (%) W S r lažnt zmljin (d 0 d 00 %) 0 kn/m 7 kn/m L... mja židkti P... mja platičnti... mja krčnja S Indk platičnti: I P (%) L P

4 Indk knitnc: I C L I P L L P I C < 0... židk (ž.k.) I C 0... na mji md židk in gntn (platičn) knitnc 0 < I C <... lahk gntna (platična) knitnca (l.g.k.) < I < C... rdnj gntna (platična) knitnca (.g.k.) < I < C... tžk gntna (platična) knitnca (t.g.k.) I C... na mji md gntn (platičn) in pltrdn knitnc I >... pltrdna (p.k.) ali trdna (t.k.) knitnca C 5. Gtta: W S ( ) r n... prtrninka tža zmljin(d 5 d kn/m ) Kličnik rlatin gtt: D r max min ns max max 0 < D r < max min r Suha prtrninka tža: D W W ( ) 4

5 5 r r S S W W r D r S S

6 AC Klaifikacija zmljin Dblzrnat zmlj. Khrntn zmljin Šta gramzi pki mlji rgank glin GW SW ML OL CL P t GP SP MI OI CI GU SU MH OH CH GC SC GF c SF c GF SF Dblzrnat zmlj. Khrntn zmljin Šta gramzi pki mlji rgank glin GW SW ML OL CL P t GP SP MH OH CH GC SC GM SM Ona za klaifikacij nkhrntnih (dblzrnatih ali ipkih) zmljin j granulmtrični ta: čiti pki ali gramzi (SW SP SU in GW GP GU) č j p 0.06 < 5% dbr granulirani gramzi (GW) č j < C c < in C u > 4 dbr granulirani pki (SW) č j < C c < in C u > 7 rti GC in SC č j glinat zi zmrni kličini (5 d %). Ona za klaifikacij khrntnih (drbnzrnatih) zmljin ta mja židkti in indk platičnti pri rgankih zmljinah pa š bara (črna) in nj (mrad). 6

7 7

8 8

9 PREPUSTNOST ZEMLJIN k (cm/)... kficint dprputnti Mja md manj in blj prputnimi zmljinami j pri k 0-7 cm/ Edmtr prizku prmnljiim hidraličnim padcm: k A A h H 0 ln η0 t H Prmamtr prizku kntantnim hidraličnim padcm: k Q h t A H η 0 η T T T 0 Zrnat Hazn ali USBR: C k ( cm / ).6 d d 0 ( mm) ali k 0 6 Približn rdnti kficinta prputnti: rta zmljin k cm/ čiti gramzi 00 dbl pk pščni gramzi 0 - drbni pki pščni mlji mlji zaglinjni mlji glin <

10 khrntnih zmljinah dprputnt prminja dinti d prmmb fktinih napttnih tan zirma prmmb przni zmljin. Pgt lja naldnja int: k k xp( k ) Kficint dprputnti dlčam tudi na trnu črpalnimi prizkui ( tlh pd nijm taln d) z nalialnimi prizkui ( plath nad taln d) in z diipacijkimi prizkui pri CPT razikaah. (a) črpalni prizkui: Enačba Dupuita: Q H h0 kπ ln R ln r 0 k Q (ln r π ( h ln r h ) ) Empirični brazc Dirna: k A t y0 ln A f ( t y) A y D H 0

11 (b) nalialni prizkui: k 0.4Q 4H H lg > H D D 5 k 4( t D t ln ) D 4 D 4 ( H ) ln( H )

12

13 DEFORMABILNOST ZEMLJIN Edmtr Mdul tiljiti M ali E d : aljati zrc išin cca cm in prmra cca 0 cm j dmtru klnjn z jklnim brčm zgraj in pdaj j mjn prputn przn plšč. rtikalna brmnit zrca pzrča tikanj zrca (izcjanj d). Kntrukcija takšnga aparata mgča razika dn md napttmi in dfrmacijami pbnih pgjih. Napttn tanj j nimtričn dfrmacijk pa linarn (prprčn bčn dfrmacij): P q? A h h ρ h r r 0 Pri aki brmnki tpnji ki j prailma za faktr da čja d prdhdn pazujm čan prmmb išin zrca (pdk ρ ali pcifičn rtikaln dfrmacij ali prznt ) aljatga zrca d kundarn faz knlidacij (čana inica mra priti lgaritmičn prmic).

14 4

15 Prikati mram bnašanj zrca za a pričakana napttna tanja tmljnih tlh (ničn prtn pričakan; za naraščanj in p ptrbi za zmanjšanj btžb tmljnih tal). Rzultat dmtrk prika j kriulja tiljiti ρ ρ ( ) zirma ( ) iz katr lahk izračunam za pričakan prmmb rtikalnih fktinih naptti tmljnih tlh mdul tiljiti. ' z zz M E hα ( β zz α d h Mdul tiljiti gramznih in pščnih zmljinah cnim iz rzultat trnkih razika (SPP CPT primtr) ali tudi prdn iz kličnika rlatin gtt D. r α ) 5

16 6

17 Trina drnirana prikaa Kmprijki in trižni mdul (K in G) Prikaa dn md napttmi dfrmacijami in čam na aj prizmatičnih zrcih (prai trini aparati) ali na aj aljatih zrcih (klaični trini aparati). klaičnih trinih aparatih tlačn brmnjujm aljat zrc (prmra d.6 cm in išin h 7 cm ali prmra d 0 cm in išin h 0 cm) tlakm kapljin in š ddatn mri i zrca. Napttn in dfrmacijk tanj zrcu j nimtričn. Pri izbranmu napttnmu tanju pazujm rtikaln prmik (krčk) zrca in prmmb prtrnin zrca tlik čaa da j džna primarna faza knlidacij. P A h h 0 0 7

18 Prikati mram bnašanj zrc za a pričakana napttna tanja tmljnih tlh (ničn prtn pričakan; za naraščanj in p ptrbi za zmanjšanj btžb tmljnih tal). 8

19 9 Za prmmb napttnga tanja: α β in α β izračunam mdula K in G p načbah: cnt K τ 0 cnt G τ τ S krgci značn ktadrk naptti in dfrmacij. ) ( τ ( ) ( ) ( ) ( ) 6 zx yz xy xx zz zz yy yy xx zz yy xx τ ) ( ( ) ( ) ( ) ( ) 6 zx yz xy xx zz zz yy yy xx zz yy xx

20 0

21

22 Trina ndrnirana prikaa Strižni ditrzijki mdul (G d ) Prikaa ptka na pdbn način kt ptka drnirana prikaa. Bitna razlika md ndrniran in drniran prika j da primru ndrniran prika prprčn lumnk dfrmacij zrca (zaprt drnaž) in da j takšna prikaa bitn hitrjša. A P h h Za prmmb napttnga tanja: α β in α β izračunam mdula K d in G d p načbah: 0) ( 0) ( 0 d K cnt G d τ τ

23 Rlacij md pamznimi dfrmacijkimi paramtri: E 9KG ν K G K G (K G) E ν d G d d 0.5 K E E G ( ν ) ( ν ) G d G E d E ( ν ) M E d 4G K E( ν ) ( ν )( ν )

24 TRDNOST ZEMLJIN Culmb trižni zakn: τ c tanϕ rhunka trižna dprnt: Rzidualna trižna dprnt: τ τ f c f tanϕ f r cr tanϕ r 4

25 Drnirana trižna trdnt: τ c tanϕ Dlčam j z dirktnimi trižnimi prikaami (tranlatrni zirma rtacijki aparati) hitr knlidiran trin prika in na trnu (SPP CPT). 5

26 Ndrnirana trižna trdnt: τ c tan ϕ ϕ 0 τ u u u u u c u Dlčam j z nnimi tlačnimi prikaami z ndrniran knlidiran trin prika kriln nd in na trnu (SPP krilna nda CPT). pli prknlidacij na trižn dprnt: 6

27 7

28 Kj kdaj in kak uprabljam pdatk fizikalnih latntih zmljin? Dfrmacijki paramtri: izračun napttnih tanj tmljnih tlh in zmljinkih bjktih izračun pdk tmljnih tal z. bjkt (začtni ali ditrzijki knlidacijki ali lumnki (frni) knčni ablutni tr difrnčni) Prputnt: čani razj pdk (knlidacija) znižanj taln d Trdntni paramtri: mjna napttna tanja tmljnih tlh in zmljinkih bjktih tabilntn analiz (kpi naipi dpnij...) dputna btžba tmljnih tal nilnt tmljnih tal ( začtnih ndrniranih pgjih p knčani knlidaciji drnirani pgji) zmljki pritiki (aktini paini mirni) btžba na pdprn kntrukcij nilnt zmljkih idr fizikaln latnti (prznt knitnca gtta... dfrmacijki prputntni in trdntni paramtri) čan prminjaj dinti d prmmb napttnih tanj tmljnih tlh zirma zmljinkih bjktih. S prmnljik ni kntantn rdnti. Prailma fizikaln latnti zmljin dfiniran na fktina napttna tanja (mdzrnki tlaki) l izjmma na ttalna napttna tanja. 8

29 9

Tεχνική Γεωλογία. : Χαρακτηρισμός. Άσκηση 1: Ταξινόμηση εδαφών με βάση το USCS. Άσκηση 2: Γεωτεχνική Τομή S.P.T.

Tεχνική Γεωλογία. : Χαρακτηρισμός. Άσκηση 1: Ταξινόμηση εδαφών με βάση το USCS. Άσκηση 2: Γεωτεχνική Τομή S.P.T. Tεχνική Γεωλογία Σειρά Ασκήσεων 2: Ταξινόμηση εδαφών και χρήση δοκιμών πρότυπης διείσδυσης : Χαρακτηρισμός Άσκηση 1: Ταξινόμηση εδαφών με βάση το USCS Άσκηση 2: Γεωτεχνική Τομή S.P.T. Δρ. Βαρ. Αντωνίου

Διαβάστε περισσότερα

Επιτραπέζια μίξερ C LINE 10 C LINE 20

Επιτραπέζια μίξερ C LINE 10 C LINE 20 Επιτραπέζια μίξερ C LINE 10 Χωρητικότητα κάδου : 10 lt Ναί Βάρος: 100 Kg Ισχύς: 0,5 Kw C LINE 20 Χωρητικότητα κάδου : 20 lt Βάρος: 105 Kg Ισχύς: 0,7 Kw Ναί Επιδαπέδια μίξερ σειρά C LINE C LINE 10 Χωρητικότητα

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R P ITU-R P (ITU-R 204/3 ( ) 1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55

Διαβάστε περισσότερα

1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z rešitvami

1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z rešitvami 1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z ršitvami 1.nalga: V spdnji tabli s pdan pvprčn msčn tmpratur zraka (T v ) in msčn kličin padavin (RR v mm) za pstaj Murska Sbta za bdbj

Διαβάστε περισσότερα

2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ

2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ 2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ 2.5.1. Εισαγωγή Το έδαφος περιέχει κόκκους διαφόρων μεγεθών και σε διάταξη που ποικίλλει. Από αυτή τη σύνθεση και τη δομή του εξαρτώνται οι μηχανικές του ιδιότητες,

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση

Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος

Διαβάστε περισσότερα

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

!! # $ % & ' ( !  # '' # $ # #  %( *++* !"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Leaving Certificate Applied Maths Higher Level Answers

Leaving Certificate Applied Maths Higher Level Answers 0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Trigonometrijski oblik kompleksnog broja

Trigonometrijski oblik kompleksnog broja Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.

Διαβάστε περισσότερα

Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid. Stimulated Chalk Reservoirs

Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid. Stimulated Chalk Reservoirs Nazanin Jahani Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid Stimulated Chalk Reservoirs Thesis for the degree of Philosophiae Doctor Trondheim, October 2015 Norwegian University of Science

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΚΑΤΑΤΑΞΗΣ ΕΔΑΦΩΝ

ΣΥΣΤΗΜΑΤΑ ΚΑΤΑΤΑΞΗΣ ΕΔΑΦΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ ÊÁËÁÌÁÔÁ. Κάνω τις ηλεκτρονιακές κατανοµές των ατόµων σε στιβάδες:

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ ÊÁËÁÌÁÔÁ. Κάνω τις ηλεκτρονιακές κατανοµές των ατόµων σε στιβάδες: ΘΕΜΑ.. β.. α.. α.4. γ.5. α. Σωστό β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό ΘΕΜΑ.. α. Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ Κάνω τις ηλεκτρονιακές κατανοµές των ατόµων σε στιβάδες: Ο: s s p 4 9F: s

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Υ.ΠΕ.ΧΩ..Ε. ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΕΤΕΠ 08-01-03-02 08 Υδραυλικά Έργα 01 Χωµατουργικά Υδραυλικών Έργων 03 Εκσκαφές και Επανεπιχώσεις Ορυγµάτων Υπογείων ικτύων 02 Επανεπίχωση

Διαβάστε περισσότερα

... )*RM G ^ S NA 08MG =.1 )*RM G ^ S NA.

... )*RM G ^ S NA 08MG =.1 )*RM G ^ S NA. 35... 3 2 * $#% 0 ) *+, -./ 0 $#% &"#!" (203).2 3 4../ ) ; < / "= > 8.:& / 8/ / 8.89 E " 392 # 382 8. C :& / 238 @*=A 8"* 0? 3 9= N=MO*. 8"H=& IJ$ E. + KH= L*=M 4>G F +"* 9% S. @$ ",R 8 IJ$ 3./ P=Q ) +

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

Ref No. New-Era No. Ref No. New-Era No. Ref No. New-Era No. MITSUBISHI MIC-M3019 MD MIC-2002 MD MIC-2002 MD MIC-2002 MD110166

Ref No. New-Era No. Ref No. New-Era No. Ref No. New-Era No. MITSUBISHI MIC-M3019 MD MIC-2002 MD MIC-2002 MD MIC-2002 MD110166 REFERENCE Ref No. New-Era No. Ref No. New-Era No. Ref No. New-Era No. HONDA/ACURA 099700-061 MIC-H3017 099700-070 MIC-H3014 099700-101 MIC-H3016 099700-102 MIC-H3016 099700-115 MIC-H3014 099700-147 MIC-H3015

Διαβάστε περισσότερα

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης Ασκήσεις Προβλήματα Μετρήσεις Μονάδες Γνωρίσματα της Ύλης 19. Ποιες μονάδες χρησιμοποιούν συνήθως οι χημικοί για την πυκνότητα των: α) στερεού, β) υγρού και γ) αερίου σώματος; Να εξηγήσετε τη διαφορά.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Δύνονται το μϋτρο ελαςτικότητασ Ε=70GPa, η διατομό των ρϊβδων Α=2cm 2 και ο ςυντελεςτόσ θερμικόσ διαςτολόσ α=23*10-6 / ο C.

Δύνονται το μϋτρο ελαςτικότητασ Ε=70GPa, η διατομό των ρϊβδων Α=2cm 2 και ο ςυντελεςτόσ θερμικόσ διαςτολόσ α=23*10-6 / ο C. 1 E.M.Π. - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΙΙ - 17/06/2013 ΘΕΜΑ 1 ο Ο ςυμμετρικόσ επύπεδοσ φορϋασ ΑΒ ςτηρύζεται με κυλύςεισ ςτα ςημεύα Α και Β και με τισ δύο ελαςτικϋσ ρϊβδουσ (1) και (2) ςτιβαρότητασ

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Συµπίεση εικόνας (image compression) Αποκατάσταση εικόνας (Image restoration) ηµήτριος. ιαµαντίδης

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

ΣΤΗΝ ΒΑΣΙΚΗ ΤΟΥΣ ΕΚΔΟΣΗ

ΣΤΗΝ ΒΑΣΙΚΗ ΤΟΥΣ ΕΚΔΟΣΗ 4 ΣΤΗΝ ΒΑΣΙΚΗ ΤΟΥΣ ΕΚΔΟΣΗ ΜΟΤΕΡ 800m 3 ΔΥΟ ΕΙΣΟΔΩΝ ΤΡΕΙΣ ΠΕΡΣΙΔΕΣ ΑΛΟΥΜΙΝΙΟΥ ΕΣΩΤΕΡΙΚΕΣ ΗΛΕΚΤΡΟΝΙΚΟΣ ΘΕΡΜΟΣΤΑΤΗΣ ΜΙΑ ΠΕΡΣΙΔΑ ΕΚΤΟΝΩΣΗΣ ΠΕΡΣΙΔΑ ΑΛΟΥΜΙΝΙΟΥ ΕΞΩΤΕΡΙΚΗ ΣΩΛΗΝΕΣ ΑΛΟΥΜΙΝΙΟΥ Φ120 ΚΕΡΑΜΙΚΑ ΚΡΥΣΤΑΛΛΑ

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ 1 ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ 1 ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ 27 ος ΠΜΔΧ Γ ΛΥΚΕΙΟΥ 30 03 203. Στοιχείο Μ το οποίο ανήκει στην πρώτη σειρά στοιχείων μετάπτωσης, σχηματίζει ιόν Μ 3+, που έχει 3 ηλεκτρόνια στην υποστιβάδα

Διαβάστε περισσότερα

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ)

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ) http://ekfe.chi.sch.gr 7 η - 8 η Συνάντηση ΦΕΒΡΟΥΑΡΙΟΣ 010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ) ΑΝΙΧΝΕΥΣΗ ΑΛΔΕΥΔΩΝ ΚΑΙ ΑΠΛΩΝ ΣΑΚΧΑΡΩΝ ΟΞΕΙΔΩΣΗ

Διαβάστε περισσότερα

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s ( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012 ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

8. EΛΕΓΧΟΣ ΚΙΝΔΥΝΟΥ ΡΕΥΣΤΟΠΟΙΗΣΗΣ

8. EΛΕΓΧΟΣ ΚΙΝΔΥΝΟΥ ΡΕΥΣΤΟΠΟΙΗΣΗΣ 8. EΛΕΓΧΟΣ ΚΙΝΔΥΝΟΥ ΡΕΥΣΤΟΠΟΙΗΣΗΣ 8.1 ΕΙΣΑΓΩΓΗ - ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΜΕΛΕΤΗΣ Ρευστοποίηση είναι το φαινόμενο της μερικής ή ολικής απώλειας της διατμητικής αντοχής χαλαρών αμμοϊλυωδών κορεσμένων εδαφών κατά

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 4 Φάσματα περιστροφής πολυατομικών μορίων Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE 10/2013 Mod: 02D-EK/BT Production code: CTT920BE GR ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΚΑΙ ΣΥΝΤΗΡΗΣΗΣ σελ. 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΕΦ 1 ΕΙΣΑΓΩΓΗ... 3 ΚΕΦ 2 ΕΓΚΑΤΑΣΤΑΣΗ... 3 2.1 ΜΕΤΑΚΙΝΗΣΗ ΚΑΙ ΑΠΟΣΥΣΚΕΥΑΣΙΑ...3 2.2 ΗΛΕΚΤΡΙΚΗ

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα

ρολόγια χειρός κωδ.: G-WATCH NEW Κάθε ρολόι διατίθεται συσκευασμένο... κωδ. κοπτικού: MC-28R κωδ. μονταρίσματος: UM-GW

ρολόγια χειρός κωδ.: G-WATCH NEW Κάθε ρολόι διατίθεται συσκευασμένο... κωδ. κοπτικού: MC-28R κωδ. μονταρίσματος: UM-GW ρολόγια χειρός κωδ.: G-WATCH Κάθε ρολόι διατίθεται συσκευασμένο... 34 κωδ. κοπτικού: MC-28R κωδ. μονταρίσματος: UM-GW μπρελόκ για supermarket κωδ.: M6 CARRO μεταλλικό μονής όψης κωδ. κοπτικού: UC 25R κωδ.

Διαβάστε περισσότερα

4 8 c +t +t - (t +t ) - <t +t < - < t t < + +c ( ) +t + ( ) +t + [ - (t +t )] (t + t ) + t + t t 0 + +c c x i R + (i ΔABC ABC ) x i x i c ABC 0 ABC AC

4 8 c +t +t - (t +t ) - <t +t < - < t t < + +c ( ) +t + ( ) +t + [ - (t +t )] (t + t ) + t + t t 0 + +c c x i R + (i ΔABC ABC ) x i x i c ABC 0 ABC AC 8 No8Vol JOURNALOF NEIJIANG NORMAL UNIVERSITY * * ( 6499) : ; ; ; ; ; : ; ; DOI:060/jcki-6/z0808006 :G647 :A :67-78(08)08-00-09 0 [4] [] [6] [7] ( ) ( [8] ) [9] [] : [] [] :08-06- : (ZG0464) (ZY600) 06

Διαβάστε περισσότερα

Ε ΑΦΟΜΗΧΑΝΙΚΗ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΑΠΘ Β. Χρηστάρας E-mail: christar@geo.auth.gr

Ε ΑΦΟΜΗΧΑΝΙΚΗ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΑΠΘ Β. Χρηστάρας E-mail: christar@geo.auth.gr Ε ΑΦΟΜΗΧΑΝΙΚΗ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΑΠΘ Β. Χρηστάρας Email: christar@geo.auth.gr Περιεχόµενα Περιγραφή και ταξινόµηση εδαφών Κατανοµή των τάσεων στο υπέδαφος συµπιεστότητα εδαφών (καθιζήσεις) Φέρουσα ικανότητα

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

a,b a f a = , , r = = r = T

a,b a f a = , , r = = r = T !" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d

Διαβάστε περισσότερα

ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΙΙΙ ΣΗΜΕΙΩΣΕΙΣ ΔΙΑΛΕΞΕΩΝ

ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΙΙΙ ΣΗΜΕΙΩΣΕΙΣ ΔΙΑΛΕΞΕΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΙΙΙ ΣΗΜΕΙΩΣΕΙΣ ΔΙΑΛΕΞΕΩΝ 2011 2012 ΙΩΑΝΝΗΣ Χ. ΠΛΑΚΑΤΟΥΡΑΣ ΚΑΘΗΓΗΤΗΣ 2 ΧΗΜΕΙΑ ΕΝΤΑΞΗΣ ΑΡΙΘΜΟΙ ΕΝΤΑΞΗΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑ Αριθμός ένταξης 2. Είναι δυνατές

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ (Ν Ε Ο Σ Υ Σ Τ Η Μ

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

Λύση: Ισολογισµός ισχύος στο Λέβητα Καυσαερίων: (1)

Λύση: Ισολογισµός ισχύος στο Λέβητα Καυσαερίων: (1) 6 η Οµάδα Ασκήσεων Άσκηση 6.1 Η πρόωση πλοίου επιτυγχάνεται µε Βραδύστροφο, -Χ κινητήρα Dieel µέγιστης συνεχούς ισχύος στον άξονα 6100 PS. Η ειδική κατανάλωση του κινητήρα είναι 15 gr/psh σε φορτίο 100

Διαβάστε περισσότερα

Tιμοκατάλογος φεβρουαριοσ 2014

Tιμοκατάλογος φεβρουαριοσ 2014 Tιμοκατάλογος φεβρουαριοσ 2014 livinglight TIMOκαταλογοσ 02/2014 1 Μία μοναδική σειρά Τρία χρώματα μηχανισμών: λευκό, γραφίτης, αλουμίνιο tech Τρία design πλαισίων: AIR, τετράγωνo, οβάλ Όλα συνδυάζονται

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Πορώδη µέσα - Εξισώσεις ροής

Πορώδη µέσα - Εξισώσεις ροής ΝΟΜΟΣ DARCY Πορώδη µέσα - Εξισώσεις ροής (1) Αρχή διατήρησης µάζας - Εξίσωση συνέχειας (2) Εξισώσεις κίνησης (εξισώσεις Navier-Stokes) Ροή συνήθως στρωτή, µε πολύµικρό αριθµό Reynolds =έρπουσα ροή, εποµένως:

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

Μονάδες σιδερώματος με ατμό SI 2.600 CB. Τεχνικά στοιχεία

Μονάδες σιδερώματος με ατμό SI 2.600 CB. Τεχνικά στοιχεία Μονάδες σιδερώματος με ατμό SI 2.600 CB Μείωση του χρόνου σιδερώματος στο μισό. Σιδέρωμα σαν επαγγελματίες γρήγορα και χωρίς κόπο. Χάρη στην πίεση ατμού τα υφάσματα σιδερώνονται γρήγορα και χωρίς κόπο.

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι

ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΣΥΓΚΟΛΛΗΣΕΙΣ 1 M σ = W b w σ επιτρεπ όµενη σ max = σ κάµψη + σ εφελκυστική σ επιτρεπόµενη ΣΥΓΚΟΛΛΗΣΕΙΣ 2 ΣΥΓΚΟΛΛΗΣΕΙΣ 3 Συγκόλληση σηµείων τ F A n m F n d s = τ επιτρεπ όµενη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 5 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Εφαρμοσμένη Μηχανική Επιστήμη Ημερομηνία

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

TΙΜΟΚΑΤΆΛΟΓΟΣ ΦΕΒΡΟΥΑΡΙΟΣ 2015

TΙΜΟΚΑΤΆΛΟΓΟΣ ΦΕΒΡΟΥΑΡΙΟΣ 2015 TΙΜΟΚΑΤΆΛΟΓΟΣ ΦΕΒΡΟΥΑΡΙΟΣ 2015 LIVINGLIGHT TIMOΚΑΤΑΛΟΓΟΣ 02/2015 1 Μία μοναδική σειρά Τρία χρώματα μηχανισμών: λευκό, γραφίτης, αλουμίνιο tech Τρία design πλαισίων: AIR, τετράγωνo, οβάλ Όλα συνδυάζονται

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr - - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ

Διαβάστε περισσότερα

5. Οργανομεταλλικές Ενώσεις των ΜΜ

5. Οργανομεταλλικές Ενώσεις των ΜΜ 5. Οργανομεταλλικές Ενώσεις των ΜΜ Οι ΟΕ των ΜΜ δεν μοιάζουν με τα κλασικά ανόργανα σύμπλοκα (τυπικές ενώσεις σύνταξης) ιαφορές: Τυπικές ενώσεις σύνταξης Cu(NH 3 ) 2+ 4, Fe(CN) 4 6 Υδατοδιαλυτές Σταθερές

Διαβάστε περισσότερα

τομή ακροβάθρου δεδομένα

τομή ακροβάθρου δεδομένα B 1 = 4,4 m B 2 = 1,6 m B 3 = m B 4 = m B 5 =,3 m B 6 = m Η 1 = 1,6 m Η 2 = m Η 3 = m Η 4 = m Η 5 = m Η 6 =,3 m Η 7 = 1,3 m L 1 = m L 2 = 1 m L 3 = m E C = 28847,6 ΜPa μέτρο ελαστικότητας f ck = 2 ΜPa

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

1.5.1 Καταστελλόµενη και Mη Kαταστελλόµενη Iοντική Xρωµατογραφία

1.5.1 Καταστελλόµενη και Mη Kαταστελλόµενη Iοντική Xρωµατογραφία 1.5 ΚΑΤΑΣΤΟΛΗ ΣΗΜΑΤΟΣ ΥΠΟΒΑΘΡΟΥ 1.5.1 Καταστελλόµενη και Mη Kαταστελλόµενη Iοντική Xρωµατογραφία Η τεχνική της καταστολής του σήµατος υποβάθρου αναφέρεται στις περιπτώσεις που χρησιµοποιείται αγωγιµοµετρικός

Διαβάστε περισσότερα