a,b a f a = , , r = = r = T

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "a,b a f a = , , r = = r = T"

Transcript

1 !" #$%" &' &$%( % ) *+, -./01/ :;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E I JQ PQ ]E H I I F E Q U HI EI E F GF H ^_`abcdebf H U gq hij `d k H EE V I F FHPQ F G F H F l HI ETJ F m E MI E n EE F op VHF S T PQ Gq F F Q HI GTH F H F PQ r E F M PQE H V QE sth JQ E HPQ m E JQ F rj I \ I F [H M u H I F PQ [V J E H I H Q H EE E F v PQV GF ME H I Q EM VF U M v JQ H I F E F GF FHPQ n EE F ] I M F R EM PQ F FHPQ ] I M F I K R EM PQ H F F ]ME H I a,b a f f = a b M PQ M Sw F GF EE F F x EF F P yz{ Nyz V F a F M F EI F I I M a = ,0 1 f = 298, G VHF M[V V F F FJ E[ QE V GEE F E \ [HI TL M H[ Nyz E Q H I F n EE E F x E M E m I { m PQ F H w[ PQ PQ F n FH v JQ H I THI E VF w F EE F FHPQ u EV MEFH I wm F R EM PQ EJ I M PQ F M [H M PQ F I K R EM PQ F E VPQ I Q r = (a 2 b) 1/3 M[V r = 1 3 (2a + b) PQ u E }~ r = ]Q PQ u E r = ]H H F F I I M TE K JMEPQ IE M E ]MMEFH I H M F H F O N PQ F T F G F FH w F \ PQH I [H r = T I V F EE Q I I TE E F GF M JPQ ILK u K M F I EE V F T H F ] I M wm F F [H EE F M F n FH F F IwEI x HK PQ HI E{ M PQ V F F PQ w F M E T E E Iw I \EFTHI E V ƒ ˆ Š Œ Ž Ž Š ˆ Ž Š Ž Œ Œ

2 9:;:9 WXY=Z C>Z C>Z X XDC>D X=>X X?XBX> X = Y=Z S I PQ F S F GF F S I PQ Q PQ u F EE w F E O E F M HPQ PQ F [ JPQ [V PQ H F GF H F F rh F [H U Q F F [ JPQ H I E JKI I N F K PQ F [ Q PQ u F EE H I [ Q b JHK PQ yy [H E F GF EI F K! " # $!! %!! &' ( ' ) * +! ',- EE G HK T H F E F GF F. &' " / '( ' 0! 1 +! ' '!.( ' '2 & )!! 3 0! '. (! 4 '! 2 5 6! 2(.(! 3! 1 ' '2 & ( ' 3 3 ' 7 ' 3 '! 1!!. 1!,. /'( 0 ( ' '! )!! ' )( '3 ' 7 6! 2# ( 1 3 ' 8 3 ' ' 2 42,- E F HK PQ ]H I F 9 F E F GF ] [H T ME M F K HPQ F EH I F H F GF EM GI M F U N EF \ I [H F S EF E lh u U F 9 F F K E rm EE F ]H PQH I F Q PQ F H I H EE E [H PQV EF H F F E T E Q I E [H vu H JPQ EI :;<; =>f`>kc JI yo w F M I vu H JPQ F v?@abc Q F E F Q PQ S HE H I F m ME EPQ SEJPQ [H 9 F [HF I HK I EE V F F K EM H T U PQ F ] Q [H E JHK PQV I [H M Q F E F m ME F Q N PQ ] E I QL H F F Q M LI ]EEI Q M Q PQ I EL VHF ]MV PQH I [V PQ F F H F I I I VJQE GEE F F I I V F M \ F E RLQ EF wm F GEE F M PQ M H F TL n PQ H I M PQ V F F GEE F E u F EE w F E F GF I PQ I H F HPQ T PQ H I I [H H[ ]E \ E Q F n N [ EE F Nyz I F V PQ F U H D oen M F [HI QLI R LQ EF VHF R LQ EF wm n [ EE F }F [HIJ IEPQ ]H T PQ PQ EE PQ F F S I GEE F [H 9 F V EPQ F ]MV N PQH I [V PQ GEE F H F F HPQ FH FHE I w F Q Q M T I PQ u Q F S p S V EF n / H \ E p O\ l u Q No M HQ H E T E u H I 2 G HH IJJKKK H L J H JŒ ŒJŒ MHJŽŠH J H ˆ J H ˆ Hˆ

3 F r MV PQH I H F F r I u EH T H F npqh I F TE R EM PQ V F LK H F E F GEE F l E F FH FHE [H ]E n HE IM PQ E T E M PQE K F GEE F TE R EM PQ [H Q PQ F GF Q H F r FU H I U V F GEE F M HQ [H I K E H GEE FM H I PQ F u Q F F G F F E ] I F QQH F FHPQI wq VHF G VF F HPQ U J FEPQ F K U PQ F E F GF PQ GH U PQ F GEE F V FH I 9 F Q I U PQ u Q F ]H PQV H I H F I GF V F F m M F K F PQV E V F G I M E GF EE F F u EH T F PQV H T F GF [H JEE M Q I Q F TE PQ H F FI MH F HPQ EE M H[H I VHF V Q LIEPQ I PQ u Q F EE F E Q PQ I F u KH T F IE PQ[ I U Q u KN H T H I [ E VF FHPQ TL u K Q wm [ Q V I N F U MH F V F F PQ u Q F EE F E PQV EF F G F ] H ] MV PQH I JPQEPQ SEHIM Q U F U Q M PQ VF H F U EF F G F I PQE 9:;: X?XBX> X X WXY Z = AX C F H F F I I M F U mh T F F I FJN PQ H[M V Q V F F F GFTL U MH F [H VF I E I H V EPQ \ [HI JPQ [ \ H V EPQ GEE F PQ F M [ Q H F V EPQ \ F HH I Q M X >= =Y> 9:; : CXB B DXY Z = AX X?XBX> X B C@ $ F TE PQ FJ V F F U mh T FHPQ F u KV [H v [ U MH F u KV ]M F npqh I M PQ M [H JPQ H F E U r I mh T v [ M FH I [H ] F H I I FJ PQ v [ I VJQE N F VF I ]H H F U n [ H F N H [H I TL w H F G FTL U T m H T r I T F H F R LQ M PQ V F ]H F n [ [ U mh T M [ Q PQ F V H I M EI F M EE [ I I H [H I GH

4 ! }""# $%& '&(!) * +!!,!-./0&1 }23~ 4! &%&( %+ 5+%1 '1!1,++! }"~} 6( +0&&% &%&( %+ 6( +%1( $&! 7++&8 + }2~3 $9!&8& '&(!) 7&+%1% :+%,++! }"~}.( +&-! &%&( %+ ;+% <8=,++! }"~}, &%&( %+ * +!! >%!./0&1 }23~?&( &%&( A % <B <%9 }"C# * 11 &%&( %+ 6!% $&%9-!,++! }"~} D++E& &%&( %+ + F9%+!1,++! }"~}?9E - &(!&%&( %+ 6( +%1( 5+%19%+!1 7++&8 + }2~3 $9!&8& '&(!) 7&+%1% M EE GH u F \ H[H I U PQ F Q N M F F [ I [V S [H I F m ME F H F H [H PQ M I E F r I H I H F M F N F R LQ H I V PQ H H PQ FEPQ H H T m I E F HPQ H PQ FEPQ Q [H O PQH I I RLQ FI [ [H M PQ F H PQE F F V I F E PQ G VPTEH I PQ z H F PQ F F N U IH I [V H PQ FEPQ n [ H F n [ [ U Q F F n VHF v HM H I F F H \ H[H I F F F EI V H FHPQI Q v PQ EI PQV J M I I [H F H PQ G [H Q F E M E H I [ \ FHPQ m M F I HPQ EJ F wm I F R N H I \ PQ F I I Q PQ F K LM NOL PQ R S N w[ PQ H F n [ Nyz F H PQ RTUVLWWN H xm l N E { ] F S E IH I IE M E n [ EE F VF I M ) *), -XY70Z [6.\[- ]X X74630/-3 I Q PQ F F F H F GF I F ^ _ ^ 7 H F F ` 4 9:9 :; X>= =Y> C>Z X C>D EI F VF H EE F K F E F GF FHPQ n EE F M N PQ M VF n PQ PQ F F GEE F [V mh T F E a A C A H F %C A M [ PQ V F WXYDB A= AX b>dx c F H F GEE F E I F R EM EE F TE R EMN PQ v F EN wf E MEF BCB G GE F PQ F u F VF E BCB H I [ PQ G M E MI u F VF FHPQ F T E [V PQ Q H F F vhee F M PQ M T E E T E [V PQ F [HI N Q LI R EM I F PQ H T TEJ

5 p N ]MMEFH I \ H I F rj I T E U [H Q V v F E F JM I I U F I F v HEE F [H I F M PQ u F M \ PQH I F v F E F GEE F U HK Q PQ U npqh I EI F EE I U u K[ QE F T E M PQ M B@ \ B@ rj I F T E U B@ I U WXYDB A= AX BX= X c EI F V F [H JPQ F [ E EE M PQ F K F GEE F HI E 9 F u F Q [ E EE F MN I G [V HU PQ H F HI E VF E PQ U T I E J N E F [ HI E EH T [ HI I E PQ Q E F PT HI E EH TNv F E r ω N = 90 ω/2 r N : Nordrichtung ]MMEFH I \ H F HI E I E J E PQ F H F HI E JPQ H ]H F F E I F F IE PQ \ \ VF FHPQ F E JV T E F Q EM I ELI H I V T E ω I I M F ] I M U PQ U I U U F \ vhee Q K A n FH IE PQ F HI E FH

6 z n P P r N N r N ω = 90 ω/2 r N : Nordrichtung n P : Normalenrichtung durch P ]MMEFH I o \ H F HI E I PQEPQ F \ mh T P H HI E IE PQ F E F T E [V PQ JHK HI E E np P H F F v FPQH I rn F FHPQ F wfnv FFHPQE H E I F ]PQ I I M VF v E PQH I F HI E PQ M Q I u U EH I F HI E M H F [ PQ F FHPQ F U M F I r PQH I V EPQ FHPQ F HI E EH T U EJH npqh I HPQ F m q U wim F F Q PQ Q F EQ RE U rm EE npqh I GF [ QH I T I EE VF BX= X C? ZX < = Y=Z c R HK [V PQ I I Q PQ H F I [ PQ \ H PQ F V B@ mh T P H GEE F VF F 9 FHPQ F E JV T E F T E [V PQ JHK GEE F E n P P H F F v FPQH I rn F FHPQ F wfnv FFHPQE H FHPQ F ]PQ I I M VF ]MMEFH I y \ H F GEE F HPQ F I E PQ VF V @ F 9 ]MM o u ]H Q F m E H F F sth V E PQQ F I I Q PQ \ M I JKI ILK E F I [ PQ \ O PQ H I F F

7 F ]ME H I M IE EI F lh Q I tan b z = (1 f) 2 tan b g Q M bg F I I Q PQ \ bz F I [ PQ \ H F f F ]ME H I I [ F M F \ T E F n Q VPT E V F V M b g b z = m sin(2b g ) 1 2 m2 sin(4b g ) m3 sin(6b g )... m = 1 ( b a 1 + ( ) b 2 a H F F I K R EM PQ F TE R EM PQ F [H H F E I F n [ EE N a b F I PQEPQ Q F I [ M F I I Q PQ \ U z u qh J EPQ ]H F F I I Q PQ \ \ M PQH I P H F M N JPQ F n [ EE F T E F I [ PQ \ H F ]M F F mh T P U u EH T * F GEE F I PQE V F ]MM y cos b g distanz(p,m) = a cos b z cos (b g b z ) AX mh T E rj I F r U H F n [TLN P P F 9 R mh T RLQ H IE PQ vhee F F I I Q PQ F F r HKH T X C>D c u H I I I Q PQ F M HQ H F u H I N PQ V F F Q EM HPQ AA B@! AA I u H I F rj I H PQ F VF H u H I [ FI [ [HwPTI wq V N M H F PQ \ VF H F u H I F RLQ U E ) 2 idealer Polarstern Horizont-Ebene α Erdachse α Äquator ]MMEFH I \ H I F \ R J F GF F E m E F Q Sq F I H H F EJ I H I F GF PQ F H FEPQ I K R E THI E EJI TL F \ PQ E R LQ H HH ƒ Œ Ž H Ž H H Œ ŠŒ

8 F wm F R [ M V F u RE M E MI [TH E EJK PQ F I I Q PQ \ \ M PQH I F PQ E Q PQ u E F RLQ F M H F H HE H T M ]MMEFH I \ H I F \ 9:9 :9 A>D=D X= Y> ZXB X CD AX H F 9 PQEPQ QJ I F I I Q PQ \ H F F R LQ M EE F E \ [HI TL U F QE F L M lh M PQ F K F v E PQH I M T PQ u H I FHPQ F r PQH I M V F H F Q I PQ U EH I G F E H PQ Q I E I \ I U F npqh I M H TL Y DXBC>D c F F H n [TL M [ I F F T F [H r I QE F M [H E wq Q EM w S E w F O PQ H I } U F M I EE V F G \ E F S QE QH I [ I ]MMEFH I G I Q PQ EEH I F r I QE }" IM m HH IJJKKK H L J H JŒ ŒJŒ MHJŽŠH J H ˆ J H ˆ Hˆ HH IJJKKK H L J H JŒ ŒJŒ MHJŽŠH JŒ MJ MH Œ M

9 o K 1 K 2 P P P P * ] MMEFH I S QE M F F U P K1 I M K2 9:9 : BXA>C>D E[ QE U I FJ PQ F \ H[H I }2 F F V IM F v V FIT F F H PQ H I3# O PQ H I EI [ EE PQ EI F ]ME H Q ]MM I M F mh T P FHPQ F rj I \ H F R LQ F N K1 H F GEE F e1 V M rj I H F \ P H e 1 M \ PQ H I F n H T F U P F K1 V M F GEN E F e1 M [ I VF JM I I [H F K2 F Q \ PQ H I F n H T F U P K 2 V EPQ I I wm K 1 O H I U PQ M F ]PQ I I wm K 1 n H I F Q F p \ PQ H I F I I Q PQ F U P H \ PQH I F n [ EN E F e2 F Q rj I H F \ U P HH IJJKKK H L J H JŒ ŒJŒ MHJŽŠH J H ˆ J H Hˆ HH IJJKKK H L J H JŒ ŒJŒ MHJŽŠH J H ˆ J H ˆ Hˆ

10 y K 1 K 2 e 1 P P P e 2 ]MMEFH I ]ME H O PQ H I ) * -./ 70Y-3 F F n [ EE F V H PQ F HI I E I GTEJ F \ II I I 9 PQ rj I H F \ M Q E F H [H I H HK [V PQ U PQ F n [ H I PQ V F V I Q F EPQ \ [HI F H PQE F M HPQ

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* ! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+

Διαβάστε περισσότερα

". / / / !/!// /!!"/ /! / 1 "&

. / / / !/!// /!!/ /! / 1 & ! "#$ # % &! " '! ( $# ( )* +# ),,- ". / / /!"!0"!/!// /!!"/ /! / 1 "& 023!4 /"&/! 52! 4!4"444 4 "& (( 52! "444444!&/ /! 4. (( 52 " "&"& 4/444!/ 66 "4 / # 52 "&"& 444 "&/ 04 &. # 52! / 7/8 /4 # 52! "9/

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&

! # $%%&$$'($)*#'*#&+$ $&#! #, &,$-.$! $-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& ! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#

Διαβάστε περισσότερα

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards Table of Contents Introduction (Arabic)... 1 Introduction (English)...396 Part One: Texts of the Constitutions

Διαβάστε περισσότερα

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

!#$ %&$ ##%&%'()) *..$ /. 0-1$ )$.'- !!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + ! " # $ %&&' '( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + %( ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((('& %('(,,

Διαβάστε περισσότερα

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1 ! " " #$%&'(&) *+,-. /01 34 564784 37964 :4 ; ?@ 34 E156F57E1 GHE H567JF4 H5F:7H4 K06 LF37:4 M4N45F415 30 6PG34 0F EK0 F17JF4415 R465071 K6ES3P4 :4 E156F57E1 3M07:4 :4 4 4F3 7156F415 4 E15 6H9H3H 7KE7S34

Διαβάστε περισσότερα

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

!! # $ % & ' ( !  # '' # $ # #  %( *++* !"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g

Διαβάστε περισσότερα

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

!  #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $ [ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

Im{z} 3π 4 π 4. Re{z}

Im{z} 3π 4 π 4. Re{z} ! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

)# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/ :8;434(

)# * ' +, -.(. / ( 01(#(' ( 0 #('( +' )# *'+,+ (. 20#('( / )%345 +56336% (%1/ :8;434( ! "#$" %& ' ' ' ( )# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/7338897394:8;434( * ''

Διαβάστε περισσότερα

ITU-R P (2012/02)

ITU-R P (2012/02) ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU

Διαβάστε περισσότερα

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 A New Examination of Service Loyalty: Identification of the Antecedents and Outcomes of an Attitudinal

Διαβάστε περισσότερα

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

March 14, ( ) March 14, / 52

March 14, ( ) March 14, / 52 March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a

Διαβάστε περισσότερα

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως

Διαβάστε περισσότερα

!"#$$%&'!()$%&*$)+,%!-$%$!./).$!!+0)1. 21.$%().!$/32%$)4!()$%&*$)+,%!-$%$!".2".#)1. 21.$%().(!/#$%!%2) ).2!/#$%&".1!,/.+)2.$!/&5%$!2' ) )$.

!#$$%&'!()$%&*$)+,%!-$%$!./).$!!+0)1. 21.$%().!$/32%$)4!()$%&*$)+,%!-$%$!.2.#)1. 21.$%().(!/#$%!%2) ).2!/#$%&.1!,/.+)2.$!/&5%$!2' ) )$. !"##$ 7 ; :!"#$$%&'!()$%&*$)+,%!-$%$!./).$!!+0)1. 21.$%().!$/32%$)4!()$%&*$)+,%!-$%$!".2".#)1. 21.$%().(!/#$%!%2) ).2!/#$%&".1!,/.+)2.$!/&5%$!2' ) )$. 02%$)2"./1!$.2!%!()"! 6! +)$%&*$!!$%+%.! 7./)%6!

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( ((( ? / / / o/ / / / o/ / / / 1 1 1., D 1 1 1 D 1, E F 1 D 1. = a, D = b, 1 = c. a, b, c : #$ #$ #$ 1) 1 ; : 1)!" ) D 1 ; ) F ; = D, )!" D 1 = D + DD 1, % ) F = D + DD 1 + D 1 F, % 4) EF. 1 = 1, 1 = a + b

Διαβάστε περισσότερα

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1 ! " #$ # %$ & ' ( ) *+, ( -+./0123 045067/812 15 96:4; 82 /178/? = 1@4> 82/01@A74; B824= 6/87 60/8567/; C 71 04D47/10; C 82/1 /

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει Ref. 20622 EL %$ #"! + + * + ' (,$, * $,' +* )' ( ' & 4. 3: 046 2 4. 32 1. 0. @ 0.. A A0 ON B D CS SPN R NR KJ A G D R QDC ONR H PC KJ L MN \ [ Z RV RP N S H S A A. 0@ 2 : 9. ; KJ ^ N \ CV W]P E ] 8 6

Διαβάστε περισσότερα

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1) x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).

Διαβάστε περισσότερα

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

!""# $$%&'()* '+%$,&'-' '* %*.%'/' - 0$1.%'-2'()* / *&3,' -',4%$-'- 5-%'6 2%'6 - %,'/72**/*+'%&-*$%82$&*$,$$9%*$ : *7&,()* -*.

!# $$%&'()* '+%$,&'-' '* %*.%'/' - 0$1.%'-2'()* / *&3,' -',4%$-'- 5-%'6 2%'6 - %,'/72**/*+'%&-*$%82$&*$,$$9%*$ : *7&,()* -*. !""# !""# $$%&'()* '+%$,&'-' '* %*.%'/' - 0$1.%'-2'()* / *&3,' -',4%$-'- 5-%'6 2%'6 - %,'/72**/*+'%&-*$%82$&*$,$$9%*$ : *7&,()* -*.%'2 - /$&%/*&3,'; %,&'-*%'< %* =;%=; 6-'-/'%'>?* *,$6@%*$< %* ;%;6A$$$'26,*-67282%82

Διαβάστε περισσότερα

tel , version 1-21 Mar 2013

tel , version 1-21 Mar 2013 ! "#! $"%" &'()* +*,-./-01/ 2 3 45 467 68 9:; 6?87 @ 6 =

Διαβάστε περισσότερα

(2), ,. 1).

(2), ,. 1). 178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

! "#$ %$ & ' ( )*" +, -../

! #$ %$ & ' ( )* +, -../ !"#$%$& ' ( )*"+, -../ *)"123$45"4%$!"%!", 62" #$7" $!6$ $$!$8592*!" $1:" #$8 *);"*)3)"4%$6$*% #3!)*%$!$*"#$%""3#"$ 3$#3"%! ) :!)"%""

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure Hervé Rivano To cite this version: Hervé Rivano. Algorithmique et télécommunications

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

... * +, . >1 " W1 X &=:C.1 3.% 2 *! > 8. $( >1 $.: " G YJ ZC1 G! 1.

... * +, . >1  W1 X &=:C.1 3.% 2 *! > 8. $( >1 $.:  G YJ ZC1 G! 1. 1... #) %# "#$%& '%(! 3 2 1 ()*+, &! # $% &!" 5 6!7 8 9 4 2 3 /$01 &,. 2 =! > 8 3.%

Διαβάστε περισσότερα

*+,'-'./%#0,1"/#'2"!"./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!"#/5".+!"#$() $!"#%"&'#$() 50&(#5"./%#0,1"/#'2"+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!.

*+,'-'./%#0,1/#'2!./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!#/5.+!#$() $!#%&'#$() 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!. # #$%&'#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 :; #/5.+#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 #$% $ #%&'#$( 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-

Διαβάστε περισσότερα

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v BÀ. tdmj³ Xn-cp-h-\- -]p-cw kz-tz-in. 2004 ap-xâ [-\-Im-cy ]-{X-{]-hÀ- -\cw-k v. XpS- w Zo-]n-I- Zn-\- -{X- nâ. C-t mä am-xr-`q-an Zn-\- -{X- n-sâ {]-Xnhmc _n-kn\-kv t]pm-b "[-\-Im-cy-' n-sâbpw ssz-\w-zn-\

Διαβάστε περισσότερα

!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443

!! #$%& !  # $ &%+,(-. (# / 0 1%23%(2443 "#$& " # $ & ' &( &)* &"# &"+,(-. (# / 0 123(2443 2443 56 1 7 & '()(()(*+( ),)(-.(/)((,),24420 8.94: -; :53&:54::549 '()((0)(#'(1)(' ( )(-.(/)((,),24460..94: < * 94&5=>6 '()( 2( )(3(1)((0)('.( )4)((,)

Διαβάστε περισσότερα

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

! #! & 0/! ).#! 71 1&$ -+ # &>  %+# 1 2$ "#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΗΡΟΤΡΟΦΙΑΣ ΚΑΙ ΜΕΛΙΣΣΟΚΟΜΙΑΣ Πασχάλης Χαριζάνης Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ 1. Κερί Σύμφωνα με την Εθνική Στατιστική Υπηρεσία της Ελλάδος η παραγωγή κεριού για

Διαβάστε περισσότερα

ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ)

ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ) ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ) ΠΑΝΤΕΙΟ-1 BA Α ΟΜΙΛΟΣ ΠΑΝ.ΔΥΤ.ΑΤΤ.-2 ΤΕΙ ΣΤΕΡ.ΕΛΛΑΔ.-1 DE ΕΜΠ-6 LI Β ΟΜΙΛΟΣ ΤΕΙ ΣΤΕΡ.ΕΛΛΑΔ.-2 MD ΠΑΝΤΕΙΟ-3 MC ΠΑΝ.ΔΥΤ.ΑΤΤ.-1 NO ΕΜΠ-4 RU Γ ΟΜΙΛΟΣ ΠΑΝ.ΔΥΤ.ΑΤΤ.-3

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Mixed Distributions = + k k. = n. k k k. ρ k Χ Χ ] e [ ] Χ i

Mixed Distributions = + k k. = n. k k k. ρ k Χ Χ ] e [ ] Χ i p d d Mxd Dstrbutos ρν ( ( ρ Ν( ρ ( ρ ρ ρ ( L ( ρ [ ρ ( ( ρ ( ]! " # $&% ' * - 3 4&5 6 7 8 9: ;A@CB < DFE G IKJLNM OFP QRS TU V S WTNX ρ Y[Z!\LZ!]^]`_ ab!c L! d!! ρ ( ρ Ρ( ρ ρ gh Cḧ l l ρ log L ρ log!

Διαβάστε περισσότερα

.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).

.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ). ΡΧΗ 1Η Ε ε Γ Α Ο ΗΡ Ε Ε Ε Ε Η Ε Ο Ε Ο Ε Η 14 Ο Ο 2001 Ε Ε Ο Ε Ο Η Ε Η εε : Η Ο ΧΕ Η Ο Ο Ε εά : Ε (6) Ε Α 1ο Α.1. π µ µ ά : Ρ ( ) = Ρ ( ) Ρ ( ). 8,5 Α.2. µ π µπ µ π µ µ, (=,, ) : Ρ ( )... 1 Ρ( ) 2 Ρ( )...

Διαβάστε περισσότερα

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) 7057/17 ADD 1 TRANS 97 ΔΙΑΒΙΒΑΣΤΙΚΟ ΣΗΜΕΙΩΜΑ Αποστολέας: Ημερομηνία Παραλαβής: Αποδέκτης: Για τον Γενικό Γραμματέα της Ευρωπαϊκής Επιτροπής,

Διαβάστε περισσότερα

!! "#$%& '( )(*%+%#,+ -. / / 0 1/ /2/ " / : /2 4 ;<("= **( /> / ?1 /?1 3/ / / : 4 / 4 5 2// -

!! #$%& '( )(*%+%#,+ -. / / 0 1/ /2/  / : /2 4 ;<(= **( /> / ?1 /?1 3/ / / : 4 / 4 5 2// - ! "! # $%% &'' ('#)* + &'', -./012 34567489:; 945 >4? >@A B %C #''%CD! B C %) &'' ('#)* + &'', -./012 3E @FGAGF:; 945 >4? >@A M#* N, OPPQ +!H! II J $*) ) &'' ('#)* + &'', -./012 K484E:G8L >945

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+

!  # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+ ! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+ &) + ) &) $, - &+ $ " % +$ ". # " " (% +/ ". 0 + 0 1 +! 1 $ 2 1 &3 # 2 45 &.6#4 2 7$ 2 2 2! $/, # 8 ! "#" $% & '( %! %! # '%! % " "#" $% % )% * #!!% '

Διαβάστε περισσότερα

tel , version 1-7 Feb 2013

tel , version 1-7 Feb 2013 !"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 &#89% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

!  #! $ %&! '( #)!' * +#,  -! %&! !! !  #$ % #  &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**. ! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;

Διαβάστε περισσότερα

5!"#!$% $#" &' $ ()* +, # - '. ' 0 ' # 1 2' ' 3 '. "# 0 ' # 0 ' $ 3 0 '! '. ' 0 ' ' 66

5!#!$% $# &' $ ()* +, # - '. ' 0 ' # 1 2' ' 3 '. # 0 ' # 0 ' $ 3 0 '! '. ' 0 ' ' 66 5!"#!$% $#" 5 &' $ ()* +, # - '. ' 0 ' # 1 2' '. / ' 6. / 6 3 '. "# 0 ' " 3 / 3 '. 2 0 ' 4.. 3 '. 4# 2 ' 2 "" 4" 5# 0 ' 5 1. 5# 3 '. 0 ' $ 3 2 5% 59 3 '. 2!4 0 '! '. ' 3 '. 2!5 66 0 ' 6 7 2 ' 66 3 '. 2

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s ( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

payload mass (kg) Data point

payload mass (kg) Data point : %"$" +, + %$ "?'&, + '&) + " %g -, 'm )" % "?/. F $ % D - ;2Z " " % ) 4 F 65y 55 6 4 8 ) % + &%48 9 : ] @& ""'& $ A + \VAf + " 5\ %f" 6AA_" f'af6q"b> %)6C. 5\ ".K" % BD " /.KBD & [?> %

Διαβάστε περισσότερα

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I  CD β U3 I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑΤΑ. του. κατ εξουσιοδότηση κανονισμού της Επιτροπής

ΠΑΡΑΡΤΗΜΑΤΑ. του. κατ εξουσιοδότηση κανονισμού της Επιτροπής ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ Βρυξέλλες, 8.3.2019 C(2019) 1900 final ANNEXES 1 to 12 ΠΑΡΑΡΤΗΜΑΤΑ του κατ εξουσιοδότηση κανονισμού της Επιτροπής σχετικά με την τροποποίηση του κατ εξουσιοδότηση κανονισμού (ΕΕ) 2015/35

Διαβάστε περισσότερα

X Y 5 Z 2404 [0\0 234 ] = \ ] Y^\_ 054 ] ` 0_\04 4 a = ] 8 b 8b 8 c d X e e \0] 4 `4Z e \ 5023 f \ 5 g h i] 50] 5 `0 4 j k lmn l m

X Y 5 Z 2404 [0\0 234 ] = \ ] Y^\_ 054 ] ` 0_\04 4 a = ] 8 b 8b 8 c d X e e \0] 4 `4Z e \ 5023 f \ 5 g h i] 50] 5 `0 4 j k lmn l m !" # $ % % & "# ' ( " & ) ' ' * "!"'+,, + - "!"'.!& +!, / 01 234 53 67 899 86: ; < 0 4 2 = >? @ A B C D E D C F A GHII DCAFJ HH K F I B HIL F KH D MND K BO I ADPD KH L F KGHG FAF E HQHL BRS FADS FA H ND

Διαβάστε περισσότερα

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει EL Ref. 20620 %$ #"! $,+ *$ ' ' )( '& 4. 3: 046 2 4. 32 1. 0. @ 0.. A A0 ON B D CS SPN R NR KJ A G D R QDC ONR H PC KJ L MN \ [ Z RV RP N S H S A A. 0@ 2 :. ; KJ ^ N \ CV W]P E ] 8 6 2 0 3 6 X _ Z R N

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

!"# $%&'"()"%'*& # $"%)"#"+(#,'(*,'+*'- *'%,$2%&"%%&,-%&'-,--"%,-$,'-"##%&''3),'4'+%-"-"%&'-,-$ %&'('1'' $"-%' $*,'+*'.

!# $%&'()%'*& # $%)#+(#,'(*,'+*'- *'%,$2%&%%&,-%&'-,--%,-$,'-##%&''3),'4'+%--%&'-,-$ %&'('1'' $-%' $*,'+*'. !"# $%&'"()"%'*& # $"%)"#"+(#,'(*,'+*'- $.."+"+/01'+,'*% *'%,$2%&"%%&,-%&'-,--"%,-$,'-"##%&''3),'4'+%-"-"%&'-,-$ %&'('1'' $"-%' $*,'+*'. $..,4) 5) '"( $'"%4'+% &,-,-% *'%,$2%&"%6'&"!''"(%&,-%&'-,-"+(%&"%,+

Διαβάστε περισσότερα

1 I X (f) := f(x t ) dt. f B

1 I X (f) := f(x t ) dt. f B 8 7!"$#!%') ""! -/.$ -324654 )! 98/:/; < E <

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης

Διαβάστε περισσότερα

➂ 6 P 3 ➀ 94 q ❸ ❸ q ❼ q ❿ P ❿ ➅ ➅ 3 ➁ ➅ 3 ➅ ❾ ❶ P 4 ➀ q ❺ q ❸ ❸ ➄ ❾➃ ❼ 2 ❿ ❹ 5➒ 3 ➀ 96 q ➀ 3 2 ❾ 2 ❼ ❸ ➄3 q ❸ ➆ q s 3 ➀ 94 q ➂ P ❺ 10 5 ➊ ➋➃ ❸ ❾ 3➃ ❼

➂ 6 P 3 ➀ 94 q ❸ ❸ q ❼ q ❿ P ❿ ➅ ➅ 3 ➁ ➅ 3 ➅ ❾ ❶ P 4 ➀ q ❺ q ❸ ❸ ➄ ❾➃ ❼ 2 ❿ ❹ 5➒ 3 ➀ 96 q ➀ 3 2 ❾ 2 ❼ ❸ ➄3 q ❸ ➆ q s 3 ➀ 94 q ➂ P ❺ 10 5 ➊ ➋➃ ❸ ❾ 3➃ ❼ P P P q r s t 1 2 34 5 P P 36 2 P 7 8 94 q r Pq 10 ❶ ❶ ❷10 ❹❸ ❸ 9 ❺ ❼❻ q ❽ ❾ 2 ❿ 2 ❼❻ ➀ ➁ ➂ ❿ 3➃ ➄ 94 ➁ ➅ ❽ ➆ ➇ ➉➈ ➊ ➋ ➌ ➊ ➍ ➎ ➋ ➏➃ ➃ q ❺➐ 8 ➄ q ❷ P ➑ P ➅ ➇ ❽ ➈➃ ➒➇ ➓ ➏ ➎ ➄ P q 96 5P q 4 ❿ ➅ ➇➃❽ ➈➃ ➇ ➓

Διαβάστε περισσότερα